Here is an example solution of a variation of HW1 problem 4, where we do a first derivative instead of a second:

1 Sample Problem

The derivative of a function \(f(x) \) at a point \(x_0 \) can be calculated using finite differences, for example the first-order one-sided difference

\[
 f'(x = x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}
\]

or the second-order centered difference

\[
 f'(x = x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h},
\]

where \(h \) is sufficiently small so that the approximation is good.

1. [10pts] Consider a simple function such as \(f(x) = \cos(x) \) and \(x_0 = \pi/4 \) and calculate the above finite differences for several \(h \) on a logarithmic scale (say \(h = 2^{-m} \) for \(m = 1, 2, \cdots \)) and compare to the known derivative. For what \(h \) can you get the most accurate answer?

2. [10pts] Obtain an estimate of the truncation error in the one-sided and the centered difference formulas by performing a Taylor series expansion of \(f(x_0 + h) \) around \(x_0 \). Also estimate what the roundoff error is due to cancellation of digits in the differencing. At some \(h \), the combined error should be smallest (optimal, which usually happens when the errors are approximately equal in magnitude). Estimate this \(h \) and compare to the numerical observations.

1.1 Sample Solution

Comments from me on what is important are in square brackets and italic.

1.1.1 Part 1: Writing and Executing the Code

The first derivative is computed in the Matlab code [FirstDeriv.m] with default double precision and in the Matlab code [FirstDerivSP.m] with single precision arithmetic. The results are shown in Fig. [Crucial here is to use log-log scaling of both axes because both vary over many orders of magnitude, to show results with symbols and theory with lines, with different colors and shading and a clear legend so one can tell what is what.]

[In addition to just showing the figure crucial is to interpret the results, i.e., tell us what you see/learn from the figure. This will always count for at least one half of the points – just writing code and plotting things does not constitute scientific computing though it is an essential part of it!] We see that for the one-sided difference we obtain the smallest error when \(h \approx 10^{-4} \) for single precision (relative error of \(10^{-4} \), i.e., 4 digits of accuracy), and when \(h \approx 10^{-8} \) for double precision (8 digits of accuracy). For the two-sided difference we obtain minimal error for \(h \approx 10^{-2} \) for single precision (relative error of \(10^{-6} \), i.e., 6 digits of accuracy), and when \(h \approx 10^{-5} \) for double precision (11-12 digits of accuracy).
1.1.2 Part 2: Analysis of the Results

There are two sources of numerical error: truncation error of replacing the limit in the definition of the derivative, and roundoff error from performing the calculation with finite precision arithmetic.

The truncation error here is obtained from a Taylor series expansion, to get, for the one-sided difference:
\[f_1 = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{h f'(x_0) + h^2 f''(x_0)/2 + O(h^3)}{h} = f'(x_0) - f''(x_0) \frac{h}{2} + O(h^2). \]

The magnitude of the relative error can be estimated to be of \(O(h) \),

\[|\epsilon_t| = \frac{|f_1 - f'(x_0)|}{|f'(x_0)|} \approx \frac{|f''(x_0)| h}{|f'(x_0)| \frac{h}{2}} = \frac{h}{2}. \]

and the absolute error is of the same order. For the two-sided difference, the truncation error is much smaller,

\[f_2 = \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0) - f''(x_0) \frac{h^2}{6} + O(h^3), \]

so now the relative error can be estimated to be of \(O(h^2) \),

\[|\epsilon_t| = \frac{|f_2 - f'(x_0)|}{|f'(x_0)|} \approx \frac{|f''(x_0)| h^2}{|f'(x_0)| \frac{h^2}{6}} = \frac{h^2}{6}. \]

A rough estimate [Remember that factors of order 2 or so are not important here, just an estimate is good enough] of the roundoff error is obtained by noting that the numerator is computed with absolute error of about \(u \), where \(u \) is the machine precision or roundoff unit (\(\sim 10^{-16} \) for double precision). The actual value of the numerator is close to \(h f'(x = x_0) \), so the magnitude of the relative error in the numerator is on the order of

\[\epsilon_r \approx \left| \frac{u}{h f'(x_0)} \right| \approx \frac{u}{h}, \]

since \(|f'(x = x_0)| \approx 0.7 \) is of order unity. [Crucial here to show that you understood what the source of the problem is: cancellation of digits] We see now that due to the cancellation of digits in subtracting nearly identical numbers, we can get a very large relative error when \(h \) is small. The relative truncation error of the whole calculation is thus dominated by the relative error in the numerator, and is close to \(\epsilon_r \).

Let's consider first the one-sided difference. [I will not give the details for the centered one but your report of course should.] The magnitude of the overall relative error is approximately the sum of the truncation and roundoff errors,

\[\epsilon \approx \epsilon_t + \epsilon_r = \frac{h}{2} + \frac{u}{h}. \]

[The important lesson here is that different errors dominate in different regimes, and to show you understood which one] We see that for large \(h \) the truncation error dominates (first term) but for small \(h \) the roundoff error (second term) dominates. So we cannot take \(h \) either too large or too small. For double precision, \(u \sim 10^{-16} \). The minimum error is achieved for (just minimize \(\epsilon \) w.r.t. \(h \) by taking first derivative and setting to zero)

\[h \approx h_{\text{opt}} = \sqrt{2u} \approx \sqrt{2 \cdot 10^{-16}} \approx 10^{-8}, \]

and the actual value of the smallest possible relative error is

\[\epsilon_{\text{opt}} = \frac{h_{\text{opt}}}{2} + \frac{u}{h_{\text{opt}}} = \sqrt{2u} = h_{\text{opt}} \approx 10^{-8}. \]

These estimates agree with the numerical results shown in Fig. [1] Just replace \(u \approx 6 \cdot 10^{-8} \) for single precision to get that \(h_{\text{opt}} = \epsilon_{\text{opt}} \approx 10^{-4}, \) in agreement with our numerical results.