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Abstract

We present a simple denoising technique for geometric data rep-
resented as a semiregular mesh, based on locally adaptive Wiener
filtering. The degree of denoising is controlled by a single param-
eter (an estimate of the relative noise level) and the time required
for denoising is independent of the magnitude of the estimate. The
performance of the algorihm is sufficiently fast to allow interactive
local denoising.

1 Introduction
The complexity of the models used in computer graphics, visual-
ization and geometric modeling applications constantly increases.
It becomes more and more difficult to create such models by hand,
and 3D scanning is emerging as an attractive alternative. How-
ever, the raw data produced by 3D scanners (range images or point
clouds) are usually far from usable in any application. Considerable
number of algorithms were developed for processing such data. A
typical processing pipeline includes several stages:

� registration of raw data to create a single point cloud;
� conversion of the point cloud to an arbitrary fine polygonal mesh;
� decimation and reparameterization of the resulting mesh.

While the reparameterization step is not essential for every appli-
cation, it is often desirable when a complex model has to be mod-
ified, stored and displayed interactively. As it was recently shown
[10, 9], reparameterization combined with correctly chosen com-
pression techniques results in substantial reduction in error (by fac-
tor of four) for compressed geometry compared to methods preserv-
ing fine mesh connectivity.

This result is not surprising if we consider the geometric data
represented by a mesh from the informational point of view. In
contrast to images, there are three distinct types of information as-
sociated with a mesh: connectivity (which vertices are connected
by edges), geometry (vertex positions sampled from the original
surface), and topology (topological structure of the surface repre-
sented implicitly by connectivity). It should be noted that only ge-
ometry and topology carry information about the original surface.
Connectivity is not explicitly present in the original model and is
introduced as an artifact of the algorithms used to convert the point
cloud to a mesh.

If we adopt this point of view, there are three types of noise
present in the mesh data:
� Connectivity noise, which is the pretty much all of the connectiv-
ity information for surfaces of low genus. As the only information
about the original surface carried by connectivity is the topological
information, connectivity can be replaced by any other as long as
topology is preserved. All topological information we theoretically
need for a surface of genus 0 can be represented by a tetrahedron.
� Topological noise, which is created by the algorithms used to ex-
tract a mesh from the point cloud.
� Geometric noise, due to the errors in measurement and resampling
of the data at various processing stages.

Topology-preserving reparameterization can be thought of as re-
moving connectivity noise; recent work [8] addresses the problem

of topological noise. We focus on geometric noise removal, assum-
ing that the surface is already reparameterized. While our method
can be potentially applied before reparameterization, it works best
and is most natural for semiregular meshes.

Reparameterization greatly simplifies the problem, because the
surface can be considered as a function, and simple and efficient
signal processing approaches can be applied. If reparameterization
is ultimately performed on geometric data we believe that denoising
is best left to the last stage, because additional noise can be intro-
duced at the resampling stage. This is the case when our approach
applies. If reparameterization will not be performed, more com-
plex techniques for denoising on arbitrary meshes [2, 6] are more
appropriate.

The algorithm that we propose is based on recent work in im-
age denoising which uses locally adaptive Wiener filtering [16, 17,
21, 22]. The subbands of a multiscale representation are modeled
as a product of a Gaussian random vector with a hidden multiplier
variable. Estimation of the multiplier leads to the estimation of
the local variance and allows standard Wiener denoising. The re-
sulting algorithm is quite efficient, as it requires only a single pass
over the surface at each resolution level. It is controlled by a single
user-defined parameter, namely, an estimate of the noise magni-
tude. The performance does not depend on the magnitude of this
estimate, i.e. strong noise reduction takes exactly as much time
as moderate amount of denoising. Given an infrastructure for sup-
porting semiregular meshes it takes very little time to implement
(several hundred lines of code) and can be used for interactive local
denoising of a model.

1.1 Denoising

We start with formulating the problem more precisely. Given a
surface corrupted by geometric noise, our goal is to produce a new
surface which is as close as possible to the original one. This task
requires implicit or explicit assumptions (model) about the noise
and the surface.

It is useful to consider a simple 1D example to understand the
problem more clearly. If nothing is known about a 1D signal, it
cannot be denoised. However, if the signal contains no frequencies
above ! and the source of noise produces only frequencies above !,
low-pass filtering is an ideal denoising procedure. This is a simple
example of general pattern common for a wide class (but not all) of
denoising approaches: apply a transformation to represent the sig-
nal in a domain (in our case, frequency domain) where the noise is
well separated from the signal, use assumptions on the structure of
the transform coefficients of the signal and noise in order to remove
the noise, apply the inverse transform.

For real-world signals, the situation is more complex: these sig-
nals typically have spectra overlapping the spectrum of the noise,
and low-pass filtering is likely to remove important parts of the sig-
nal together with noise. Surface smoothing does precisely that for
surfaces [23, 4]. The way to achieve better results is to use addi-
tional information about the properties of the signal. A classical
example is wavelet thresholding methods for image processing [7].
These methods take advantage of the fact that wavelet bases have
good compression properties: in such bases, a typical non-noisy



image will have mostly small coefficients, and only few large ones.
Eliminating the small coefficients does not alter the reconstructed
image much. One reason for this is that natural images often consist
of large smooth areas (fine-level coefficients are small) separated by
sharp boundaries (fine-level coefficients are large), with boundaries
occupying only small area in images.

In contrast, the coefficient magnitude for noise is uniform and, as
the signal energy is distributed over a large number of coefficients,
each coefficient is likely to be small. This leads to the simple ba-
sic algorithm: apply a wavelet transform, threshold the coefficients
and apply the inverse transform. For a restricted class of signals
corrupted by white Gaussian noise a version of this procedure was
proven to be optimal [7]. Note that this procedure is likely to pre-
serve sharp transitions in a signal (edges for images, creases for
surfaces).

Nevertheless, it is clear that a part of the useful signal is still
removed. One can do better, however, by using additional assump-
tions. It was shown that Gaussian scale mixture (GSM) model is
very suitable for than the statistics of wavelet coefficients of natural
images [24, 22]. The combination of this model with Wiener fil-
tering leads to better recovery of the original image. The resulting
algorithm is not much more complex than the wavelet thresholding
described above — the only additional step involved is local esti-
mation of the signal variance. In the case of Gaussian noise the
procedure is nearly optimal.

It turns out that GSM models also appear to reflect properly the
statistics of multiscale representations of surfaces. Thus it is natu-
ral to apply the GSM-based denoising procedures to surfaces. The
algorithm we propose is based on the general ideas of the image de-
noising algorithms but significantly differs from them in a number
of aspects as detailed below.

2 Previous Work
Our algorithm primarily on work in image processing; relatively
little has been done on surface denoising. Recent results include
Clarenz et al. [2] on denoising of arbitrary meshes and Desbrun et
al. [5] on denoising hight fields. In both cases, anisotropic curva-
ture diffusion techniques are used. Our method is fundamentally
different and difficult to compare directly to the diffusion-based ap-
proaches. Diffusion-based denoising is best regarded as a combi-
nation of smoothing and edge enhancement. It is relatively diffi-
cult to predict the scale of the noise that will be removed, and the
amount of denoising depends on the algorithm running time. At the
same time, as demonstrated in [2], curvature flow-based methods
can be used on arbitrary meshes, while we assume reparameteriza-
tion on semiregular meshes. For certain choices of parameters, our
method produces results similar to anisotropic curvature diffusion.
The methods are compared in greater detail in Section 7.

Recent developments in image denoising show that locally adap-
tive Wiener filtering is a very powerful technique. This approach
was first developed in pixel domain [12, 11] and then extended to
the multiresolution domain [16, 17] which allowed further improve-
ment of the results. Local Wiener filtering uses a local estimate
of the variance in either the spatial or the multiresolution domain.
Wainwright and Simoncelli proposed a model that allows easy esti-
mation of local variance and captures well the local statistical prop-
erties of wavelet coefficients of natural images [24]. This model
is based on the class of random variables known as Gaussian scale
mixtures (GSM). In the GSM model, groups of wavelet coefficients
correspond to a product of a Gaussian random vector with a hid-
den multiplier variable. Similar models have been independently
proposed in [15, 3]. The GSM approach combined with Wiener fil-
tering was successfully implemented for image denoising [22]. We
suggest a similar technique for noise removal on natural surfaces.

3 Overview of the algorithm

Our denoising procedure follows a common pattern described in
Section 1.1. First, we apply a multiresolution transform described
in Section 4 to a given noisy surface. We then use the GSM sta-
tistical model of the transform coefficients to distinguish the noise
from the signal. The details of this step are given in Section 5.
Finally, we reconstruct the surface from the denoised coefficients.
See Section 6 for the complete description of the algorithm.

4 Multiresolution Surfaces

In this section, we describe in greater detail our assumptions about
the parametric surface representation, and the specific representa-
tion we use.

It is generally sufficient to assume that the initial mesh was repa-
rameterized on a mesh with semi-regular connectivity. The connec-
tivity of such meshes can be obtained if we start with a relatively
coarse mesh, and refine each face of such mesh regularly, in the
simplest case, by recursive quadrisection of faces. The latter, how-
ever, not essential for our algorithm: any regular refinement can be
used.

As a starting point, we use a Laplacian-pyramid multiresolution
representation based on Loop subdivision . We refer the reader to
[18, 25] for the details of implementation. The surface is repre-
sented by the coarsest level and the details at each level of reso-
lution. The process of converting the finest-resolution data to the
sequence of detail sets and the coarsest level mesh is called analy-
sis. The process of reconstructing a surface from the coarse mesh
and details is called synthesis The two processes are applied recur-
sively, with analysis proceeding from finer to coarser levels, and
synthesis from coarser to finer. A single step of both processes is
illustrated in Figure 1.

For analysis, a smoothing filter is required in addition to subdi-
vision rules. We use a simple Laplacian filter for smoothing.

It is important to note that the details at a finer level of reso-
lution are represented in local frames computed from the previous
coarser level. This is a valuable feature for surface editing and a
natural way to represent surfaces: details are separated into tangen-
tial and normal components and become invariant witrh respect to
rigid transforms. However, addition of the local frame makes the
transform nonlinear. Our comparison of denoising with and with-
out local frame transformations was inconclusive: it is still unclear
if there is a substantial advantage in using local frames other than
having a geometrically invariant result.

analysis synthesis

smooth

subdivide

coarse level

subdivide

+

4

fine level
+

   dir.
filter1

    dir.
filter m

local  
frame

Figure 1: Synthesis and analysis diagrams for multiresolution sur-
faces.

We use an important modification to the pyramid based on the
idea of steerable pyramids [20, 19]: a single detail band is decom-
posed into multiple directional bands, using directional filters (Fig-
ure 1). The number of directional bands m can be chosen arbitrar-
ily by choosing the angular step �m. To reconstruct the signal the

2



1/6

...

α
2

α
3

α
k-1

α
k

α
1

Figure 2: Directional decomposition of the details and the filter
mask for a directional filter, �i = cos( 2i�

k
� �m).

directional bands are simply added up to produce the detail. Intro-
ducing these directional bands is a crucial element of the algorithm.
Clearly, the subbands are interdependent, and we need to store only
two to be able to reconstruct the result of filtering in any direction.

5 GSM Model for Denoising Multiscale Data

As in the case of natural images, marginal distributions of the mul-
tiresolution coefficients of natural surfaces turn out to be sharp-
peaked at zero and heavy-tailed (see Figure 3). The peak at zero
is produced by the smooth regions, while heavy tails correspond
to the slow decay of the coefficients at the edges. We propose to
model this distribution by a Gaussian scale mixture process. The
GSM random variables include several well-known sharp peaked
and heavy tailed distributions such as generalized Gaussians, the
�-stable family, and the Student t-variables [24]. One would ex-
pect a GSM model to be a good approximation in our case.

We now describe GSM in detail. A random vector X is said to be
a Gaussian scale mixture if it is a product of two random variables:
X =

p
zU , where z is a positive scalar random variable and U is a

zero-mean Gaussian random vector with covariance Cu [1]. U and
z are assumed to be independent. The probability density of a GSM
variable is:

Px(X) =

Z
1

(2�)N=2 jzCuj1=2 exp

�
�XTC�1

u X

2z

�
Pz(z) dz;

(1)
where N is the length of vectors U and X . Notice that normalized
GSM variable X=

p
z is Gaussian distributed which allows easy es-

timation of the statistical properties of the data. In particular, the
Wiener filtering of the noisy GSM data should be close to optimal.

We assume that the directional detail coefficients in a single-ring
neighborhood of a vertex on each level of a multiresolution mesh
follows the GSM model. We also assume independence of the mul-
tipliers corresponding to different neighborhoods, even though the
neighborhoods are overlapping. Moreover, in order to simplify the
computations we treat both the coefficients of the noise and the sig-
nal in each neighborhood as uncorrelated (but not necessarily in-
dependent) and set their covariance matrices to be multiples of the
identity Cu = �2uI , Cw = �2wI; we assume the variance of noise
known (in practice, it is estimated by the user). While it is possible
to vary �w , we use a single value for the whole surface which is a
reasonable assumption for scanned models.

One can test how well the GSM model describes actual data.
Let X be a vector corresponding to a single ring of pyramid coef-
ficients around a vertex of a “clean” surface, with x the coefficient
at the center of the ring. If the model is correct and there is a good
estimate bz(X) of z(X) then the distribution of the normalized co-

efficient x0 = x=
pbz(X) should be close to a Gaussian. We use

the maximum likelihood estimator for the multiplier [24, 16, 22]:

bz(X) = (XTC�1

u X)=N:
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Figure 3: Histograms and normal probability plots of the pyramid
coefficients before and after normalization of each coefficient by
the estimate of hidden multiplier

pbz.

Within our assumptions Cu = �2uI and �2ubz(X) = XTX
N

is just
a local estimate of the variance of x. Figure 3 shows the marginal
histograms and normal probability plots of x and x0. Presented data
comes from one component of the third level of the multiresolution
decomposition of the denoised surface (the model of a dog); similar
results were obtained for a number of other scanned models. The
histogram of the normalized coefficients is nearly Gaussian, and its
corresponding normal probability plot lies nearly along a line. Thus
the GSM model does a reasonable job approximating the data.

Our main goal is to estimate the multiplier z in the presence of
noise. This will allow us to compute the variance of each element
and use the Wiener filter to remove the noise. Suppose that vector Y
is obtained from X by adding Gaussian white noise with variance
�2w and mean 0, Y = X + �wW . If X is a GSM vector then
each observed noisy coefficient can be represented as y =

p
zu+

�ww, where �2w is the variance of the noise and w has Gaussian
distribution with variance 1 and mean 0. If the value of z were
known, then y would also be Gaussian distributed, and the optimal
estimate of x would be the linear (Wiener) solution:

bx =
z�2u

z�2u + �2w
y: (2)

We use the maximum likelihood estimator in order to obtainbz(Y ), bz(Y ) =
�
1=�2u

� �
Y TY=N � �2w

�
: The derivation of this

result is given in [16]. When applying this formula to the real data,
one often gets a small negative value for bz(Y ). This happens be-
cause the neighborhood is not large enough to capture the statistics
of the data or the estimated noise level is too large. In this cases
we set bz(Y ) to zero. We estimate the variance of the center of a
neighborhood Y as

bz�2u = max
�
Y TY=N � �2w; 0

�
: (3)

Equations (2), (3) are used in our denoising algorithm.

6 Denoising Algorithm

We implemented the results of previous sections in the denoising
procedure. It consists of there steps: 1) multiresolution decomposi-
tion (Section 4). 2) Noise removal using formulas (2), (3) on each
level of the decomposition. 3) Reconstruction.

To use formulas (2) and (3) one needs to know the variance of the
noise �2w. This is the parameter supplied by the user. In Section 7,
we show the results for various values of �w . It is also possible
to choose different numbers m of directional components for the
filters, but, not surprisingly, 6 is the best choice for semiregular
triangular meshes.
Denoising Algorithm
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1. Perform analysis of the mesh as described in Section 4.
2. For the details at each level of the decomposition
a) Compute the aligned directional components of the neighborhood
of each vertex in the detail mesh in m directions.
b) Estimate the variance of each directional coefficient using for-
mula (3); if the result is negative set the variance to zero.
c) Replace each directional coefficient by its Wiener estimate (2).
d) Replace the value of the center with the combination of the m
denoised directional coefficients.
3. Reconstruct the surface mesh.

Unlike images, for which directional components can be chosen
to be oriented consistently along global directions, for general sur-
faces this is not possible. However, as our algorithm is local, only
local alignment is required. To choose the aligned directional com-
ponents, we assume that the single-ring neighborhood of a vertex
at a fixed refinement level is parameterized over a k-gon (Figure 4).
As shown in the figure, for an arbitrary edge fixed as the zero di-
rection one can pick corresponding directions for the filters for sur-
rounding vertices. The result of filtering in one of these directions
is simply a linear combination of two directional details.

7 Results and Discussion

Results of applying our algorithm to data with a high level of arti-
ficial noise added for several settings of �w are shown in Figure 5.
Other denoising results are shown in Figures 9–10. The input pa-
rameter �w (estimate of the noise level) was chosen as a percentage
of the average distance between the initial surface and the coarsest
surface. Timings are provided for a relatively slow machine (200
MHz SGI Indigo2).

Comparison with anisotropic curvature diffusion. For com-
parison, we have implemented anisotropic curvature diffusion as
described in [2]. Figure 9 demonstrates that for a certain choice of
estimated noise value our algorithm produces results visually sim-
ilar to anisotropic curvature diffusion [2, 5, 6]. The image was
chosen to be as similar as possible to the one shown in [2]. The
approaches based on statistical models (such as ours) and deter-
ministic approaches (such as anisotropic curvature diffusion) are
based on very different principles and, from mathematical point of
view, solve different problems; hence it is difficult to compare the
algorithms quantitatively.

The difference between the algorithms merits detailed discus-
sion. The idea of anisotropic curvature diffusion can be summa-
rized as follows: the denoised surface is obtained as the solution
at some time � of an anisotropic diffusion equation. The diffusion
tensor is anisotropic near edges, with zero diffusion perpendicular
to the edge and maximal along the edge. The edges are detected
at each time step using a principal curvature threshold, applied to
the curvature values obtained for a smoothed version of the surface.
There are three parameters determining the result: the time � , the

constant � controlling the amount of smoothing used before curva-
tures are computed and �, the edge detection threshold; � has less
impact on the result, so we restrict our attention to � and �.
Feature preservation. Both algorithms attempt to preserve impor-
tant surface features. Anisotropic curvature diffusion detects and
attempts to preserve and sharpen edges [2, 6]. Our algorithm has
implicit edge detection build in: if there is an edge passing through
a point in a certain direction, in orthogonal direction the variance
will be considerable and Wiener filtering will not reduce these co-
efficients by much if at all. The advantage of our approach is that
there is no global threshold � for curvature-controlling edge detec-
tion; this parameter is difficult to pick. This can be also regarded
as disadvantage as there is no direct edge detection control. The
best our algorithm can do is to preserve the noise perpendicular to
the edge near the edge; anisotropic curvature diffusion can enhance
edges. This is useful in the cases of man-made objects for which
a collection of smooth surfaces with sharp edges is a good model.
This is less useful and can be harmful for natural object, which sel-
dom have sharp edges. For such objects increasingly sharp edges
tend to appear at random locations.
Generality. Our algorithm relies on the multiresolution structure
of the mesh, hence applies only to models that were reparameter-
ized on semiregular meshes. In contrast, curvature diffusion works
on an arbitrary mesh. while it might be possible to generalize our
algorithm to hierarchies on irregular meshes, this would make it
significantly more complex.
Running time. With anisotropic curvature diffusion, if a large
amount of denoising is desired, large values of � should be used
and the algorithm takes longer, even if implicit integration and large
time steps are used. Our algorithm takes exactly the same time no
matter how much denoising is desired. For the specific example
shown in Figure 9, our conjugate-gradient implementation of cur-
vature diffusion is significantly slower than the GSM algorithm:
(260 sec. vs. 16 sec.) However, an efficient multigrid solver is
likely to make the times much closer. Our algorithm is fast enough
to enable interactive applications.
Locality. Our algorithm can be easily applied locally (the video
submitted with the paper shows an interactive application when the
noise is removed locally). It is not clear how anisotropic diffusion
will behave when applied locally.
Ease of implementation. As we have mentioned, our algorithm
takes very little effort to implement: it is a simple iteration over
vertices with filters applied to the immediate neighbors. By com-
parison, curvature diffusion requires a good solver running on arbi-
trary meshes to be efficient, and even the basic algorithm requires
more work.

8 Conclusions

We have presented a new algorithm for denoising of natural sur-
faces. It is based on a multiresolution steerable decomposition and
utilizes a GSM statistical model of the transform coefficients. The
results of our experiments are quite encouraging and compare fa-
vorably with other techniques; our algorithm ensures noise removal
while preserving essential geometrical features.

Our results are just a first step in applying the GSM model for
the denoising of surfaces. One can employ different multiresolution
decompositions and extend the denoising algorithm along the lines
suggested in [22]. In particular a non-trivial covariance structure of
the coefficients within each neighborhood can be used.

Our algorithm is based on the GSM assumption on the statistics
of the multiscale coefficients. We have observed that it is a rea-
sonable assumption for several models, but clearly more extensive
studies are necessary.
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original noisy mesh �w = 2:8%

Figure 9: Denoising a scanned and parameterized model of an ear
(335 thousand triangles, 360 thousand after parameterization).

original noisy mesh detail of noisy mesh

�w = 2:5% �w = 7:8%

Figure 10: Denoising a scanned and parameterized model of a dog
for different choices of �w (264 thousand triangles, 391 thousand
triangles after parameterization). Denoising time: 59 secs.

Many questions which have well-understood answers for images
(e.g. measure of difference between images) are much more dif-
ficult for surfaces and require further study to make it possible to
compare algorithms in a more quantitative manner.

Note on Figure 7: We believe the small scale random texture
visible on the surface is an artefact of the scanning and reconstruc-
tion process; it is similar in scale to the texture we have observed
on other objects scanned using Cyberware scanners; according to
Levoy et al. [13] the scale of the details on the surface of polished
marble is less than 30 nm, which is far less than the characteristic
texture size. On the other hand, the texture is too random and too
closely spaced (0.5-1 mm is the characteristic scale) to be chisel
marks which are more likely to be at least 2 mm wide [14].
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noisy mesh �w = 12% noisy mesh �w = 4:3%

Figure 5: Denoising a simple mesh with artificial noise for different choices of estimated noise �w (98 thousand triangles).

Figure 6: Denoising the reparameterized Stanford bunny mesh. (71 thousand triangles, 145 thousand after parameterization). From left to
right: the reparameterized mesh; denoised by our algorithm; by anisotropic geometric diffusion method.

noisy mesh �w = 1:4% details

Figure 7: Denoising a part of the model of Michalangelo’s David. (scanned at 0.29mm resolution; unstructured mesh 0.63 mln. triangles,
1,2 mln. triangles after parameterization). Denoising time: 167 secs. Original mesh courtesy of Marc Levoy, Stanford Computer Graphics
Lab. From left to right: original mesh; denoised mesh; magnified views of two areas on the mesh before and after denoising. Note that chisle
marks in the first area are preserved, while the small-scale noise is removed.

Figure 8: Denoising a scanned and parameterized model of a Ascension Technologies transmitter. From left to right: original model;
magnified view of an area before and after denoising. Note that in the flat areas all small scale features were removed, with almost no change
at the creases.
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