
Copyright © 2011 by the Association for Computing Machinery, Inc. 
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org. 
SCA 2011, Vancouver, British Columbia, Canada, August 5 – 7, 2011. 
© 2011 ACM 978-1-4503-0923-3/11/0008 $10.00 

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
A. Bargteil and M. van de Panne (Editors)

Asynchronous Integration with Phantom Meshes

David Harmon†, Qingnan Zhou, and Denis Zorin

New York University

Abstract

Asynchronous variational integration of layered contact models provides a framework for robust collision han-
dling, correct physical behavior, and guaranteed eventual resolution of even the most difficult contact problems.
Yet, even for low-contact scenarios, this approach is significantly slower compared to its less robust alternatives—
often due to handling of stiff elastic forces in an explicit framework. We propose a method that retains the guar-
antees, but allows for variational implicit integration of some of the forces, while maintaining asynchronous in-
tegration needed for contact handling. Our method uses phantom meshes for calculations with stiff forces, which
are then coupled to the original mesh through constraints. We use the augmented discrete Lagrangian of the
constrained system to derive a variational integrator with the desired conservation properties.

1. Introduction
Providing theoretical guarantees for physically-based ani-
mation is emerging as an important goal in computer graph-
ics. From fluids [MCP∗09] to yarns [KJM08], this approach
has yielded advancements in predictability and reliability.
However, such guarantees come at a cost and often result
in decreased performance.

Harmon et. al. [HVS∗09] developed a contact model and
simulation framework that put provable robustness against
interpenetrations and correctness with respect to physical
laws on equal footing with simulation progress. While not
fast, progress guarantees consistent advancement of simula-
tion time and thus the eventual resolution of even the most
difficult contact problem.

In this paper, we propose a method that regains lost simu-
lation speed, while retaining the three guarantees of Harmon
et. al. [HVS∗09]: robustness against interpenetrations, con-
servation of linear and angular momentum, and guaranteed
progress.

Shortcomings of asynchronous variational integrators.
To guarantee correctness of contact resolution, Harmon
et. al. [HVS∗09] used a model called discrete penalty lay-
ers (DPL). DPL requires a multi-rate or asynchronous inte-
grator, and they propose to use asynchronous variational in-
tegrators (AVIs), which have a number of attractive conser-
vation properties. Namely, they conserve momentum (both

† dharmon@cs.nyu.edu

linear and angular) and exhibit no energy drift, even for ex-
ponentially long simulation times. AVIs are explicit integra-
tors, and thus small timesteps are required for stable reso-
lution of stiff, non-linear problems. Aside from the need to
compute the forces frequently, these small timesteps have a
second, more severe cost. For asynchronous simulation of a
conceptually infinite number of discrete penalty layers, effi-
cient tracking of a subset of active penalty forces is needed,
which is achieved by kinetic data structures (KDS). How-
ever, high-frequency maintenance of these data structures
due to small time steps can be prohibitively expensive.

The standard tool for eliminating severe constraints on
the time step size is to use implicit integration; while syn-
chronous implicit variational integrators are well-known, in
general, combining asynchronous integration with implicit
time-stepping is difficult unless forces affect completely dis-
joint degrees of freedom: a rare occurence.

We propose a method allowing selective variational im-
plicit integration of forces, while maintaining asynchronous
integration needed for contact handling. Our method is based
on using phantom meshes, a separate mesh with identical
connectivity used for calculations with stiff forces. We cou-
ple phantom meshes to the original meshes through con-
straints and derive a variational integrator from the result-
ing augmented Lagrangian. Decoupling stiff forces from all
others allows timesteps that are several orders of magnitude
larger. For simulations where KDS maintenance due to non-
contact force updates dominates runtime, we are able to sta-
bly simulate problems significantly faster than explicit AVIs.

247



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

2. Related works
In this paper, we focus on extending the work in Harmon
et. al. [HVS∗09]. The contact algorithm literature in graph-
ics and mechanics is vast, so we refer to the references
therein for related works in that domain. For a principled
treatment of contact models from the mechanics point of
view, we suggest Wriggers [WL07].

Integrators that obey the discrete analogs of physical con-
servation laws are well-studied, and usually referred to as
geometric integrators [HLW02]. They come in many flavors,
including symplectic, symmetric (time-reversible), and vari-
ational. For our contact model we use discrete penalty lay-
ers, which, as noted in Harmon et. al. [HVS∗09], require a
multi-rate integrator. In its most general form a multi-rate
integrator is completely asynchronous, so we focus on this
situation, with much of our development applicable to the
subset of multi-rate integrators which have integer multi-
ple timesteps. Our formulation, then, follows that of asyn-
chronous variational integrators (AVI) [LMOW03].

A common way to increase timesteps is to use implicit
integration [BW98]. In the symplectic / variational world,
specific parameters of the Newmark and Runge-Kutta inte-
grators yield implicit update rules while remaining geomet-
ric [KMO∗00,Sur90], with the accompanying large step sta-
bility. A popular single-step geometric integrator is implicit
midpoint, which Volino and Magnenat-Thalmann [VMT05]
demonstrated as suitable for cloth simulation. We use im-
plicit midpoint for all our examples, albeit as part of a larger
asynchronous integrator. However, any implicit integrator
with the desired conservation properties could be used.

There are alternatives to implicit integration, but none
that we are aware of can be easily integrated into the AVI /
DPL framework. Time adaptivity is an active research topic
for dealing with simulations of varying stiffness modes,
and can even be structured such that symplecticity is re-
tained [Hai97]. However, time-dilation is performed through
a global function of configuration, which is not only expen-
sive in an asynchronous setting, but adapts the time of the
entire system, rather than the local stiffnesses as we would
prefer. Besides, this approach aims to completely resolve
the stiffnesses at a fine detail through smaller timesteps. We
would prefer larger timesteps that retain the overall behavior
of stiff modes.

Another option within geometric integrators is the idea
of force averaging [LR01]. Force averaging substeps stiff
forces and then averages the resulting force to “fake” large
timesteps. This works well in a synchronous simulation, but
the local force stencils of an asynchronous simulation intro-
duced instabilities in our tests. In particular, if stiff forces are
integrated at large timesteps, then the large motions of neigh-
boring weak forces cannot be resolved by the stiff force,
even with an extreme number of subseps.

Constraints are well-studied in the context of variational
integrators [LMO08], and can be naturally integrated in
the asynchronous variational integration framework. Gates
et. al. [GMH08] uses constraints to couple domains with
common interfaces on which different timesteps are used.

The idea of coupling degrees of freedom through con-

straints is widely used in different contexts, primarily for
directable simulation, starting from space-time constraints
of Witkin and Kass [WK88], and for control of fluids, elas-
tic solids and thin shells (e.g., [MTPS04], [CBC∗05] and
[BMWG07]). Node replication and coupling is also com-
mon in domain decomposition methods [SBG04]. English
and Bridson [EB08] utilize a similar concept to phantom
meshes for simulating conforming elements undergoing col-
lisions. Sifakis et. al. [SSIF07] use “virtual” particles to em-
bed sample points into a meshless representation.

3. Asynchronous variational integrators
The core aspect of our approach is a formulation of
asynchronous variational integrators for systems with con-
straints, allowing for implicit integration and its specializa-
tion to the case of systems with phantom meshes. In this
section, we consider a family of AVIs based on a discrete
stationary-action principle, which includes explicit and im-
plicit integrators. We discuss the conditions that have to be
satisfied for implicit asynchronous integrators to be compu-
tationally tractable, and how constraints are integrated into
this AVI formulation. We demonstrate how a constrained
system involving a phantom mesh can be used to make im-
plicit integration practical.

3.1. General formulation
In our exposition we mostly follow Lew et. al. [LMOW03],
with some changes in notation and a more general form of
discretization of the potential energy in the Lagrangian, sim-
ilar to the one commonly used to derive implicit synchronous
integrators.

Notation and basic concepts. Let q = [q1, . . . ,qn]
T be the

set of n vertices defining the configuration of our discrete
system. v(t) = q̇(t) is the configurational velocity, and mo-
mentum is p = Mv, for a diagonal mass matrix M. For the
purposes of this derivation, we assume that the Lagrangian
of the system is defined by

L(q, q̇) = T (q̇)−V (q),

where T is kinetic energy and V is potential energy [Lan70].
The derivation of variational integrators based on the dis-

crete form of Hamilton’s principle starts with the discrete
action over a period of time [t0, t f ] defined as an approxima-
tion of the standard action,

Sd(q) =
(t f−t0)/h

∑
j=1

Ld(q
j−1,q j,h)h≈

∫ t f

t0
L(q, q̇)dt. (1)

The choice of quadrature rule for the discrete Lagrangian Ld
determines the timestepping scheme. As an example, we will
use the trapezoidal rule:

Ld(q
j−1,q j,h) =

1
2

[
L(q j−1, q̇ j− 1

2 )+L(q j, q̇ j− 1
2 )
]
,

where q̇ j− 1
2 = (q j−q j−1)/h. We differentiate the discrete

action with respect to vertex positions at different moments

248



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

in time, giving the discrete Euler-Lagrange equations of our
variational integrator,

∂Sd(q)
∂q j = 0.

For our example action (Eqn. 1), this yields the timestepping
rules for the second-order leapfrog integrator:

q j+1 = q j +hq̇ j+ 1
2

q̇ j+ 1
2 = q̇ j− 1

2 −hM−1∇V (q j).

Integrators derived in this manner exactly conserve discrete
linear and angular momenta and approximately conserve the
energy of the system over long run-times. See West [Wes03]
for full derivations of common variational integrators and
error analysis.

Asynchrony. We are interested in asynchronous variational
integrators, for which vertices qa can be timestepped inde-
pendently of one another, with different sequences of clock
ticks. For the action functional discretization, clock ticks
have a simple meaning: the action is approximated by a
quadrature (for AVIs, separate for each term in the La-
grangian) and the ticks define how the time axis is parti-
tioned into integration intervals for each term.

Figure 1: Example stencils. (left) We define stretching forces
across triangles, so the stencil is the 3 vertices of the trian-
gle. (right) We use a hinge-based force for bending, where a
stencil consists of the 2 edge vertices and 2 opposite vertices.

The potential energy V (q) is split based on a set of sten-
cils, K, so that

V (q) = ∑
k∈K

V k(qk).

qk is the subset of q that completely determines a potential
V k (see Fig. 1 for example stencils). For each potential V k

we choose a timestep hk that is small enough for stable sim-
ulation. For non-linear forces, however, we cannot know the
stability criterion a priori, and thus we must choose a value
that ensures stability for the entire simulation.

We define two types of timelines (sets of clock ticks): one
per potential stencil,

Tk = {t i
k = ihk ≤ t f ; i ∈ N},

where t f is the final simulation time, and one for each vertex,

Ta =
⋃

{k∈K|a∈k}
Tk.

The ticks t j
a ∈ Ta are ordered, so that t j

a ≤ t j+1
a . q j

a = qa(t
j
a)

ti2

i = θa ( j )

tja

Figure 2: Timelines T1 and T2 for two potentials, and the
timeline Ta for a vertex contained in stencils of both. Note
that while both T1 and T2 are evenly-spaced in time, the time-
line of updates Ta for the vertex a is irregular in time.

is the position of vertex a at time t j
a .

We define ∆t j
a = t j+1

a − t j
a . Let ωa( j) be the unique stencil

index such that t j
a ∈ Tωa( j) (in other words, the tick t j

a for a

vertex a is due to the tick in the potential V ωa( j)) and θa( j)
is the index i of t i

k = ihk, for which t j
a = t i

k (see Fig. 2).

Discrete action. To define our discrete action we assume
that the motion is piecewise linear between successive ticks
in Ta for every vertex qa. For the interval of time (t j

a , t
j+1
a ),

we define the discrete velocity of a point qa as the finite dif-
ference

v j+ 1
2

a ≡ (q j+1
a −q j

a)/∆t j
a . (2)

Following Lew et. al. [LMOW03], we split the discrete
action into separate integrals of T and V . We approxi-
mate the kinetic energy for each vertex using a single-point
quadrature over the time partition Ta, and the potential en-
ergy for each stencil, using a single-point quadrature for the
time partition Tk:

Sd(q, q̇) = ∑
a

|Ta|−2

∑
j=0

Td(q̇)∆t j
a− ∑

k∈K

|Tk|−1

∑
j=0

V k(q)hk.

For the velocities, we have a single choice for the value on
the interval [t j

a , t
j+1
a ], as we assume piecewise-linear trajec-

tories, and velocities are piecewise-constant. For the poten-
tial energy term, we consider a family of rules based on
interpolation on the endpoints of [t i

k, t
i+1
k ], and evaluate at

t i,αk
k = (1−αk)t

i
k +αkt i+1

k .

Sd(q) =∑
a

|Ta|−2

∑
j=0

1
2

ma‖v
j+ 1

2
a ‖2

∆t j
a−

∑
k∈K

|Tk|−1

∑
i=0

V k(q(t i,αk
k ))hk. (3)

where ma is the mass associated with the a-th vertex. We can
now write the discrete Euler-Lagrange (DEL) equations as

∂Sd(q)
∂q j

a
= 0,

Computing these derivatives picks out exactly one poten-

249



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

tial term V k from the sum for the potential energy, with
k = ωa( j), and yields the following time-stepping rule for
momenta:

p j+ 1
2

a = p j− 1
2

a −

(1−αk)
∂V k

∂qi
a
(q(t i,αk

k ))hk−αk
∂V k

∂qi
a
(q(t i−1,αk

k ))hk

where i = θa( j). If we set αk to 0, we obtain a purely explicit
update for momenta: the right-hand side depends only on
q(t i

k) = q(t j
a), and the update formula for qa directly follows

from the discrete momentum definition (Eqn. 2).

Implicit integration. If αk is not zero, the update rules be-
come implicit. For synchronous integrators, Equation 3.1
immediately yields useful implicit variational integrators
such as implicit midpoint (αk = 1/2) and the drift-kick mod-
ified Euler scheme (αk = 1).

The situation is far more complicated for asynchronous
integrators. While formally we do get a system of equations
for positions and momenta at all time ticks, it may be diffi-
cult or impossible to partition it into a computationally feasi-
ble sequential set of problems due to variable dependencies.
Figure 3 shows the dependencies between different variables

Figure 3: Dependencies between position and momentum
variables for an implicit asynchronous integrator.

in the case of αk 6= 0. Suppose k =ωa( j) is the potential trig-
gered at t j

a , and t j
a = t i

k. There are indices j′ and j′′, such that
the potential evaluation points t i−1,αk

k and t i,αk
k are contained

in intervals (t j′
a , t j′+1

a ) and (t j′′
a , t j′′+1

a ), respectively. Then

the right-hand side of the update rule for p j+ 1
2

a depends on
q at the endpoints of these intervals, as shown in the figure.
If there is another potential with a much smaller timestep
with stencil containing a, there may be many ticks between
j and j′′, and q j′′

a cannot be computed without computing
all intermediate values.

Observation: For the implicit integrator (3.1) with αk 6= 0,
the velocities at a time t j

a may depend on positions q j′′
a for

j′′ > j+1. The difference | j′′− j| is determined by the ratio
of sizes of the timesteps for the potential V k activated at t j

a ,
and the smallest time step for other potentials with stencils
containing a.

This observation means that in general (with no additional
conditions on the timesteps for potentials with overlapping
stencils) the implicit solve at a particular timestep may re-
quire solving simultaneously for interdependent positions
and momenta at an arbitrarily large number of time steps,
unless αk is restricted so that j′′ ≤ j+1. In general, this can
only be guaranteed if αk = 0.

A simple situation when an implicit integrator (3.1) is
practical, is when stencils can be separated into sets Ki with
no stencil overlaps for potentials from different sets, and for
each set a single synchronous time step hi is defined; then
every vertex in the set Ki has the same time step. This situ-
ation, however, is of little interest—we want to have differ-
ent clock rates for penalty forces, whose stencils inevitably
overlap stencils for elastic forces. We can, however, reduce
an important class of problems to this situation artificially,
by replicating degrees of freedom and using constraints to
maintain a coherent motion.

Integrators for problems with constraints. If a problem
has m constraints φ(q) = 0, for some φ : R3n→Rm, then the
standard way of deriving the Lagrangian equations of motion
is by replacing the action integral with the augmented action
integral

S̃ = S+
∫ t f

t0
λ

T
φ(q)dt.

We observe that the new problem (finding a stationary point
for the augmented action integral with respect to q(t) and
λ(t)) is exactly the same mathematically as the original
problem, with additional potential terms λ

T
φ(q). For this

reason, we can use exactly the same approach to discretiza-
tion: we treat the Lagrange multiplier terms as an extra set
of potentials which can be assigned a separate clock.

3.2. Implicit integration with phantom meshes
We specialize the integrator (3.1) to a simple case that al-
lows for easy implicit integration of stiff forces. As we have
observed, the main problem with implicit integration is due
to the fact that the timeline Ta for a vertex is an overlay of
timelines of different stencils, with potentially highly non-
uniform timesteps.

To separate the stencils of forces with different timesteps,
we replicate degrees of freedom to create a phantom mesh,
and couple the original mesh (which we call primary) with
the phantom mesh through constraints with relatively large
time steps. More specifically, we classify all potentials into
two sets: implicitly integrated Kimp and explicitly integrated
Kexp; for brevity, we call the former implicit and the latter
explicit.

The phantom mesh is an extra vector of degrees of free-
dom q̃—one new vertex for each original vertex. Our choice
of time steps and stencils is defined by the following set of
conditions:
1. All implicit potentials are assigned stencils in the phan-

tom mesh, and the same time step himp.
2. All explicit potentials are assigned stencils in the primary

250



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

mesh; timesteps can be chosen arbitrarily (within stability
requirements).

3. The kinetic energy is split equally between the phantom
and primary meshes.

4. We define constraints q− q̃ = 0; the time step for the
constraints is himp.

In the discrete action, we use αk = 0 for the explicit po-
tentials, and αk = 1/2 for implicit, resulting in a midpoint
implicit style integrator. Note that as all implicit potentials
have the same time step, we can assume that their sten-
cils are the whole phantom mesh, and combine these forces
into a single potential V imp(q̃), with associated timeline
Timp = {ihimp ≤ t f : i ∈ N}.

As constraint terms also share the same timestep, we con-
sider them as a single potential λ

T (q− q̃), with λ of dimen-
sion 3n, with stencil consisting of all vertices of both meshes.
Because constraints share the timestep with implicit forces,
the discrete Euler-Lagrange equation for the phantom mesh
degrees of freedom has terms for both implicit potentials and
constraints. We also note that the implicit timesteps Timp is
contained in all primary mesh vertex timelines Ta.

In summary, we use the following expression for the dis-
crete action:

Sd(q, q̃) =

∑
a

|Ta|−2

∑
j=0

1
4

ma‖v
j+ 1

2
a ‖2

∆t j
a− ∑

k∈Kexp

|Tk|−2

∑
i=0

V k(q(t i
k))h

k

+∑
a

|Timp|−2

∑
j=0

1
4

ma‖ṽ
j+ 1

2
a ‖2himp−

|Timp|−2

∑
i=0

V imp(q̃(t i,αk
imp ))

+
|Timp|−2

∑
i=0

∑
a

λa(t i
imp)

T (qa(t i
imp)− q̃a(t i

imp))h
imp

(4)

where the three lines correspond to explicit, implicit and
constraint constituents (We use indices i for quantities re-
lated to implicit time steps, and j for aynchronous explicit.)

This yields the following update equations for momenta:

p j+ 1
2

a = p j− 1
2

a − ∂V ωa( j)

∂q j
a

(q(t j
a))h

ωa( j) (5)

p j+ 1
2

a = p j− 1
2

a +λ
i
ahimp (6)

p̃i+ 1
2

a = p̃i− 1
2

a +λ
i
ahimp− (7)

(1−α)
∂V imp

∂qi
a

(q̃(t i,α
imp))h

imp−α
∂V imp

∂qi
a

(q̃(t i−1,α
imp ))himp

and where λ
i
a = λa((t i

imp)). The expression (5) is used for
primary mesh vertices for non-constraint ticks, (6) is used for
constraint ticks (assuming t j

a = t i
imp) and (7) for the phantom

mesh vertices.

Handling constraints. The updates above require Lagrange
multiplier values for constraints (in other words, virtual im-
pulses λ

i
ahimp). Enforcing constraints exactly would require

solving for values of λ
i
a so that the constraint q̃a(t i

imp) =

qa(t i
imp) is satisfied for all i. Instead of solving for exact

values of λ
i
a, we compute them approximately (similar, e.g.,

to SHAKE [BKLS95]). We approximate the trajectory of a
point qa, from t i

imp = t j
a to t i+1

imp by a linear trajectory with

velocity v j+ 1
2 , and determine λ

a
i from the condition

q̃a(t i+1
imp )≈ q j

a + q̇ j+ 1
2

a himp = q̃i+1
a = q̃i

a + ˙̃qi+ 1
2

a himp (8)

The result of this approximation is that the phantom and pri-
mary meshes may not match exactly at any step; the more
complicated the primary mesh trajectories between t i

imp and
t i+1
imp , the greater the mismatch. However, this mismatch is

continuously corrected, and as soon as penalty forces desist,
the constraint will converge exactly (Eqn. 8 will no longer
be an approximation, but exact). In the meantime, we get the
desired behavior of the primary mesh behaving overall like
an implicitly integrated stiff mesh.

Conservation. We observe that the proof of Lew
et. al. [LMOW03] of conservation of linear and angu-
lar momenta applies without changes to our setting: the
main property it relies on, aside fundamental translational
and rotational symmetries of the discrete action clearly
retained in (4), is that the variational integrator is derived
from the discrete Euler-Lagrange equations, which is
still the case in our setup. We emphasize that this fact is
independent of the manner in which the Lagrange mul-
tipliers are computed: the approximation does not affect
the conservation properties of the whole system, since the
constraint impulses are momentum-conserving and behave
essentially as another oscillating force in the system.

Figures 4 and 5 show experimental verification of the ex-
act momentum conservation and energy behavior for our in-
tegrator.

4. Asynchronous integration algorithm
We implement the variational integrator of Section 3.2 in
the kinetic data structure (KDS) framework of Harmon
et. al. [HVS∗09], extending the event priority queue frame-
work described in Lew et. al. [LMOW03]. We summarize
the algorithm of [HVS∗09], and highlight our modifications.

Instead of advancing simulation one global time step at a
time, we advance it by processing the events on the queue, in
the order of times associated with these events. There are two
main classes of events. Force events (including stretching,
bending, gravity, and penalty forces for collisions) result in
changes in velocities. The main purpose of the certificate
failure events is to provide a mechanism for managing the
conceptually infinite set of penalty potentials: they do not
change velocities, but create and destroy penalty force events
based on changes in vertex proximity.

Force events have associated stencils (vertices they up-
date velocities for) and proximity certificate events have sup-
ports, consisting of vertices whose velocities determine the
time of the event; when a velocity in the support changes,
certificate event times need to be recomputed.

251



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

Force events. Each force event corresponds to a velocity
update in the integrator. We integrate elastic forces implic-
itly and collision penalty forces explicitly. Although penalty
forces can be very stiff, it is preferable to handle them ex-
plicitly for two reasons: (a) the stiffer the penalty force, the
smaller its range and the shorter the time over which it needs
to be integrated, and (b) correctly resolving collisions re-
quires small time steps for these forces.

We use layered penalty potentials of Harmon
et. al. [HVS∗09] to prevent intersections. For any pair of
primitives a and b, we define a sequence of increasingly stiff
potentials V r(`)

η(`)
, ` = 1,2, . . . with stiffnesses r(`) = r(1)l3

which act at decreasing distances η(`) = η(1)`−1/4:

V r
η =

{ 1
2 rg(ya,yb) if g(ya,yb)< 0
0, otherwise,

where ya and yb are closest points on the primitives, and
g(ya,yb) = ‖ya − yb‖ − η is the gap function. Only a fi-
nite number of penalty potentials are active (i.e., have cor-
responding events on the queue) at any given time. These
events are automatically generated by slab events described
below.

Compared to Harmon et. al. [HVS∗09], where all updates
are explicit, we introduce two new types of force events: im-
plicit and constraint events, which are distinguished by the
type of update rule used.

Separation slab certificate events. The simplest type of
certificate failure event is a slab event. For a slab event at
proximity level `, the support is the six vertices of two trian-
gles, and the time of the event is the time when the two tri-
angles at current velocities of their vertices come too close
(within η(`+ 1)).In this case, a new deeper penalty layer
needs to be activated, which means creating a new force
event for that layer and replacing the current slab event with
a new slab event for the deeper layer.

Using only slab proximity events would be prohibitively
expensive; in Harmon et. al. [HVS∗09], k-Discrete Ori-
ented Polytope (k-DOP) hierarchies are used with associ-
ated events corresponding to bounding volumes in the hi-
erarchy separating or coming into proximity, with no slab
events generated for primitives from separated volumes.

Hash grid kinetic data structure. The k-DOP data struc-
ture of Harmon et. al. [HVS∗09] tends to produce an ex-
cessive number of certificate events for self-collisions (as
observed by Barbič and James [BJ10]); we use a kinetic
grid structure instead. Following the synchronous work of
Teschner et. al. [THM∗03], we do not store the whole grid;
rather, we use a hash to store the set of active grid cells.

To kineticize this data structure, we create certificates to
track the cells which contain triangle primitives. Precisely,
each certificate declares triangle T is in cell (i, j,k). We must
only compute its failure conservatively, not necessarily ex-
actly. To this end, we simply compute the times each vertex
of the triangle will cross the next cell boundary and sched-
ule the event for the minimum of these. When a failure is

popped off the queue and processed, we check if the grid
data structure needs to be updated.

When two triangles share a cell, we create a correspond-
ing separation slab. When two triangles no longer share a
cell, we remove the slab event from the queue. In practice,
this kinetic data structure is about 2-4x faster than the k-
DOPs. Therefore, we use it for all examples in §5.

As with traditional, synchronous grids, choosing the opti-
mal cell size is difficult, and poor choices can significantly
affect performance. We achieve consistent performance us-
ing two times the average edge length in the mesh, although
optimal cell size computation or a grid hierarchy style solu-
tion (e.g., octrees) could prove beneficial.

Event interaction. Changes in velocities resulting from
force events affect the times of certificate events; certificate
events create new events and destroy existing ones. The in-
teraction between events is determined by overlaps of their
stencils and supports. We say that a certificate event is con-
tingent on a force event if its support overlaps the stencil of
the force event.

Initialization. For all potentials other than penalty poten-
tials, events are created in the beginning with time t = 0; in
addition, the triangles are placed into the hash grid and initial
hash grid events, also with t = 0, are created for all (triangle,
cell) pairs (T,C), such that T overlaps C. These initial hash
grid events are responsible for creating slab events, which,
in turn, create penalty force events.

1: loop
2: (E, t)← Q.pop {pop event E from time-ordered queue Q}
3: if E is an (explicit,implicit,constraint) force event with po-

tential V k then
4: for a ∈ k do
5: qa← qa +(t− ta)va {position update}
6: ta← t {update vertex’s clock}
7: end for
8: update v, using (5), (6), or (7)
9: Q.push(E, t +hk) {back to the queue, with new time}

10: for j ∈ {contingent(i)|i ∈ k} do
11: s← failureTime(E j) {compute new event times based

on updated velocities }
12: Q.update(E j, s) {reschedule the contingent events}
13: end for
14: else if E is a slab event with depth ` then
15: create penalty force event for depth `
16: create slab event for depth `+1
17: else if E is a hash grid enter event for triangle T and cell C

then
18: create all missing slab depth 1 events for T and triangles

of C
19: schedule the next hash grid event for T
20: else if E is a hash grid leave event for triangle T and cell C

then
21: destroy all slab depth 1 events for T and triangles of C,

not needed by other cells
22: schedule the next hash grid event for T
23: end if
24: end loop

252



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

Figure 4: We set up a sequence of triangles and give one an
initial velocity so that they domino into one another. Because
our derivation is completely variational, our timestepping
respects conservation of linear and angular momentum.

Figure 5: Our method nearly conserves total energy for a
long run-time of the adapted Fermi-Pasta-Ulam problem.
Near energy conservation is an observed property of vari-
ational integrators.

Implicit solver. We use non-linear conjugate gradient (CG)
to solve for p̃i+ 1

2 at each step. For a preconditioner, we
compute and factorize (Cholesky decomposition) the Hes-
sian matrix only once per 50 timesteps for all examples, al-
though this number is user-controlled. For prescribed ver-
tices, we use the modified CG algorithm of Baraff and
Witkin [BW98], adapted to the non-linear CG algorithm.

In-plane stretching forces are computed using Constant
Strain Triangle [ZTZ05], and out-of-plane bending follows
the Discrete Shells formulation [GHDS03]. We also com-
bine gravity and wind forces into our implicit solve to
improve convergence, rather than let them be transferred
through constraint forces.

5. Results
We demonstrate our method on a variety of results, begin-
ning with two didactic examples that illustrate important
conservation properties of our method.

Figure 6: Stiff thin shells are also challenging for explicit
integrators. As this sequence progresses and collisions in-
crease, contact forces (and rescheduling) dominate runtime
rather than internal forces.

5.1. Didactic
We line up a sequence of parallel triangles and one trian-
gle perpendicular. The horizontal triangle has one vertex
given an initial velocity of (0,0,3/2). It quickly strikes the
leading triangle, spurring a chain reaction of colliding trian-
gles, transferring momentum down the line. Figure 4 shows
the total angular and linear momentum. Throughout the se-
quence we are able to exactly preserve momentum, thanks
to our structure-preserving geometric integrator.

We also analyze a variation of the common Fermi-Pasta-
Ulam problem [HLW02]. The setup is a sequence of springs,
alternating between stiff and weak coefficients. Additionally,
we create an initial gap between each endpoint and a fixed
wall, and we give several vertices an initial velocity to insti-
gate motion. This example tests coupling of weak and stiff
forces as well as interaction with the stiff sequence of dis-
crete penalty layers. The key data we are after is the total
energy of the system, plotted in Figure 5. Our method nearly
preserves energy for the entire simulation, hovering around
the initial energy T +V . This near-preservation is an experi-
mentally observed property of variational integrators. While
not exact, energy oscillates around the initial value for arbi-
trarily long runtimes. While our method has increased com-
plexity with the implicit integration and the constraint en-
forcement, each step respects the derivation of a variational
integrator, thus reaping their demonstrated benefits.

5.2. Examples
For practical scenarios we focused on situations where in-
ternal forces, rather than contact, dominate the runtime, yet
still have an interesting collision environment. For the ex-
plicit runs, the largest stable timestep was used that gave
the desired behavior, e.g., stiff thin shells. For the implicit
code, timesteps are limited by what is visually acceptable
rather than stability, and that was our criteria for selecting
timesteps. Table 1 lists a variety of pertinent data for each
example.

Hat cascade. We drop a cascade of 9 hats onto a rigid pole
to demonstrate stiff thin shells in contact. The hats are stag-
gered to encourage tilting off the pole. Timesteps of 10−6

253



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

Scene Vertices Certificates Explicit Penalties Stepsize Frame Implicit Penalties Frame Speedup
(%) (%) (sec) (sec) (%) (%) (sec)

Hats 973 4520 91.91 4.53 2.72e-6 123.24 77.89 20.81 38.19 3.22x
Cards 788 16439 51.39 48.97 2.22e-7 689.52 36.94 56.69 19.53 35.31x
Cape 5854 46384 83.57 15.89 4.41e-6 318.61 32.67 64.81 46.36 6.87x
Reef 10642 142928 14.17 83.10 4.61e-5 98.15 17.59 80.25 117.45 1.07x

Table 1: For every scene we include the number of vertices, the average number of KDS certificates, percentage of time due to
explicit forces, percentage due to penalty forces in an explicit simulation, the explicit simulation timestep, explicit simulation
time per frame, percentage of time due to implicit forces, percentage due to penalty forces during implicit simulation, simulation
time for implicit timestepping per frame, and speedup obtained by our method. For the implicit runs, an implicit timestep of
0.001 was used for all examples. All examples were run on a single core of a 3.6GHz i5.

Figure 7: The ogre character wears a cape in a strong wind.
Resistance to excess strain is difficult for explicit integrators,
however proves much easier for our implicit formulation.

were required to sufficiently resolve the stiff forces in the ex-
plicit integrator, while our implicit method could take steps
10−3. As the simulation continued, contact forces began to
dominate the runtime, eating into the speedup offered by im-
plicit integration. In contrast, up to the point where only two
hats had landed, the overall speedup was over 16x.

Card riffle. We riffle a stack
of extremely stiff cards. Our ex-
plicit integrator had a very diffi-
cult time with this scene, in sharp
contract to the implicit method
we propose. One particular ef-
fect we noticed was the rela-
tive insensitivity of the implicit
solver to parameter changes. Ex-
plicit solvers, on the other hand, require careful parameter
tuning to achieve stability.

Cape in wind. This example illustrates a problem that
plagues explicit integrators: inextensible cloth. Because of
the slow wave propagation, triangles can significantly stretch
before forces have a chance to catch up, even just in the pres-
ence of gravity. Our character’s cape is experiencing a strong
wind. Explicit integrators require extremely small timesteps
to maintain the cloth’s integrity, or one of a variety of post-
timestep inextensibility methods [GHF∗07]. This remains an
unexplored area of asynchronous integration, so we take the

small timesteps required to enforce strain below 5%. The
implicit solver is not limited in this way, and the speedup
obtained reflects this.

Reef knot. We run the reef knot simulation from Harmon
et. al. [HVS∗09]. This simulation demonstrates the robust-
ness of discrete penalty layers even in a seemingly impos-
sible situation, and thus penalty force events, along with
certificate reschedules, dominate the runtime for most of
the simulation. Nevertheless, our implicit code manages to
perform comparably. This is a far from ideal scene for our
method, since internal force computations, whether explicit
or implicit, are negligible, and thus there is little room for an
overall speedup.

6. Discussion
The simple modifications of AVI for discrete penalty layers
that we have presented already result in significant perfor-
mance improvements. These improvements come from re-
ducing the frequency of force integrations and, in particular,
the reduction in KDS maintenance that follows. Therefore,
potential runtime gains are limited by the total time spent
in maintaining KDSs due to non-penalty force integration—
simulations dominated by contact forces will not see as sub-
stantial an improvement (e.g., the Reef Knot example).

On average we have increased the size of timesteps 2−3
orders of magnitude. While we could take larger steps, sim-
ulations are still limited by the laws of physics. Large steps
that involve contact can induce larger strains before the con-
straint impulses can correct them. This can result in a lag
before stiff cloth behavior is seen. Thus, this expected be-
havior limits our timestep size, not stability.

Since implicit solvers for cloth simulation are an active
research area, there are a variety of modifications left to be

254



D. Harmon, Q. Zhou & D. Zorin / Asynchronous Integration with Phantom Meshes

explored, including different implicit discretizations, non-
linear solvers, preconditioners, and more. We chose a par-
ticular setup for all simulations and note that all research ad-
vancements in these domains can directly benefit our frame-
work as well.

We observe that the general idea of first decoupling forces
by introducing additional degrees of freedom, and then
adding coupling back through constraints can be applied in
more complicated scenarios to obtain asynchronous integra-
tors: it is not strictly necessary to have a single clock and
a global stencil for all implicit forces. At the same time,
introducing more than one phantom mesh, even localized,
is likely to have a performance penalty of its own. Explor-
ing different ways of introducing implicit time stepping and
adaptivity in an asynchronous variational integration con-
text, while retaining desirable properties of these integrators
is a promising direction for future work.

Acknowledgements
We thank Miklós Bergou for his valuable feedback and Rony
Goldenthal for useful discussions about implicit integration
with constraints. This work was supported in part by the
NSF (awards DMS-0602235 and IIS-0905502) and Adobe
Research. The first author is supported by a CRA Comput-
ing Innovation Fellowship.

References
[BJ10] BARBIČ J., JAMES D. L.: Subspace self-collision culling.

ACM Trans. Graph. 29 (July 2010), 81:1–81:9. 6

[BKLS95] BARTH E., KUCZERA K., LEIMKUHLER B., SKEEL
R.: Algorithms for constrained molecular dynamics. Journal of
Computational Chemistry 16, 10 (1995), 1192–1209. 5

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M.,
GRINSPUN E.: TRACKS: Toward Directable Thin Shells. SIG-
GRAPH ( ACM Transactions on Graphics) 26, 3 (Jul 2007), 50.
2

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In SIGGRAPH ’98 (New York, NY, USA, 1998), pp. 43–54.
2, 7

[CBC∗05] CAPELL S., BURKHART M., CURLESS B.,
DUCHAMP T., POPOVIĆ Z.: Physically based rigging for
deformable characters. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2005), ACM, pp. 301–310. 2

[EB08] ENGLISH E., BRIDSON R.: Animating developable sur-
faces using nonconforming elements. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 papers (New York, NY, USA, 2008), ACM,
pp. 1–5. 2

[GHDS03] GRINSPUN E., HIRANI A., DESBRUN M.,
SCHRÖDER P.: Discrete Shells. In ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (Aug 2003),
pp. 62–67. 7

[GHF∗07] GOLDENTHAL R., HARMON D., FATTAL R.,
BERCOVIER M., GRINSPUN E.: Efficient Simulation of Inex-
tensible Cloth. SIGGRAPH ( ACM Transactions on Graphics)
26, 3 (2007). 8

[GMH08] GATES M., MATOUŠ K., HEATH M.: Asynchronous
multi-domain variational integrators for non-linear problems. In-
ternational Journal for Numerical Methods in Engineering 76, 9
(2008), 1353–1378. 2

[Hai97] HAIRER E.: Variable time step integration with symplec-
tic methods. Appl. Numer. Math. 25 (November 1997), 219–227.
2

[HLW02] HAIRER E., LUBICH C., WANNER G.: Geometric Nu-
merical Integration: Structure-preserving Algorithms for Ordi-
nary Differential Equations. Springer, 2002. 2, 7

[HVS∗09] HARMON D., VOUGA E., SMITH B., TAMSTORF R.,
GRINSPUN E.: Asynchronous contact mechanics. ACM Trans.
Graph. 28 (2009), 87:1–87:12. 1, 2, 5, 6, 8

[KJM08] KALDOR J. M., JAMES D. L., MARSCHNER S.: Sim-
ulating knitted cloth at the yarn level. ACM Trans. Graph. 27
(August 2008), 65:1–65:9. 1

[KMO∗00] KANE C., MARSDEN J. E., ORTIZ M., , WEST M.:
Variational integrators and the newmark algorithm for conserva-
tive and dissipative mechanical systems. Int. J. Num. Math. Eng.
49 (2000), 1295–1325. 2

[Lan70] LANCZOS C.: The variational principles of mechanics,
4th ed. Dover Publications, New York, 1970. 2

[LMO08] LEYENDECKER S., MARSDEN J., ORTIZ M.: Varia-
tional integrators for constrained dynamical systems. ZAMM -
Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik 88, 9 (2008), 677–708.
2

[LMOW03] LEW A., MARSDEN J. E., ORTIZ M., WEST M.:
Asynchronous variational integrators. Archive for Rational Me-
chanics And Analysis 167 (2003), 85–146. 2, 3, 5

[LR01] LEIMKUHLER B., REICH S.: A reversible averaging in-
tegrator for multiple time-scale dynamics. J. Comput. Phys. 171
(July 2001), 95–114. 2

[MCP∗09] MULLEN P., CRANE K., PAVLOV D., TONG Y.,
DESBRUN M.: Energy-preserving integrators for fluid anima-
tion. ACM Trans. Graph. 28 (July 2009), 38:1–38:8. 1

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM
J.: Fluid control using the adjoint method. In ACM Transactions
on Graphics (TOG) (2004), vol. 23, ACM, pp. 449–456. 2

[SBG04] SMITH B., BJØRSTAD P., GROPP W.: Domain decom-
position: parallel multilevel methods for elliptic partial differen-
tial equations. Cambridge Univ Pr, 2004. 2

[SSIF07] SIFAKIS E., SHINAR T., IRVING G., FEDKIW R.: Hy-
brid simulation of deformable solids. In Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation (Aire-la-Ville, Switzerland, Switzerland, 2007), SCA ’07,
Eurographics Association, pp. 81–90. 2

[Sur90] SURIS Y.: Hamiltonian methods of Runge–Kutta type
and their variational interpretation. Mat. Model. 2 (1990), 78–87.
2

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANETS D., GROSS M.: Optimized spatial hashing for
collision detection of deformable objects. In Proc. VMV (2003),
pp. 47–54. 6

[VMT05] VOLINO P., MAGNENAT-THALMANN N.: Implicit
midpoint integration and adaptive damping for efficient cloth
simulation. Computer Animation and Virtual Worlds 16, 3-4
(2005), 163–175. 2

[Wes03] WEST M.: Variational Integrators. PhD thesis, Califor-
nia Institute of Technology, 2003. 3

[WK88] WITKIN A., KASS M.: Spacetime constraints. In ACM
Siggraph Computer Graphics (1988), vol. 22, ACM, pp. 159–
168. 2

[WL07] WRIGGERS P., LAURSEN T. A.: Computational contact
mechanics, vol. 498 of CISM courses and lectures. Springer,
2007. 2

[ZTZ05] ZIENKIEWICZ O., TAYLOR R., ZHU J.: The Fi-
nite Element Method–Its Basis and Fundamentals, volume 1.
Butterworth-Heinemann„ 2005. 7

255



256


