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Mathematical Background
Formulation

@ Optimization problems are among the most important in engineering
and finance, e.g., minimizing production cost, maximizing profits,
etc.
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where x are some variable parameters and f : R” — R is a scalar
objective function.
@ Observe that one only need to consider minimization as

max f(x) = — min [~f(x)]

@ A local minimum x* is optimal in some neighborhood,
f(x)<f(x) ¥x st. [x—x*|<R>0.

(think of finding the bottom of a valley)
e Finding the global minimum is generally not possible for arbitrary
functions (think of finding Mt. Everest without a satelite).
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Mathematical Background

Connection to nonlinear systems

@ Assume that the objective function is differentiable (i.e., first-order
Taylor series converges or gradient exists).

@ Then a necessary condition for a local minimizer is that x* be a
critical point

g(x") = Vuf (x") = {g; (x*)}i 0

which is a system of non-linear equations!

@ In fact similar methods, such as Newton or quasi-Newton, apply to
both problems.

@ Vice versa, observe that solving f (x) = 0 is equivalent to an
optimization problem

min [f (x)Tf(x)}

X

although this is only recommended under special circumstances.

A. Donev (Courant Institute) Lecture VII 10/17/2019 4/21



Mathematical Background

Sufficient Conditions

@ Assume now that the objective function is twice-differentiable (i.e.,
Hessian exists).

@ A critical point x*is a local minimum if the Hessian is positive
definite
H(x*) = V2f (x*) = 0
which means that the minimum really looks like a valley or a convex
bowl.

@ At any local minimum the Hessian is positive semi-definite,
V2f (x*) = 0.

@ Methods that require Hessian information converge fast but are
expensive.
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Mathematical Background
Mathematical Programming

@ The general term used is mathematical programming.
@ Simplest case is unconstrained optimization
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where x are some variable parameters and f : R” — R is a scalar

objective function.
e Find a local minimum x*:

f(x*)<f(x) ¥x st [x—x"|<R>0.

(think of finding the bottom of a valley).

e Find the best local minimum, i.e., the global minimumx*: This is
virtually impossible in general and there are many specialized
techniques such as genetic programming, simmulated annealing,

branch-and-bound (e.g., using interval arithmetic), etc.
@ Special case: A strictly convex objective function has a unique

local minimum which is thus also the global minimum.
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Mathematical Background
Constrained Programming

@ The most general form of constrained optimization

in f
iy )

where X C R" is a set of feasible solutions.

@ The feasible set is usually expressed in terms of equality and
inequality constraints:

h(x)

0
g(x) <0
@ The only generally solvable case: convex programming

Minimizing a convex function f(x) over a convex set X: every local
minimum is global.

If f(x) is strictly convex then there is a unique local and global
minimum.
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Mathematical Background
Special Cases

@ Special case of convex programming is linear programming;:

MiNycRn {ch}
s.t. Ax <b

@ The feasible set here is a convex polytope (polygon, polyhedron) in
R", consider for now the case when it is bounded, meaning there are
at least n+ 1 constraints.

@ The optimal point is a vertex of the polyhedron, meaning a point
where (generically) n constraints are active,

*
Aactx = bact-

@ Solving the problem therefore means finding the subset of active
constraints:
Combinatorial search problem, solved using the simplex algorithm
(search along the edges of the polytope).
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Smooth Unconstrained Optimization

Necessary and Sufficient Conditions

@ A necessary condition for a local minimizer:
The optimum x* must be a critical point (maximum, minimum or
saddle point):

of
5(x) = Vs () = { 5 ()| —0.
Xi i
and an additional sufficient condition for a critical point x* to be a
local minimum:
The Hessian at the optimal point must be positive definite,

Hoe) = 92 () = {-2F eyl o
x*) = Vif (x*) = Pt . )

which means that the minimum really looks like a valley or a convex
bowl.
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Smooth Unconstrained Optimization

Direct-Search Methods

e A direct search method only requires f(x) to be continuous but
not necessarily differentiable, and requires only function evaluations.

@ Methods that do a search similar to that in bisection can be devised
in higher dimensions also, but they may fail to converge and are
usually slow.

@ The MATLAB function fminsearch uses the Nelder-Mead or
simplex-search method, which can be thought of as rolling a simplex
downhill to find the bottom of a valley. But there are many others
and this is an active research area.

o Curse of dimensionality: As the number of variables
(dimensionality) n becomes larger, direct search becomes hopeless
since the number of samples needed grows as 2"!
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Smooth Unconstrained Optimization

Minimum of 100(xx — x?)? + (a — x1)? in MATLAB

% Rosenbrock or 'banana' function:
a = 1;
banana = ©@(x) 100%(x(2)—x(1)"2)"2+(a—x(1))"2;

% This function must accept array arguments!
banana_xy = ©@(x1,x2) 100%(x2—x1.72)."24(a—x1)."2;

[x,y] = meshgrid(linspace(0,2,100));
figure(1); ezsurf(banana_xy, [0,2,0,2])
figure (2); contourf(x,y,banana_xy(x,y),100)

% Correct answers are x=[1,1] and f(x)=0

[x,fval] = fminsearch(banana, [-1.2, 1],

optimset (' TolX',1e—8))
X = 0.999999999187814 0.999999998441919
fval = 1.099088951919573e—18
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Smooth Unconstrained Optimization
Descent Methods

@ Finding a local minimum is generally easier than the general problem
of solving the non-linear equations

g(x*)=Vif(x)=0

o We can evaluate f in addition to V,f.
o The Hessian is positive-(semi)definite near the solution (enabling
simpler linear algebra such as Cholesky).

o If we have a current guess for the solution x*, and a descent
direction (i.e., downhill direction) d:

f (x*+ad®) < £ (x¥) forall 0 < & < amax,
then we can move downhill and get closer to the minimum (valley):
KK = Xk 4o, dk,

where ax > 0 is a step length.
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Smooth Unconstrained Optimization

Gradient Descent Methods

@ For a differentiable function we can use Taylor's series:
(X +ad) ~ £ (x) +ai [ (V) d*]

@ This means that fastest local decrease in the objective is achieved
when we move opposite of the gradient: steepest or gradient
descent:

dk = —VvFf (xk) = —g.

@ One option is to choose the step length using a line search
one-dimensional minimization:

ag = argmin f (xk + adk) ,
(0%

which needs to be solved only approximately, see Wolfe conditions
on inexact line search in Wikipedia for details.
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Smooth Unconstrained Optimization
Steepest Descent

@ Assume an exact line search was used, i.e., ax = arg ming ¢(a) where

p(a) = f (x* + ad¥).

#(a) = 0= [VF (x*+ad¥)] " d*.
@ This means that steepest descent takes a zig-zag path down to the
minimum.
@ Second-order analysis shows that steepest descent has linear
convergence with convergence coefficient
1—r h )\min (H) 1
~ , where r= = )
1+r Amax (H)  k2(H)

inversely proportional to the condition number of the Hessian.

@ Steepest descent can be very slow for ill-conditioned Hessians: One
improvement is to use conjugate-gradient method instead.
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Smooth Unconstrained Optimization
Newton's Method

@ Making a second-order or quadratic model of the function:
1
f(x* + Ax) = £(x*) + [g (x*)] T (Ax) + 5 (Ax)" [H (x9)] (Ax)
we obtain Newton’s method:

g(x+Ax) =Vf(x+Ax)=0=g+H(Ax) =

Ax=—-Hlg = x*T—xk_[H(x)]" [g(x})].

@ Note that this is identical to using the Newton-Raphson method for
solving the nonlinear system Vyf (x*) = 0.

@ At the minimum H (x*) = 0 so one can use Cholesky factorization
to compute [H (xk)r1 [g (xk)] sufficiently close to the minimum.
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Smooth Unconstrained Optimization

Problems with Newton's Method

e Newton's method is exact for a quadratic function (this is another
way to define order of convergence!) and converges in one step when
H=H (xk) = const.

@ For non-linear objective functions, however, Newton's method requires
solving a linear system every step: expensive.

@ It may not converge at all if the initial guess is not very good, or may
converge to a saddle-point or maximum: unreliable.

@ All of these are addressed by using variants of quasi-Newton and
trust-region methods:

XKLk 1 Axk — xk - (Bk)_lg (xk) )

where the step length 0 < e < 1 and B is an approximation to
the true Hessian.
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Smooth Unconstrained Optimization

Quasi-Newton Methods

@ The approximation of the Hessian in quasi-Newton methods is built
using low-rank updates (recall Woodbury formula from Homework
2) to estimate the Hessian using finite differences with a small cost
per step.

@ The Hessian estimate satisfies the secant condition

g (Xk+1) -g (Xk) _ yk _ BkJrlek.

@ A popular rank-2 update of the Hessian is the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm:

y o) k()T

Bk+1:Bk+ 2 . = ,
()T Bk ()T Ak

where zk = BXAxk.

@ This update is symmetric and with careful line search it ensures that
the Hessian estimate remains symmetric positive semi-definite
so Cholesky factorization (or conjugate gradient) can be used.
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Equality Constrained Optimization
Penalty Approach

@ The idea is the convert the constrained optimization problem:

Mingegrn f(X)
st. h(x)=0

into an unconstrained optimization problem.

@ Consider minimizing the penalized function
La(x) = £(x) + o |h(x)]3 = f(x) +a[h(x)]" [(x)],

where o > 0 is a penalty parameter.
@ Note that one can use penalty functions other than sum of squares.

o If the constraint is exactly satisfied, then £,(x) = f(x).
As o — oo violations of the constraint are penalized more and more,
so that the equality will be satisfied with higher accuracy.
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Equality Constrained Optimization
Penalty Method

@ The above suggest the penalty method (see homework):
For a monotonically diverging sequence oy < aip < -- -, solve a
sequence of unconstrained problems

X = x (ax) = argmin { £, (x) = £(x) + o [W(x)] [h(x)]}
and the solution should converge to the optimum x*,
xk = x* = x (ax = 00).

o Note that one can use xk~1

Newton's method.

as an initial guess for, for example,

@ Also note that the problem becomes more and more ill-conditioned
as o grows.
A better approach uses Lagrange multipliers in addition to penalty
(augmented Lagrangian).
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Conclusions
Conclusions/Summary

@ Optimization, or mathematical programming, is one of the most
important numerical problems in practice.

@ Optimization problems can be constrained or unconstrained, and
the nature (linear, convex, quadratic, algebraic, etc.) of the functions
involved matters.

e Finding a global minimum of a general function is virtually
impossible in high dimensions, but very important in practice.

@ An unconstrained local minimum can be found using direct search,
gradient descent, or Newton-like methods.

@ Equality-constrained optimization is tractable, but the best method
depends on the specifics.

o Constrained optimization is tractable for the convex case, otherwise
often hard, and even NP-complete for integer programming.
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