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Abstract Subdivision rules formesheswith boundary are essential for practical appli-
cations of subdivision surfaces. These rules have to result in piecewise C�-continuous
boundary limit curves and ensure C�-continuity of the surface itself. Extending the
theory of Zorin (Constr Approx 16(3):359–397, 2000), we present in this paper gen-
eral necessary and sufficient conditions for C�-continuity of subdivision schemes for
surfaces with boundary, and specialize these to practically applicable sufficient con-
ditions for C1-continuity. We use these conditions to show that certain boundary rules
for Loop and Catmull–Clark are in fact C1 continuous.
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Characteristic maps · Loop · Catmull–Clark
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1 Introduction

Subdivision is a method to construct smooth surfaces out of polygonal meshes used
in a variety of computer graphics and geometric modeling applications. Two features
of subdivision algorithms are particularly important for applications. The first is the
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ability to handle a large variety of input meshes, including meshes with boundary. The
second is the ease of modification of subdivision rules, which makes it possible to
generate different surfaces (e.g., surfaces with sharp or soft creases) out of the same
input mesh.

The importance of special boundary and crease rules has been recognized for
some time [7,11,12,18]. However, most of the theoretical analysis of subdivision
[15,17,23,24] focused on the case of surfaces without boundaries and schemes invari-
ant with respect to rotations. The goal of this paper is to develop the necessary
theoretical foundations for analysis of subdivision rules for meshes with boundary
and to present analysis for boundary rules extending several well-known subdivision
schemes, described in [1].

In this paper, we consider surfaces with piecewise-smooth boundary. This class
readily extends to a broader class of piecewise-smooth surfaces with crease curves
and corner points. We demonstrate how the standard constructions of subdivision
theory (subdivision matrices, characteristic maps, etc.) generalize to surfaces with
piecewise-smooth boundary. We demonstrate that convex and concave boundary cor-
ners inherently require separate subdivision rules for the surfaces to have well-defined
normals in both cases.

We proceed to extend the techniques for analysis of C1-continuity developed in
[23] to the case of piecewise-smooth surfaces with boundary. This paper is based on
the analysis in [24] and follows conventions and notation of that paper. While we
briefly consider C�-continuity, we focus on C1-continuity conditions.

The result, allowing one to analyze C1-continuity of most subdivision schemes for
surfaces without boundaries, is the sufficient condition of Reif [17]. This condition
reduces the analysis of stationary subdivision to the analysis of a single map, called
the characteristic map, uniquely defined for each valence of vertices in the mesh. The
analysis of C1-continuity is performed in three steps for each valence:

1. compute the control net of the characteristic map;
2. prove that the characteristic map is regular;
3. prove that the characteristic map is injective.

We show that similar conditions hold for surfaces with boundary, and under commonly
satisfied assumptions injectivity of the characteristic map for surfaces with boundary
can be inferred from regularity.

Finally, we use the theory that we have developed to derive and analyze several
specific boundary subdivision rules, initially proposed in [1].

Previous work The theory presented in this paper is based on the theory developed
for closed surfaces in [17,23,24], which was recently extended to subdivision on
manifolds in [19–21]. Subdivision schemes for closed surfaces were analyzed in [15,
23].Most of the standard theory is also summarized in the book byReif and Peters [16].

As far as we know, analysis of C1-continuity of subdivision rules for surfaces with
boundary was performed only in [18], where a particular choice of rules extending
Loop subdivision was analyzed.

At the same time, a substantial number of papers proposed various boundary rules
starting with the first papers on subdivision by Doo and Sabin, and Catmull and
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Clark [2,4,7,11,13]. A method for generating soft creases was proposed in [3], and a
complexity analysis was done in [14].

2 Surfaces with Piecewise-Smooth Boundary

2.1 Definitions

In this section, we define surfaces with piecewise-smooth boundary. Unlike the case of
surfaces defined asmanifolds of dimension 2, there is no commonly accepted definition
that would be suitable for our purpose. Often definitions restrict the boundary to be a
union of nonintersectingC�-continuous curves (cf. [5,10]). This definition is, however,
too narrow for geometricmodeling applications, as surfaceswith corners (e.g., surfaces
obtained by smooth deformations of a rectangle) are quite common.To include corners,
we must allow isolated singularities for the boundary curves. On the other hand,
complex singularities such as cusps or Cm-continuous joints for 0 < m < � are too
difficult to manage in the analysis and are not of interest within the framework of this
paper. In practice, these complex cases are rare, so we assume that at boundary corners
the tangents are different at the shared endpoint. We call such endpoints of boundary
curve segments nondegenerate corners.We consider surfaces with piecewise-smooth
boundaries but without cusps or Cm-continuous joints for 0 < m < �.

Once higher-order contact cases are excluded, we define a surface with piecewise
C�-continuous boundary with nondegenerate corners more constructively using four
local chart types: the disk D, the half disk Q2 = H ∩ D with H = {(x, y)|y ≥ 0}, a
quarter of the disk Q1, and three quarters of the disk Q3. The domains Qi i = 1, 3 are
defined as follows: Q1 = {(x, y)|y ≥ 0 and x ≥ 0} ∩ D, Q3 = {(x, y)|y ≥ 0 or x ≥
0} ∩ D.

Recall that a map on a subset A ofRd is differentiable if there is an extension of the
map to an open neighborhood of the set, such that the extended map is differentiable
in the standard sense. Under weak assumptions on the set A, which hold in all cases
relevant to us, this is equivalent to existence and continuity of limits of the derivatives
in the interior of A at the boundary.

As subdivision surfaces can be viewed as meshes continuously immersed (but
not necessarily embedded) in R3, we need to consider surfaces as images of
two-dimensional domains, more precisely, topological spaces that are locally two-
dimensional Euclidean with boundary; i.e., for any point of such space there is an
open neighborhood homeomorphic to Rd or a half-space of Rd (boundary points).

Definition 2.1 Consider a surface (M, f )where M is a topological locally Euclidean
space with boundary, and f is a continuous immersion f : M → Rd . The surface
(M, f ) is calledC�-continuous with piecewiseC�-continuous boundary with non-
degenerate corners if for any x ∈ M there is a neighborhood Ux of x with bijective
imageVx ⊂ f (M) and aC�-continuous and homeomorphic parametrization P → Vx ,
with P being one of the domains Qi , i = 1, . . . 3, or the disk D, mapping 0 to f (x).
We call x an interior point if P = D; otherwise, we call it a boundary point. We distin-
guish two main types of boundary points: if Vx is diffeomorphic to Q2, the boundary
point is called smooth; otherwise, it is called a corner. There are two types of corners:
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• convex corners (Vx is diffeomorphic to Q1);
• concave corners (Vx is diffeomorphic to Q3).

Definition 2.1 is similar to the definition of manifolds with boundary, which have
a differentiable structure in [8]. There, only the half space is used, while we consider
also the quarter and the three-quarter space of R2.

Observe that the same type of smoothness structure could be defined on f (M)

viewed as a point set if f were an embedding. However, in the setting we consider,
we need to ensure that our definition is compatible with smoothness in the ambient
metric on the one hand (which is ensured by requiring maps Vx → Qi to be C�)
and, on the other hand, be able to handle self-intersections, for which we need to use
M , to differentiate between points of M with coinciding images under f . Surfaces
satisfying Definition 2.1 can be used to model a large variety of features; for example,
by joining the surfaces along boundary lines, we can obtain surfaces with creases.
However, in addition to boundary cusps, a number of useful features such as cones
cannot be modeled unless degenerate configurations of control points are used.

2.2 Tangent Plane Continuity and C1-continuity

As we will see in Sect. 3, analysis of subdivision focuses on the behavior of surfaces
which are known to be at least C1-continuous in a neighborhood of a point, but
nothing is known about the behavior at the point. In this case, it is convenient to
first establish tangent plane continuity, for which we use the exterior product ∧ to
describe a 2-dimensional subspace in Rd (vector product for d = 3). The result of
the wedge product of the vectors is an element in the exterior algebra. Only if d = 3
can we identify this element with the normal vector of the corresponding hyperplane.
Normally it describes a 2-dimensional subspace, which can be identified with a vector
in the exterior algebra. We denote by [·]+ the normalization of a vector.

Definition 2.2 Suppose a surface (M, f ) in a neighborhood of a point x ∈ M is
parametrized by h : U → f (M) ⊂ Rd , where U is an open subset of the unit disk
D, Q1, Q2, or Q3 containing 0, which is regular (h is C1-continuous and the Jacobi
matrix has maximal rank) everywhere except 0, and h(0) = f (x). For y ∈ U , let
π(y) = [∂1h ∧ ∂2h]+, where ∂1h and ∂2h are derivatives with respect to a choice
of coordinates in the plane of the disk D or one of the domains Qi . The surface is
tangent plane continuous at x if the limit limy∈U→0 π(y) exists.

We can then prove an equivalent proposition as Proposition 1.2 [24].

Proposition 2.3 Suppose a surface (M, f ) is C1-continuous with C1-continuous
boundary everywhere excluding a boundary point x ∈ M. The surface is C1-
continuous at x with piecewise C1-continuous boundary with nondegenerate corners
if and only if:

1. a parametrization as in Definition 2.2 exists, which is tangent plane continuous at
x,

2. the projection of the surface into the tangent plane is injective, in a neighborhood.
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3. the boundary either has a nondegenerate corner at x (this means the limits of the
tangent vectors are different) or is C1-continuous at x.

Proof The necessity is obvious, and in order to prove the sufficiency of the condition,
we follow the proof of Proposition 1.2 from [24]. It shows that the projection P of a
subset V of the surface to the tangent plane is injective and C1 at all points; it applies
without changes to surfaces with boundary. What is left to show is that the image of
V or a subset is C1-diffeomorphic to one of the domains Qi , i = 1, 2, 3. As the two
boundary curves of V , which we call γ1 and γ2, are C1-continuous, and their tangents
are in the tangent plane to the surface at all points, their projections P(γ1) and P(γ2)

into the tangent plane at x are also C1-continuous. At the point x , the tangents to the
curves are in the tangent plane at x , and coincide with the tangents to the projections.
Using the third condition of the proposition, we conclude that the images of the curves
at x either form a nondegenerate corner or a C1-continuous curve. Topologically, V
and P(V ) are homeomorphic to a half disk. We have just shown that the image of
the boundary diameter of the half disk is C1-continuous or C1-continuous with a
nondegenerate corner at x . We can choose the neighborhood Vx of x so that the image
P(Vx ) has a boundary consisting of two segments of the curves P(γ1) and P(γ2) and
a part of a circle, intersecting each of these at a single point. Let l1 and l2 be the rays
along tangent directions to γ1 and γ2 (possibly collinear). Then for sufficiently small
radius of the neighborhood, we can assume that orthogonal projections of γi to li in
the plane are injective. Now we can directly construct a C1-diffeomorphism of the
P(Vx ) to one of the domains Qi . �	

3 Subdivision Schemes on Complexes with Boundary

In this section, we summarize the main definitions and facts about subdivision on
complexes that we use. More details for the case of surfaces without boundaries can
be found in [22,24].

3.1 Definitions

Polygonal complexes Subdivision surfaces are naturally defined as functions on two-
dimensional polygonal complexes. A two dimensional polygonal complex K is a set
of vertices, edges, and planar simple polygons (faces) in RN such that for any face
its edges are in K , and for any edge its vertices are in K and the intersection of two
elements is also an element in the complex. We assume that there are no isolated
vertices or edges (a pure or homogeneous complex). |K | denotes the union of faces
of the complex regarded as a subset of RN with induced metric. |K | is the locally
Euclidean domain with boundary M in Definition 2.1. We say that two complexes K1
and K2 are isomorphic if there is a homeomorphism between |K1| and |K2| that maps
vertices to vertices, edges to edges, and faces to faces.

A 1-neighborhood N1(v, K ) of a vertex v in a complex K is the complex formed by
all faces that have v as a vertex. Them-neighborhood of a vertex v, Nm(v, K ) is defined
recursively as a union of all 1-neighborhoods of vertices in the (m − 1)-neighborhood
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of v.We are primarily interested in schemes thatwork on either quadrilateral or triangle
meshes. A k-regular complex with boundaryRk is the regular tiling of the half plane,
consisting of identical triangles (quads), with all internal vertices of valence 6(4) and
all vertices on the boundary of valence 4(3), excluding the vertex at the origin which
has valence k + 1. Here, valence denotes the number of edges sharing a vertex.

Tagged complexes The vertices, edges, or faces of a complex can be assigned one
element of a finite set of tags. These tags can be used to choose a type of subdivision
rule applied at a vertex. In this paper, we use tags in a very limited way: specifically, a
boundary vertex can be tagged as a convex or concave corner, or a smooth boundary
vertex. However, as is discussed below, the tags can be used to create creases in the
interior of meshes and for other purposes. Subdivision on tagged complexes merits a
separate detailed consideration in a future paper.

Isomorphisms of tagged complexes with identical tag sets can be defined as iso-
morphisms of complexes which preserve tags; i.e., if a vertex has a tag τ , its image
also has a tag τ .

Subdivision of complexes We can construct a new complex D(K ) from a complex
K by subdivision. For a triangular scheme, D(K ) is constructed by adding a new
vertex for each edge of the complex and replacing each old triangle with four new
triangles. For a quadrilateral scheme, D(K ) is constructed by adding a vertex for each
edge and face and replacing each quadrilateral face with 4 quadrilateral faces. Note
that k-regular complexes with boundary are self-similar; that is, D(Rk) and Rk are
isomorphic.

We use notation K j for j times subdivided complex D j (K ) and V j for the set of
vertices of K j . Note that the sets of vertices are nested: V 0 ⊂ V 1 ⊂ · · · .

If a complex is tagged, it is also necessary to define rules for assigning tags to the
new edges, vertices, and faces. For our vertex tags, we use a trivial rule: all newly
inserted boundary vertices are tagged as smooth boundary vertices.

Subdivision schemes Next, we attach values to the vertices of the complex; in other
words, we consider the space of functions V → B, where B is a vector space over R,
typically Rl or Cl for some l. We denote this space by P(V, B), or P(K , B) if the set
of vertices comes from the complex K .

A subdivision scheme for any function p ∈ P(K , B) computes a function p1 ∈
P(K 1, B). We consider only subdivision schemes that are linear; i.e.,

p1(v) =
∑

w∈V
avw p0(w)

for all v ∈ V 1. The coefficients avw may depend on K .
We restrict our attention to subdivision schemeswhich are finitely supported, locally

defined, and invariant with respect to a set of isomorphisms of tagged complexes and
affinely invariant. A subdivision scheme is finitely supported if there is an integer M
such that avw 
= 0 only if w ∈ NM (v, K 1) for any complex K . We call the minimal
possible M the support size of the scheme. We assume our schemes to be locally
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defined and invariant with respect to isomorphisms of tagged complexes. Together
these two requirements can be defined as follows: there is a constant L such that if two
neighborhoods NL(v1, K1) and NL(v2, K2) of complexes K1 and K2 are isomorphic
with tag-preserving isomorphism ρ : NL(v1, K1) → NL(v2, K2), where v1 ∈ V1 and
v2 ∈ V2 such that ρ(v1) = v2, then av1w = av2ρ(w). In most cases, the localization
size L = M .

The final requirement that we impose on subdivision schemes is affine invariance: if
T is an affine transformation B → B, then for any v, T p j+1(v) = ∑

w∈V avwT p j (w).
This is equivalent to requiring that all coefficients avw for a fixed w sum up to 1.

For eachvertexv ∈ ∪∞
j=0V

j , there is a sequenceof values pi (v), pi+1(v), . . . where

i is the minimal number such that V i contains v.

Definition 3.1 A subdivision scheme is called convergent on a complex K , if for any
function p ∈ P(K , B) there is a continuous function f defined on |K | with values in
B such that

lim
j→∞ sup

v∈V j

∥∥∥p j (v) − f (v)

∥∥∥
2

→ 0.

The function f is called the limit function of subdivision.

Notation: f [p] : |K | → B is the limit function generated by subdivision from the
initial values given by the function p ∈ P(K ). It is easy to show that if a limit function
exists, it is unique. The surface (|K |, f ) is called a subdivision surface if B = R3 and
the complex K has only simple links. Recall that a link of a vertex is the set of edges
of N1(v, K ) that do not contain v. Simple links are links that are connected simple
polygonal lines, open or closed.

Subdivision matrices We consider subdivision on Rk (a k-regular complex with
boundary as defined above). The points p j+1(v) ∈ R3 for v ∈ NQ(0,R j+1

k ) (the
Q-neighborhood of the j +1 times subdivided k-regular complex with boundary) can
be computed using only control points p j (w) forw ∈ NQ(0,R j

k ). The integer Q is the
minimal one such that this holds. Let N + 1 be the number of vertices in NQ(0,Rk).

Let p̄ j ∈ R(N+1)×3 be the vector of control points p j (v) for v ∈ NQ(0,R j
k ).

As the subdivision operators are linear, p̄ j+1 can be computed from p̄ j using a
(N + 1) × (N + 1) matrix S j : p̄ j+1 = S j p̄ j .

If for somem and for all j > m, S j = Sm = S, we say that the subdivision scheme
is stationary on the k-regular complex, or simply stationary, and call S the subdivision
matrix of the scheme. We will assume that the subdivision scheme is stationary from
now on. It will be crucial to understand the limit function of the subdivision scheme
on U1 = |N1(0,Rk)|. This will be done by eigenvalue analysis and the introduction
of the universal map.

Eigenbasis functions Let λ0 = 1 > λ1 ≥ · · · ≥ λÑ , where Ñ ≤ N+1, be the distinct
eigenvalues of the subdivision matrix in nonincreasing order; the condition λ0 > |λ1|
is necessary for convergence, and λ0 = 1 is given by affine invariance. Let us consider
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the real Jordan normal form of the subdivision matrix S given by S = P J P−1, where
J is block diagonal such that

P−1SP = J =
⎛

⎜⎝
J (1)

. . .

J (p)

⎞

⎟⎠ ,where J (i) =

⎛

⎜⎜⎝

J (i)
1

. . .

J (i)
q(i)

⎞

⎟⎟⎠ .

The J (i)
j are the Jordan blocks which look like

J (i)
j =

⎛

⎜⎜⎜⎜⎝

λi 1
· ·

· ·
· 1
λi

⎞

⎟⎟⎟⎟⎠
, for real λi j = 1, . . . , q(i),

J (i)
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎜⎜⎝

Re(λi ) 1
· ·

· 1
Re(λi )

⎞

⎟⎟⎠

⎛

⎜⎝
−Im(λi )

. . .

−Im(λi )

⎞

⎟⎠

⎛

⎜⎝
Im(λi )

. . .

Im(λi )

⎞

⎟⎠

⎛

⎜⎜⎝

Re(λi ) 1
· ·

· 1
Re(λi )

⎞

⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for complex-conjugate pair λi , λ̄i , j = 1, . . . , q(i).

Let n(i)
j be the size of the Jordan block J (i)

j minus one (real eigenvalue) or half

the size of the Jordan block J (i)
j minus one (complex eigenvalue). Let c(i)

jr ∈ RN+1,

r = 0, . . . , n(i)
j or r = 0, . . . , 2n(i)

j + 1, be the generalized eigenvectors, which are

the corresponding column of the matrix P . They span the subspace called J(i)
j . The

vectors c(i)
jr satisfy for real eigenvalues:

Sc(i)
jr = λi c

(i)
jr + c(i)

j r−1 if r > 0, Sc(i)
j0 = λi c

(i)
j0 , (3.1)

and for complex-conjugate pairs of eigenvalues:

Sc(i)
jr = Re(λi )c

(i)
jr + c(i)

j r−1 − Im(λi )c
(i)

j r−n(i)
j −1

if r > n(i)
j + 1,

Sc(i)

j n(i)
j +1

= Re(λi )c
(i)
j n+1 − Im(λi )c

(i)
j0 ,

Sc(i)
jr = Re(λi )c

(i)
jr + c(i)

j r−1 + Im(λi )c
(i)

j r+n(i)
j +1

if n(i)
j + 1 > r > 0,

Sc(i)
j0 = Re(λi )c

(i)
j0 + Im(λi )c

(i)

j n(i)
j +1

.
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The eigenbasis functions are the limit functions defined by f (i)
jr = f [c(i)

jr ] : U1 → R.

Consider p̄0 ∈ R(N+1)×3. It can be represented as a linear combination of the c(i)
jr :

p̄0 =
∑

i, j,r

c(i)
jr α

(i)
jr ,

with α
(i)
jr ∈ R1×3. Any subdivision surface f [p] : U1 → R3 can be represented as

f [p](y) =
∑

i, j,r

αi
jr f

(i)
jr (y). (3.2)

One can show using the definition of limit functions of subdivision and (3.1) that
the eigenbasis functions satisfy the following set of scaling relations for real λi :

f (i)
jr (y/2) = λi f

(i)
jr (y) + f (i)

j r−1(y) if r > 0, f (i)
j0 (y/2) = λi f

(i)
j0 (y).

We can assume that the coordinate system in R3 is always chosen in such a way
that the single component of f [p] corresponding to eigenvalue 1 is zero. This allows
us to reduce the number of terms in (3.2) to N .

3.2 Reduction to Universal Surfaces

In [24], it was shown that for surfaces without boundary, the analysis of smoothness
of subdivision can be reduced to the analysis of universal surfaces. In this section, we
introduce universal surfaces for neighborhoods of boundary vertices.

Universal map The universal map is defined as ψ(y) = ∑
i, j,r f (i)

jr (y)hijr : U1 →
RN , where h(i)

jr is an orthonormal basis of RN . Let α1, α2, α3 ∈ RN be the vectors
such that

(
(hijr , α

1), (hijr , α
2), (hijr , α

3)
)

= α
(i)
jr ∈ R3.

Then (3.2) can be rewritten as

f [p](y) =
(
(ψ(y), α1), (ψ(y), α2), (ψ(y), α3)

)
,

where (·, ·) denotes the inner product in RN . This equation indicates that all surfaces
generated by a subdivision scheme on U1 can be viewed as projections of a single
surface in RN . We call ψ the universal map, and the surface specified by ψ the
universal surface. In [24], it was demonstrated that the analysis of tangent plane
continuity andC�-continuity of subdivision can be reduced to analysis of the universal
surface. Not surprisingly, we will see that this also holds for subdivision schemes with
boundary.
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10 Constr Approx (2015) 42:1–29

In the chosen basis, the matrix S is in the real Jordan normal form. Note that by the
definition of S for any X ∈ RN ,

(X , ψ(y/2)) = (SX , ψ(y)) ⇒ ψ(y/2) = STψ(y).

The universalmapψ is only piecewiseC� under the assumption that the subdivision
scheme isC�-smooth on regular complexes. Differentiability is computedwith respect
to the standard metric on U1 ⊂ R2. However, one can easily construct a map κ (see
[24]) such that φ = ψ ◦ κ−1 is C1-continuous away from the center.

We will impose the following condition on the subdivision schemes.
Condition A For any y ∈ U1,

∂1φ(y) ∧ ∂2φ(y) 
= 0 for all y ∈ U1, y 
= 0.

This condition holds for all known practical schemes.

Reduction theorem We say that a subdivision scheme has a certain property if this
property holds for almost all subdivision surfaces. The following theorem holds under
the assumption that the subdivision scheme isC1 withC1-smooth boundary on regular
complexes with boundary.

Theorem 3.2 For a subdivision scheme satisfying Condition A to be tangent plane
continuous on a k-regular complex with boundary, it is necessary and sufficient that
the universal surface be tangent plane continuous; for the subdivision scheme to
be C�-continuous with piecewise C�-continuous boundary with nondegenerate cor-
ners (as in Definition 2.1), it is necessary and sufficient that the universal surface is
C�-continuous with piecewise C�-continuous boundary with nondegenerate corners.
Almost all surfaces generated by a given subdivision scheme on a k-regular complex
with boundary are locally diffeomorphic to the universal surface.

Proof Sufficiency is clear as any surface is a linear projection of the universal surface.
Following [24], we see that if the universal surface is not tangent plane continuous,
then a set of subdivision surfaces of nonzero measure is not tangent plane continuous.
Also, if the universal surface has noninjective projection into the tangent plane, the
same is true for a set of subdivision surfaces of nonzero measure. Furthermore, if
the projection of the universal surface into the tangent plane is not C�, the same is
true for a set of subdivision surfaces of nonzero measure. It remains to prove that if
the boundary of the universal surface is not C�-continuous, or it is not C�-continuous
with nondegenerate corner, the same is true for a set of subdivision surfaces of nonzero
measure.By assumption, the boundary of the surface isC1-continuous away fromzero.
Let the two pieces of the boundary be γi : (0, 1] → Rp, i = 1, 2, with γ1(1) = γ2(1).
We can assume both pieces to be C1-continuous away from one. Suppose γ1 does not
have a tangent at one; then there are at least two directions τ1 and τ2 which are limits
of sequences of tangent directions to γ1(t) as t approaches one. There is a set of three-
dimensional subspaces π of measure nonzero in the space of all three-dimensional
subspaces, for which the projections of both vectors τ1 and τ2 to the subspace are not
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zero. If we project the universal surface to any of these subspaces, the boundary curve
of the resulting surface will not be tangent continuous. For curves, tangent continuity
is equivalent to C1-continuity. For C�-continuity, the proof for curves is identical to
the proof for surfaces.We conclude that the curves γ1 and γ2 should beC�-continuous.
Similarly, if the curves are joined with continuity less than �, then almost all curves
obtained by projection into R3 will have the same property. Finally, if the tangents to
the curves coincide, the same is true for almost all projections of the curves, which
means that almost all projections do not have a nondegenerate corner. �	

The following important corollary immediately follows from Theorem 3.2:

Corollary 3.3 Almost all surfaces generated by a given C�-continuous subdivision
scheme on a k-regular complex are diffeomorphic.

This corollary implies in particular that the same subdivision rule cannot generate
convex and concave corners simultaneously in a stable way, and separate rules are
required for these cases. We note that the most commonly used boundary corner rules
for Loop and Catmull–Clark surfaces do not distinguish between these two cases, so
cannot produce both convex and concave corners.

4 Criteria for Tangent Plane and C1-Continuity

We will again follow [24] to establish the C1-continuity criteria. We focus on a suf-
ficient condition for C1-continuity ([24] Theorem 3.6 and Theorem 4.1), which is
most relevant for applications. More general necessary and sufficient conditions can
be extended in a similar way. The sufficient conditions will be conditions on the eigen-
structure of the subdivision matrix. We assume the scheme to be C1-smooth in the
interior and on regular boundary points. To state the sufficient condition, we need to
define characteristic maps, which are commonly used to analyze C1-continuity of
subdivision surfaces. We use a definition somewhat different from the original defi-
nition of Reif [17]. We will define a characteristic map for a pair of subspaces. We
will later introduce the dominant characteristic map which is the characteristic map
defined on the dominant subspaces.

4.1 Conditions on Characteristic Maps

In the following, we will refer to the subspaces J(i)
j , which were defined at the end of

Sect. 3.1.

Definition 4.1 The characteristic map 
 : U1 → R2 is defined for a pair of sub-
spaces J(a)

b , J(c)
d of the subdivision matrix as:

1. ( f (a)
b0 , f (c)

d0 ) if J(a)
b 
= J(c)

d , λa, λc are real,

2. ( f (a)
b0 , f (a)

b n+1) if J
(a)
b = J(c)

d , for a complex-conjugate pair λa, λ̄a ,

3. ( f (a)
b0 , f (a)

b1 ) if J(a)
b = J(c)

d , λa is real.
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a cb
Fig. 1 Characteristic maps: control points after 4 subdivision steps: a Two real eigenvalues. b A pair of
complex-conjugate eigenvalues. c Single eigenvalue with Jordan block of size 2

We are not interested in other cases of pairs of subspaces since only maps of
enumerated types determine tangent plane behavior of a subdivision surface. Three
types of characteristic maps are shown in Fig. 1 for the closed-surface case.

The domain of a characteristic map is the neighborhoodU1, consisting of k faces of
the regular complex with boundary; we call these faces segments. We assume that the
subdivision scheme generates C1-continuous limit functions on regular complexes,
and the characteristic map is C1-continuous inside each segment and has continuous
one-sided derivatives on the boundary. One can show (see [24]) that the Jacobian is
actually continuous across those boundaries.

The characteristic map satisfies the scaling relation 
(t/2) = T
(t), where T is
one of the matrices

Tscale =
(

λa 0
0 λc

)
, Trot = |λa |

(
cosφ − sin φ

sin φ cosφ

)
, Tskew =

(
λa 1
0 λa

)
,

where φ is the argument of a complex λa .

Sufficient condition for C1-continuity The following sufficient condition is a special
case of the condition that was proved in [24]. Although all our constructions apply in
the more general case, we state only a simplified version of the criterion sufficient for
most applications. This condition generalizes Reif’s condition [17].

Define for any two subspaces ord
(
J(i)
j , J(k)

l

)
to be n(i)

j + n(k)
l , if J(i)

j 
= J(k)
l ; let

ord
(
J(i)
j , J(i)

j

)
= 2n(i)

j − 2; note that for n(i)
j = 0, this is a negative number. This

number allows us to determine which components of the limit surface contribute to
the limit normal (see [22,24] for details). We say that a pair of subspaces J(a)

b , J(c)
d is

dominant if for any other pair J(i)
j , J(k)

l we have either |λaλc| > |λiλk | or |λaλc| =
|λiλk | and ord

(
J(a)
b , J(c)

d

)
> ord

(
J(i)
j , J(k)

l

)
. Note that the blocks of the dominant

pair may coincide. If a dominant pair exists, we call the corresponding characteristic
map a dominant characteristic map.

Theorem 4.2 Suppose that there is a dominant pair J(a)
b , J(c)

d . If λaλc positive real,
and the Jacobian of the dominant characteristic map has constant sign everywhere
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on U1 except zero, then the subdivision scheme is tangent plane continuous on the
k-regular complex.

If this characteristic map is injective, the subdivision scheme is C1-continuous.

This theorem can be proved following the proof of the criterion of [24] also for
surfaces with boundary, without any changes. In the special case when all Jordan
blocks are trivial, this condition reduces to an analog of Reif’s condition. However,
Theorem 4.2 does not characterize the behavior of the boundary curve.

Criterion for piecewise C1-continuity of the boundary. Assuming that the scheme
at a boundary vertex satisfies the conditions of Theorem 4.2, we establish additional
conditions which guarantee that the scheme for almost all control meshes generates
C1-continuous surfaces with piecewise C1-continuous boundary with nondegenerate
corners. We call I1 and I2 the two parts of the boundary line of U1 achieved by
excluding the center vertex. We use notation ∂1 for the derivative in the direction of
this boundary line. ∂2 will be the orthogonal direction.Wewill call the two components
of the dominant characteristic map f1 and f2 in the following theorem.

Theorem 4.3 Suppose a subdivision scheme satisfies the conditions of Theorem 4.2
for boundary vertices of valence k. Then the scheme is piecewise C1-continuous with
nondegenerate corners for boundary vertices of valence k if the following conditions
are satisfied:

1. λa and λc are positive real.
2. Suppose λa > λc (diagonal scaling matrix, asymmetric scaling). Then the scheme

is boundary C1-continuous if and only if ∂1 f1 
= 0 and has the same sign on I1
and I2, or ∂1 f1 ≡ 0 on I1 and I2.
The scheme is a nondegenerate corner scheme if and only if ∂1 f1 
= 0 on I1 and
∂1 f1 ≡ 0 on I2. The same is true if I1 and I2 are exchanged.

3. Suppose J(a)
b = J(c)

d (scaling matrix is a Jordan block of size 2) and ∂1 f1 does not
vanish on I1 and I2. The scheme is boundary C1-continuous if ∂1 f2 has the same
sign everywhere on I1 and I2, and if ∂1 f2(t1) = 0 for a t1 ∈ I1 ∪ I2, then ∂1 f1(t1)
needs to have this sign as well. Nondegenerate corners cannot be generated by a
scheme of this type.

4. Suppose λa = λc (diagonal scaling matrix, symmetric scaling). The bound-
ary is C1-continuous if and only if there is a nontrivial linear combination
α1∂1 f1 + α2∂1 f2 identically vanishing on I1 and I2, and any other independent
linear combination has the same sign on I1 and I2. The scheme is a corner scheme
if and only if there is a linear combination α1∂1 f1 + α2∂1 f2 identically vanishing
on I1 and a different linear combination β1∂1 f1 + β2∂1 f2 identically vanishing
on I2, with [α1, α2] and [β1, β2] linearly independent.

Proof For each of the boundary segments defined on I1 and I2, we need to show that
the limit of the tangent exists at the common endpoint. If these limits coincide, then the
boundary curve of the universal surface is C1-continuous; if the limits have different
directions, then the universal surface has a nondegenerate corner.

First, we observe that by assumption the dominant characteristic map has nonzero
Jacobian on the boundary. This means that one of the components has nonzero deriva-
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tive along the boundary ∂1 f1(t) 
= 0, or ∂1 f2(t) 
= 0 at any point t ∈ I1∪ I2. Consider
the tangent to the boundary of the surface defined by the dominant characteristic map.
It is a two-dimensional vector v(t) = (∂1 f1(t), ∂1 f2(t)), where t is a point of I1 or I2.
The tangent satisfies the scaling relation of the form v(t/2) = 2T v(t), where T is the
scaling matrix for the dominant characteristic map. The direction of the tangent has a
limit if and only if T is either Tscale or Tskew and its eigenvalues are positive (Lemma3.1,
[24]). As the projection of the universal surface is arbitrarily well approximated by
the dominant characteristic map, or coincides with it for simple Jordan structures of
the subdivision matrix, we conclude that for the universal surface boundary to have
well-defined tangents at zero, the eigenvalues of the dominant characteristic map have
to be positive and real. However, this condition is not sufficient for the existence of
tangents.

Diagonal scaling matrix, asymmetric case First we consider the case of the dom-
inant subspace pair Jab , J cd with a 
= c (different eigenvalues). In this case, the
sequences ∂1 f1(t/2m) and ∂1 f2(t/2m), for ∂1 f1(t), ∂1 f2(t) 
= 0, change at a dif-
ferent rate. This can be easily seen from the scaling relation. Moreover, the ratio
‖∂1 f2(t/2m)‖/‖∂1 f1(t/2m)‖ approaches zero as m → ∞.

Suppose at some points t1, t2 of I , ∂1 f1(t1) 
= 0, and ∂1 f1(t2) = 0. Then ∂1 f2(t2) 
=
0, and the tangents at points t2/2m all point in the direction±e2,where e2 is the unit vec-
tor along the coordinate axis corresponding to f2. ‖∂1 f2(t1/2m)‖/‖∂1 f1(t1/2m)‖ → 0
as m → ∞; thus, at points t1/2m , the direction of the tangent approaches ±e1. We
conclude that there is no limit, unless ∂1 f1 is either nowhere or everywhere zero I1.
Same applies to I2. Conversely, if ∂1 f1 is nowhere zero, then the limit tangent direction
at the center is ±e1. If it is zero everywhere, then by assumption about the dominant
characteristic map, ∂1 f2 is nowhere zero, and the limit tangent direction is ±e2. The
choice of sign in each case depends on the sign of ∂1 f1 or ∂1 f2.

If ∂1 f1 is not zero and has the same sign on both I1 and I2, then the tangent is
continuous and the boundary curve is C1-continuous. If ∂1 f1 ≡ 0 on I1 and I2, the
images of I1 and I2 under the dominant characteristic map are straight lines on the e2
axis, and therefore the boundary curve isC1-continuous. If it is zero on I1 and nonzero
on I2, then the tangents are not parallel, and the surface defined by the dominant
characteristic map has a corner, and the same applies for I1 and I2 interchanged,
which proves the second part.

Scaling matrix is a Jordan block of size 2 The second condition of the theorem applies
if the dominant characteristic map components correspond to a subspace of size 2,
i.e., satisfy f1(t/2) = λa f1(t) + f2(t). Thus, ∂1 f1 ≡ 0 implies ∂1 f2 ≡ 0 on I1 or I2.
Otherwise v(t/2m) converges to ±e1 for any t on I1 as well as I2. If ∂1 f2(t) 
= 0, its
sign determines the sign of the limit tangent.

Diagonal scaling matrix, symmetric case In the symmetric case where a = c,
the sequences ∂1 f1(t/2m) and ∂1 f2(t/2m) change at the same rate, and any linear
combination α1 f1 + α2 f2 is also an eigenbasis function. Suppose f1 and f2 come
from different subspaces of the same eigenvalue which have the same size. Suppose
α1∂1 f1 + α2∂1 f2 does not vanish identically on I1 for any nontrivial choice of α1
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and α2. Pick t1 and t2 such that the vectors v(ti ) = [∂1 f1(ti ), ∂1 f2(ti )] are linearly
independent. Then the sequences v(t1/2m) and v(t2/2m) converge to different limit
directions. Therefore, for the limit tangents at zero to exist, there should be a nontrivial
linear combination of ∂1 f1 and ∂1 f2 which vanishes on I1. If α1∂1 f1 +α2∂1 f2 is such
a combination, it is easy to see that the limit tangent direction is, up to the sign, the
direction of the vector [−α2, α1]. For the boundary to be C1-continuous, the direction
should be the same on two sides. Finally, the tangents on two sides exist and do not
coincide if the vectors (α1, α2) for I1 and I2 are linearly independent. �	

An interesting corollary of this theorem is that in the symmetric case, the images
of I1 and I2 under the dominant characteristic map are straight line segments. In this
case, we have that α1∂1 f1 + α2∂1 f2 ≡ 0, which means that α1 f1 + α2 f2 is constant
and the image of ( f1, f2) is a straight line segment. Note that this is not necessary if
the eigenvalues λa and λc are different.

4.2 Analysis of Characteristic Maps

To verify conditions of Theorem 4.2, we need to establish that the dominant charac-
teristic map is regular and injective and verify that it has the expected behavior on the
boundary. Typically, analysis of the boundary behavior is relatively easy, as in most
cases the boundary curve is independent from the interior. In this section, we focus on
regularity and injectivity of the dominant characteristic map.

Regularity of the characteristic map Just as in the case of interior points, we use
self-similarity of the dominant characteristic map to verify the regularity condition of
Theorem 4.2: for any t ∈ U1, the Jacobian satisfies J [
](t/2) = 4λaλc J [
](t). It
is immediately clear that to prove regularity of the dominant characteristic map, it is
sufficient to consider the Jacobian on a single annular portion of U1. As all vertices
of such a ring are either regular or boundary regular, we can estimate the Jacobian of
the dominant characteristic map using tools developed for analysis of subdivision on
regular grids. This time we have to consider subdivision schemes not just on regular
meshes but on regular meshes with boundary.

Injectivity of the characteristic map Even if the Jacobian of a map is nonzero every-
where, only local injectivity is guaranteed. For interior vertices, self-similarity of the
dominant characteristic maps allows one to reduce the injectivity test to computing
the index of a closed curve around zero [23]. A closed curve with winding number
±1 gives injectivity in a small neighborhood of zero. This test cannot be applied for
boundary points, as there are no closed curves around zero.

For boundary points, a different test (Theorem 4.4) suffices, which is even easier
to apply in all cases that we have considered. However, unlike the curve index test,
it does not immediately yield a computational algorithm that applies to an arbitrary
scheme.

The dominant characteristic map can be extended using scaling relations to a com-
plete k-regular complex with boundary. In the following theorem, we assume that the
dominant characteristic map is defined on the whole complex |Rk |.
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Theorem 4.4 Suppose a characteristic map 
 satisfies the following conditions:

1. the preimage 
−1(0) contains only one element, 0;
2. the characteristic map has a Jacobian of constant sign at all points of the domain

besides 0;
3. the image of the boundary of the characteristic map has no self-intersections;
4. the image of the characteristic map is not the whole plane.

Then this characteristic map is injective.

Proof We can show that the characteristic map is continuous at infinity, and if P is
the stereographic projection of the sphere to the plane such that the south pole gets
mapped to 0, 
̃ = P−1
P is a continuous mapping of a subset D = P−1(|Rk |) of
the sphere into the sphere, with the south pole mapped to the south pole. 
̃ is a local
homeomorphism away from the south pole.

We observe that the points of the boundary of the image 
̃(D) can be images only
of the boundary of D due to the properties of local homeomorphisms. Therefore,
∂ 
̃(D) ⊂ 
̃(∂D).

The image of the boundary 
̃(∂D) has no self intersections. It is easy to see that the
boundary of the domain ∂D is a simple closed Jordan curve, and so is its image 
̃(∂D).
Suppose ∂ 
̃(D) 
= 
̃(∂D). Then there is a point y ∈ 
̃(∂D) which is an interior
point of 
̃(D). As 
̃(∂D) separates the sphere into two linearly connected domains,
we can connect each point in either domain to point y with a continuous curve which
does not intersect ∂ 
̃(D). Thus, any two points on the sphere can be connected by a
continuous curve which does not intersect ∂ 
̃(D). We conclude that the image 
̃(D)

is the whole sphere. Therefore, either ∂ 
̃(D) = 
̃(∂D), or the image is the whole
sphere. The latter option contradicts the last condition of the theorem. We conclude
that 
̃(D) is simply-connected since its boundary is a simple closed Jordan curve. In
order to prove injectivity, we will show that the mapping on the domain excluding the
south pole is a covering and coverings from connected domains to simply connected
domains are injective. If we exclude the south pole of the sphere, the mapping is a
local homeomorphism. Consider an interior point y of the image, and the set 
̃−1(y).
Suppose it is infinite. Then it has a limit point, which cannot be an interior point of
D (otherwise, 
̃ is not a local homeomorphism at that point). Similarly, it cannot
be a boundary point, unless it is the south pole. It cannot be the south pole xs for
which P(xs) = 0, because then 
̃(xs) = y, which means that P(y) = 0, which
contradicts the assumption 
−1(0) = {0}. We conclude that 
̃−1(y) is finite for each
point y of the interior of the image. A similar argument holds for boundary points
away from the poles. 
̃ is a local homeomorphism and maps the boundary exactly
to the boundary. Let y be a point of the image away from poles, and let x1, x2, . . . xn
be points of 
̃−1(y). We know there exist pairwise disjoint neighborhoods Ui of the
xi such that 
̃|Ui : Ui → f (Ui ) is a homeomorphism to an open subset of 
̃(D)

containing y for all i . The set
⋂

i 
̃(Ui ) is an evenly covered neighborhood of x if

̃−1(

⋂
i 
̃(Ui )) is wholly contained in

⋃
i Ui , which is not always the case. Instead,

we consider V = ⋂
i 
̃(Ui )\
̃(UC

i ), where UC
i are the complements of Ui . Then

V is the required evenly covered open neighborhood of y. Indeed, V is open and
y ∈ V because

⋃
i Ui contains all preimages of y. Finally, by construction, 
̃(V ) is
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the disjoint union of the 
̃−1(V ) ∩ Ui , each of which is homeomorphically mapped
onto V by 
̃.

We conclude that the characteristic map is injective. �	

5 Verification of C1-continuity

In the following, we will analyze certain boundary rules of the two most important
subdivision schemes, namely Loop [9] and Catmull–Clark [2]. We will show that
they lead to subdivision surfaces that areC1 boundary continuous with nondegenerate
corners as defined in Definition 2.1. In order to do that, we need to show that the
characteristic map defined by the dominant eigenpair satisfies the conditions given in
Theorem 4.3 and 4.4. In both cases, we know that we can extend the subdivision over
regular boundary vertices by mirroring. This would create a C1-smooth subdivision
surface and the boundary is a C1-smooth curve. We therefore only have to look at
tagged corner vertices or nonregular boundary points. As we discuss later, we have to
choose the right boundary subdivision rules for the regular smooth boundary vertices,
of course.

5.1 Loop Scheme

The Loop scheme with boundary is given by the rules in Fig. 2. For each valence
of a boundary vertex, there are 4 free parameters that we will pick in the following
discussion: αk, βk, γk, δk . These rules are such that the support of each mask is the
same as for Loop or the cubic B-spline on the boundary and are equivalent to those
for regular meshes with boundary. We also keep the symmetry for rules in boundary
regions. Some parts of our analysis are similar to the analysis performed by Schweitzer
[18].

We assume that all coefficients in the masks are positive. This choice is sufficiently
general and allows a complete parameter-dependent eigenanalysis. For the specific
schemes that we consider, the boundaries do not depend on the control points in the
interior. We will furthermore assume that α3 = 1/8 and β3 = 1/2 when the point is

interior vertex boundary vertex extraordinary boundary vertex

α 1− 2α α 1− β β

1
16

1
16

1
16

1
16

1
16

1
16

5
8

1
8

1
8

3
8

3
8

δ δ

1− 2δ − γ

γ

Fig. 2 Modified Loop subdivision rules for meshes with boundary [1]
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k = 5

0 12 2k + 22k + 3

3

4

k + 1

...

2k + 1

2k + 4

...

...

k + 2

k + 3

2k + 5
...

...

Fig. 3 Ordering for the subdivision matrix

not marked a corner, which are the regular rules for the cubic B-spline. This guarantees
a boundary curve that is C1. Therefore we only need to consider boundary vertices
which are either marked as corners or have a valence different from 3.

Subdivision matrix and eigenstructure We assume that k > 1 first. The subdivision
matrix (in the ordering of Fig. 3 for a boundary vertex with k adjacent triangles) has
the following form (more details in [6]):

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−2α α α

1−β β

1−β β

a1 A10 A11

a2 A20 A21
1

8
Ik

1/8 3/4 1/8

1/8 3/4 1/8

a3 A31 A32
1

16
Ik−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The vectors a1 and a3 have length k − 1, the vector a2 has length k, Ik and Ik−1
are unit matrices of sizes k and k − 1. Note that the eigenvalues of the matrix are 1/8,
1/16, the eigenvalues of the upper-left 3 × 3 block A00, and the eigenvalues of the
matrix A11. Thematrix A11 is tridiagonal, of size k−1×k−1. The eigenvalues of A00
are 1, β, β − 2α, where the eigenvector to 1 is the vector e = [1, . . . , 1]. Following
[18], we observe that k−1× k−1 tridiagonal symmetric matrices have the following
eigenvectors, independent of the matrix:

v j = [sin jθk, sin 2 jθk, . . . sin (k − 1) jθk] , j = 1 . . . k − 1, (5.1)
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Table 1 Eigenvector of β

one eigenvector (i th entry) two eigenvectors (i th entries)

r > 2, k odd (−1)i cosh (i − k/2) θ,

r = 2 cosh θ

(−1)i sinh iθ, (−1)i sinh (i − k) θ, r = 2 cosh θ

r > 2, k even (−1)i sinh (i − k/2) θ,

r = 2 cosh θ

(−1)i sinh iθ, (−1)i sinh (i − k) θ, r = 2 cosh θ

r = 2, k odd (−1)i (−1)i i, (−1)i (i − k)

r = 2, k even (−1)i (n − k/2), (−1)i i, (−1)i (i − k)

−2 < r < 2 sin (i − k/2) θ,

r = −2 cos θ

sin iθ, sin (i − k) θ, r = −2 cos θ

r = −2 i − k/2 i, i − k

r < −2 sinh (i − k/2) θ,

r = −2 cosh θ

sinh iθ, sinh (i − k) θ, r = −2 cosh θ

where θk = π/k.Multiplying thematrix A11 to the vectors, we see that the eigenvalues
are λ j = 2δ cos jθk + γk . We have determined that the eigenvalues of the subdivision
matrix are 1, βk ,βk − 2αk , 1/8, 1/16, and λ j = 2δ cos jθk + γk , j = 1 . . . k − 1. The
eigenvectors corresponding to the eigenvalues λ j do not depend on the matrix and
are given by (5.1). The eigenvectors corresponding to the eigenvalue β depend on the
ratio r = (γ −β)/δ; for α 
= 0, there is a single eigenvector. For α = 0, there is a pair
of eigenvectors for the case when β is not an eigenvalue of A11. If β is an eigenvalue
of A11, it has a nontrivial Jordan block of size 2. Depending on the range of r , Table 1
shows the eigenvector for vβ or the 2 eigenvectors if β is a double eigenvalue.

If k=1, the matrix in this case has eigenvalues β, β − 2α, and a triple eigenvalue
1/8. The eigenvectors can be trivially computed.

Coefficients for smooth boundary vertices One possible choice was given by Hoppe
et al. [7] and examined in detail in [18]. In our notation, this choice corresponds to
βk = 5/8, αk = 1/8, γk = 3/8, δk = 1/8 for extraordinary vertices k 
= 3, and
β3 = 1/2. (In the following, we will drop the index k.) Remarkably, the ratio r is −2.
The disadvantage of this choice is that the shape of the boundary curve depends on
the valence of the vertices on the boundary; hence it becomes impossible to join two
meshes continuously along a boundary if extraordinary vertices on two sides do not
match. If we require the boundary curve to be a cubic spline, β has to be 1/2 and α

has to be 1/8. Further, we pick δ = 1/2.
We consider the cases k > 2, k = 2, and k = 1 separately.

Case k > 2. Once α, β, and δ are fixed, the eigenvalues of the subdivision matrix
become 1, β = 1/2, β − 2α = 1/4, 1/8, 1/16, and λ j = (1/4) cos jθk + γ .

There are two choices of γ that we find particularly interesting: γ = 1/4 and
γ = 1/2−1/4 cos θk . The first choice, γ = 1/4, is themaximal value of γ independent
of k for which it is in the correct range, meaning 1/2 ≥ |λ1| > 1/4 and |λ1| > |λi |,
for all k > 2. Note that in this case, r = −2 again. The second choice leads to equal
subdominant eigenvalues β = λ1 = 1/2. In this case, r = −2 cos θk . The expressions

123



20 Constr Approx (2015) 42:1–29

(a) (b)

(c) (d)
Fig. 4 a K = N2(0, R7); b N2

2 (0, R5); c annular part of characteristic map in one sector; d control net of
a triangle patch

for the subdominant eigenvectors are v1j = sin jθk and v
β
j = cos jθk ; i.e., they form

a half of a regular 2k-gon.
The choice of γ = 1/2−1/4 cos θk , although being slightlymore complex, appears

to be more natural. It has the additional advantage of coinciding with the regular value
γ = 3/8 for k = 3.
Case k = 2. In this case, the eigenvalues are 1, 1/2, 1/4, 1/8, 1/16, and λ1 = γ . Thus,
we need to pick 1 > γ > 1/4 to get the same eigenvectors as in the case k > 2. We
observe that the choice of γ = 1/4 also results in a C1 surface, although the behavior
of the scheme becomes less desirable.
Case k = 1. The subdominant eigenvalues are 1/2 and 1/4.

Proposition 5.1 Let β = 1/2, α = 1/8, δ = 1/8, and γ = 1/2 − 1/4 cos θk . Let

 be the characteristic map which is defined by the eigenvectors of β = 1/2 and
λ1 = 1/4 cos(θk) + γ = 1/2 . Then the conditions of Theorem 4.4 are satisfied.

Proof We consider the 2-neighborhood of the k-regular complex with boundary K =
N2(0, Rk) shown in Fig. 4a. The control points p ∈ P(K ,R2) are given by the
eigenvector data of the eigenvectors corresponding to 1/2:
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We subdivide twice as seen in Fig. 4b. The R2 triangular patch of the red triangles
shown for one sector in Fig. 4c are given by:

f [p](u, v, w) = B · Q · P, where

B =
(
u4, 4u3v, 4u3w, 6u2v2, 12u2vw, 6u2w2,

4uv3, 12uv2w, 12uvw2, 4uw3, v4, 4v3w, 6v2w2, 4vw3, w4
)

and Q is a 15 × 12 matrix given in [18] and P ∈ R12×2 such that Pi ∈ R2 is the
eigenvector data on the point i numbered as shown in Fig. 4d.

We have to consider the 12 triangles in each sector independently. Furthermore,
boundary sectors also need to be considered separately. The limit map behaves as if we
would extend the mesh by its mirror image over the boundary. We have to separately
check the following cases: (1) k = 1, (2) k = 2, (3) k = 3, i = 1 or 3, (4) k = 3, i = 2,
(5) k > 3, i = 3, . . . , k − 2, (6) k > 3, i = 2 or k − 1 (7) k > 3, i = 1 or k.

For each of the triangles, we compute the polynomial f [p](u, v, w) in Bernstein–
Bezier coordinates. To prove that a polynomial in Bernstein–Bezier coordinates is
positive on the given triangle we need to check that all the coefficients are positive.

1. In order to prove that there is no other element than 0 in the preimage 
−1(0),
we check that f 21 + f 22 > 0 in each triangle of each sector. Then by the scaling
property we know that

f1(t/2)
2 + f2(t/2)

2 = λ = 1/4
(
f1(t)

2 + f2(t)
2
)

> 0.

Since ‖
(t)‖ > 0 for all t 
= 0, we proved the first statement.
2. We compute the Jacobian

J [
] = ∂x f1∂y f2 − ∂x f2∂y f1 = (∂u f1 − ∂w f1) (∂v f2 − ∂w f2)

− (∂u f2 − ∂w f2) (∂v f1 − ∂w f1)

in each triangle and see that the coefficients of J (a polynomial in Bezier coordi-
nates) are all of the same sign independent of k and i . Therefore the polynomial
has the same sign everywhere. By the scaling property, we can extend it from the
ring to the sector. The scaling property for the Jacobian is

J [
](t/2) = 4βλ1 J [
](t) = J [
](t).

3. We take the 2 triangles in the third ring that form the boundary to the second ring
and find the expression of the polynomial that describes the boundary curve. We
want to show that the angle grows monotonically, and since the angle is given by
arctan( f1/ f2), it is enough to show that f1/ f2 grows monotonically. We compute
f ′
1 f2 − f ′

2 f1, the numerator of the derivative of f1/ f2, and observe that all coef-
ficients have the same sign. Since the denominator is a square, it is also positive.
We conclude that f1/ f2 is monotonic, and therefore the angle is monotonic, and in
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each sector the curves cannot intersect. Neither there can be intersections between
sectors as the curves limit lies strictly within their sectors.

4. As box spline surfaces lie strictly within the convex hull of their control net, the
image of the characteristic map has to lie in the upper half-plane.

All explicit checks were done in Maple. �	

We can now conclude by Theorem 4.4 that the characteristic map is injective. It is
also regular, as the Jacobian of the characteristic map has constant sign everywhere.
This means that in order for the scheme to be C1-smooth with smooth boundary, we
have to check the 4th condition of Theorem 4.3, since the subdominant eigenvalues
are equal and span a 2-dimensional eigenspace. Since the boundary curve is a B-spline
interpolating points on the x-axes, we get that ∂1 f1 > 0 and ∂1 f2 = 0, giving us the
condition for a scheme that is C1-smooth with smooth boundary.

Coefficients for corner vertices Separate rules have to be defined for corners. We
choose the scheme interpolating the corner vertices, which results in αk = 0. As a
consequence, the block A00 has a double eigenvalue β. For a corner, the tangent plane
is defined by the two tangents at the non-C1-continuous point of the boundary. We
leave all other parameters free, which means the rules of Hoppe et al. [7] are included.
If β has multiplicity 3 with Jordan blocks of size 2 and 1, which happens when it is an
eigenvalue of A11, the scheme is not likely to be tangent plane continuous; we assume
that this is not the case. Otherwise the eigenvectors of interest can be found explicitly
for various values of r = (γ − β)/δ as in Table 1, second column.

It is easy to see that positive values of r are of little interest to us, because the compo-
nents of the vectors alternate signs in these cases and are likely to produce nonregular
characteristic maps. For r ≤ −2, we are guaranteed to get a convex configuration of
control points for the characteristic map, because the characteristic map interpolates
the boundary curve. In the case r ∈ (−2, 0), the eigenvectors corresponding to the
eigenvalue β can be taken to be sin iθ , sin (i − k) θ , where θ is such that r = −2 cos θ .
This means that the corner is convex if θ < θk , and concave otherwise. More explic-
itly, the convexity condition is r = −2 cos θ < −2 cos θk or γ < β − 2δ cos θk . Note
that the same condition is required for the double eigenvalue β to be subdominant.
We conclude that for r < 0, the subdivision scheme can generate only convex smooth
corners. One can show that this is true even if we do not assume that α = 0. In the
case k = 1, one can also immediately see that the corner produced by subdivision is
convex.

Concave corner vertices We assume that k > 1. It is impossible to have stationary
subdivision rules for a triangular mesh producing a concave corner for k = 1. As
we have observed, concave corners cannot be produced simply by changing some
of the coefficients using the same stencil. One can also show that no scheme with
positive coefficients can produce interpolating smooth concave corners. It is possible to
construct rules to produce C1-continuous surfaces with concave corners, but negative
coefficients and larger support have to be used.
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Our approach to deriving the rules is basedon the idea of reductionof themagnitudes
of all eigenvalues, excluding 1 and β = 1/2. It turns out that this approach leads to
particularly simple rules for subdivision.

For the scheme to produce smooth surfaces at a corner vertex, the eigenvectors xβ ,
x ′β of the eigenvalue β = 1/2 should be subdominant. If we choose these eigenvectors
to be xβ = [0, 0, 1, vβ

1 / sin kθ, . . .], x ′β = [0, 1, 0, v′β
1 / sin kθ . . .], corresponding left

eigenvectors are very simple: l = [−1, 0, 1, 0, . . .], l ′ = [−1, 1, 0, 0, . . . 0]. The left
eigenvector l0 for the eigenvalue 1 is [1, 0, . . . 0]. Consider the following modification
of the vector of control points:

p̃ = (1 − s)p + s
(
(l0, p)x0 + (l, p)xβ + (l ′, p)x ′β)

,

where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1. Substituting expressions for
the left eigenvectors, we get

p̃ = (1 − s)p + s
(
p0x0 + (

p10 − p0
)
xβ + (

p1k − p0
)
x ′β)

. (5.2)

The first entry of p is called p0, and the second and third are called p1k and p10. The
effect of this transformation is to scale all components of p in the eigenbasis of the
subdivision matrix by (1− s) except those corresponding to the eigenvalues 1 and β.
If repeated at each subdivision step, it is equivalent to scaling all eigenvalues except
1 and β by (1 − s).

To simplify the rules, we observe that it is unnecessary to scale multiple eigenvalues
1/16 and 1/8 of the lower-right blocks of the subdivision matrix. If we apply the rules
(5.2), not to the whole vector of control points p but to a truncated part, we can write

p̃ = T p = diag(M, I )p,

where M is such that equation (5.2) is satisfied for the first vertices. Multiplying this
matrix by the subdivision matrix on the left, eigenvalues are by construction 1, 1/2,
(1 − s) (2δ cos jθk + γ ), j = 1 . . . k − 1, and 1/8 and 1/16.

By choosing the value of s so that (1−s) (2δ cos θk + γ ) < 1/2, we can ensure that
β = 1/2 is the subdominant eigenvalue. The parameter s can be viewed as a tension
parameter for the corner, which determines how flat the surface is near the corner.

We consider the case of convex and concave corners together:

Proposition 5.2 Let β = 1/2, α = 0, δ = 1/8 and γ = 1/2 − 1/4 cos(θ), where
0 < θ < π for convex corners and π < θ < 2π for concave corners. Then 
, the
characteristic map, is defined by the eigenvectors corresponding to β = 1/2. Then
conditions of Theorem 4.4 are satisfied.

Proof The proof is done exactly the same way as in the noncorner case. The charac-
teristic map we need to check has a parameter θ . We can, however, still verify that for
any θ in the given range, we obtain positive coefficients. In the case of the concave
corner, the convex hull of the control points no longer lies in the upper half-plane.
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Fig. 5 Modified Catmull–Clark subdivision rules for meshes with boundary [1]

However, we can look at the sectors individually and see that the limit function does
not span the whole complex plane. �	
With this proposition, we have established that the characteristic map is injective and
regular. Now we need to check condition 4 in Theorem 4.3. Since the boundary of
the control mesh away from 0 is a straight line for k > 1, the limit curve which is a
B-spline is also a straight line. This means it satisfies the condition.

5.2 Catmull–Clark Scheme

The analysis of the eigenstructure of the boundary subdivisionmatrices becomesmore
complex in the case of the Catmull–Clark scheme. Using the Catmull–Clark scheme
as an example, we describe a technique that can be used to analyze schemes with
larger support.

The subdivision stencils are shown in Fig. 5. We have 6 parameters α, β, γ, δ1, δ2,

η1, η2, all dependent on the valence k, but we omit the subscript. We show some of
the eigenstructure analysis, but also no scheme from this class can generate surfaces
with smooth concave corners.

Subdivision matrix The subdivisionmatrix for a given valence k has a somewhat more
complex structure for the Catmull–Clark scheme (see also [6]). In the block form, the
matrix can be written as

⎛

⎜⎜⎜⎜⎝

A00

A10
1
8 I2

A20 A21 A22

A30 A31 A32
1
64 Ik

⎞

⎟⎟⎟⎟⎠
,
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where the diagonal blocks are

A00 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2α α α

1 − β β

1 − β β

ε1 δ1 γ δ1 δ2 δ2
ε1 δ1 γ δ1 δ2 δ2

· · · · ·
ε1 δ1 δ1 γ δ2 δ2
ε2 η2 η2 η1
ε2 η2 η2 η1
· · · ·
· · · ·
ε2 η2 η2 η1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A22 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
32 0 1

64
1
64

3
32

1
64

1
64· · ·

3
32

1
64

1
64 0

0 1
16

1
16

1
16

1
16 ·

· ·
1
16

1
16

1
16

1
16

1
16

1
16· ·

1
16 ·
0 1

16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that all eigenvalues of A22 are guaranteed to be less than 1/8 (the sum of the
magnitudes of the entries on any line does not exceed 1/8). Thus, only the eigenvalues
of A00 are of interest to us. Next, we observe that the matrix A00 itself has two blocks
on the diagonal; the first 3× 3 block is identical to the block that we have considered
for the Loop scheme; it has eigenvalues 1, β and β −2α. The remaining block denoted
by Ā00 is the one we need to consider.

Transformation of the subdivision matrix Assume k > 1. The eigenvalues and eigen-
vectors of Ā00 can be found directly from the recurrences derived from the subdivision
rules. We take a somewhat different approach, similar to the DFT analysis used for
interior extraordinary vertices. This approach has greater generality and can poten-
tially be applied to analyze subdivision schemes with larger supports. To find the
eigenvalues of Ā00, we introduce a new set of control points. We replace the k control
points of type 2, p2i , i = 0 . . . k−1, (convention as in Fig. 6) with k+1 control points
p̃2i satisfying
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Fig. 6 Left naming convention, right ordering

p2i = 1

2

(
p̃2i + p̃2i+1

)
(5.3)

for i = 0 . . . k − 1. We define the k + 1 control points of type 1: p̃1i = p1i . Note that
we increase the number of control points. These equations clearly do not define the
new control points uniquely, but an arbitrary choice of solution is adequate for our
purposes. In matrix form, the relation between the original vector of control points of
types 1 and 2 and the transformed vector p̃ can be written as p = T p̃, where T is a
2k + 1 × 2k + 2 matrix.

In addition, we define the subdivision rules for the new control points. We choose
the rules for p̃ in such a way that the relations (5.3) also hold after the subdivision
rules are applied to p and p̃. Let S̃ be the subdivision matrix for p̃. Then our choice
of rules means that

ST p̃ = T S̃ p̃.

If λ is an eigenvalue of S̃, then S̃ p̃λ = λ p̃λ, where p̃λ is the corresponding eigenvector,
and

ST p̃λ = T S̃ p̃λ = λT p̃λ.

Therefore, λ is also an eigenvalue of S, unless T p̃λ = 0. Note that the null-space of T
has dimension 1 and contains the vector p1i = 0, p̃2i = (−1)i . Hence a complete set of
eigenvalues and eigenvectors of S can be obtained from eigenvalues and eigenvectors
of S̃ once we exclude the eigenvalue corresponding to this vector, if it happens to be
an eigenvector.

We choose the subdivision rule for p̃2i as follows:

[
S̃ p̃

]2
i

= ε2 p
0 + 2η2 p

1
i + η1 p̃

2
i .
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In terms of new control points, the rule for control points of type 1 becomes

[Sp]1i = ε1 p
0 + δ1

(
p1i−1 + p1i+1

)
+ γ p1i + δ2

2

(
p̃2i−1 + 2 p̃2i + p̃2i+1

)
.

The matrix Ā00 is transformed into

Ã00 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ δ1
δ2
2 δ2

δ2
2

δ1 γ δ1
δ2
2 δ2

δ2
2· · · · · ·

δ1 γ δ2
2 δ2

δ2
2

η1
2η2 η1

2η2 η1
· η1
2η2 η1

η1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that p̃20 and p̃1k depend on p10 and p1k , which are outside this matrix.
Rearranging the entries, we get the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
η1

δ2
2 γ δ1 δ2

δ2
2

δ1 γ δ1
δ2
2 δ2

δ2
2· · · · · ·

δ2 δ1 γ δ2
2 δ2

2η2 η1
2η2 η1

· η1
2η2 η1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix has a double eigenvalue η1. The rest of the eigenvalues are eigenvalues
of the matrix A consisting only of the 4 tridiagonal sub-blocks. We have already
observed that three diagonal matrices have eigenvectors independent from the entries
of the matrix. Denote by H the matrix with entries sin i jθk , with θk = π/k as before,
i, j = 1 . . . k−1. This matrix has a similar role in the analysis of subdivision matrices
of boundary vertices as the DFT matrix has in the analysis of subdivision matrices
of interior vertices. The transform H is defined as diag (H, H). The inverse of this
matrix isH−1 = diag ((2/k)H, (2/k)H). Then

HAH−1 = 2

k

(
H 0
0 H

) (
B00 B01
B10 B11

) (
H 0
0 H

)
= 2

k

(
HB00H HB01H
HB10H HB11H

)
,
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and each block HBi j H is a diagonal matrix. Finally, we apply a permutation matrix
such that the matrix A is reduced to the block diagonal form

PHAH−1P−1 =

⎛

⎜⎜⎝

B(1)
B(2)

·
B(k − 1)

⎞

⎟⎟⎠ ,

where the blocks B(i), i = 1 . . . k − 1, are 2 × 2 matrices

B(i) =
⎛

⎝γ + 2δ1 cos
iπ

k
δ2

(
1 + cos

iπ

k

)

2η2 η1

⎞

⎠ .

This allows us to compute the eigenvectors for k 
= 1. For k = 1, we can compute
the eigenvalues and eigenvectors directly. We can now perform the whole analysis
just as in the Loop case. In the case of a smooth boundary vertex choosing α =
1/8, β = 1/2, γ = 3/8 − 1/4 cos θk, η1 = η2 = 1/4, δ1 = δ2 = 1/16, we get a
scheme that is C1-smooth with C1-smooth boundary. For the corner vertices, we pick
α = 0, β = 1/2, γ = 3/8− 1/4 cos θ and the rest as above, and we get a scheme that
is C1-smooth with piecewise C1-smooth boundary with nondegenerate corners. For
the concave corner we have to do the same trick as in the Loop case.

6 Conclusions

We have presented constructive sufficient conditions for tangent plane continuity and
C1-continuity for surfaces with boundary. We have demonstrated for the two most
commonly used schemes that the modified rules of [1] for Loop and Catmull–Clark
subdivision schemes satisfy sufficient conditions for C1-continuity. The techniques
we used to analyze the Catmull–Clark subdivision matrix structure can be used for
other schemes on surfaces with boundary.
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