
Scientific Computing:
Ordinary Differential Equations

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2019

Nov 21st and Dec 5th, 2019

A. Donev (Courant Institute) Lecture XI 11/21/2019 1 / 43

Outline

1 Initial Value Problems

2 One-step methods for ODEs

3 MATLAB ode suite

4 Stability

5 Conclusions

A. Donev (Courant Institute) Lecture XI 11/21/2019 2 / 43

Initial Value Problems

Initial Value Problems

We want to numerically approximate the solution to the ordinary
differential equation

dx

dt
= x ′(t) = ẋ(t) = f (x(t), t),

with initial condition x(t = 0) = x(0) = x0.

This means that we want to generate an approximation to the
trajectory x(t), for example, a sequence x(tk = k∆t) for
k = 1, 2, . . . ,N = T/∆t, where ∆t is the time step used to
discretize time.

If f is independent of t we call the system autonomous.

Note that second-order equations can be written as a system of
first-order equations:

d2x

dt2
= ẍ(t) = f [x(t), t] ≡

{
ẋ(t) = v(t)

v̇(t) = f [x(t), t]

A. Donev (Courant Institute) Lecture XI 11/21/2019 4 / 43

Initial Value Problems

Relation to Numerical Integration

If f is independent of x then the problem is equivalent to numerical
integration

x(t) = x0 +

∫ t

0
f (s)ds.

More generally, we cannot compute the integral because it depends
on the unknown answer x(t):

x(t) = x0 +

∫ t

0
f (x(s), s) ds.

Numerical methods are based on approximations of f (x(s), s) into
the “future” based on knowledge of x(t) in the “past” and “present”.

A. Donev (Courant Institute) Lecture XI 11/21/2019 5 / 43

Initial Value Problems

Convergence

Consider a trajectory numerically discretized as a sequence that
approximates the exact solution at a discrete set of points:

x (k) ≈ x(tk = k∆t), k = 1, . . . ,T/∆t.

A method is said to converge with order p > 0, or to have order of
accuracy p, if for any finite T for which the ODE has a solution,∣∣∣x (k) − x(k∆t)

∣∣∣ = O(∆tp) for all 0 ≤ k ≤ T/∆t.

All methods are recursions that compute a new x (k+1) from previous
x (k) by evaluating f (x) several times. For example, one-step
methods have the form

x (k+1) = G
(
x (k),∆t; f

)
.

A. Donev (Courant Institute) Lecture XI 11/21/2019 6 / 43

Initial Value Problems

Consistency

The local trunction error (LTE) of a method is the amount by which
the exact solution does not satisfy the numerical scheme at the end of
the time step if started from the correct solution x (k) = x (k∆t):

ek = x [(k + 1) ∆t]− G [x(k∆t),∆t; f] ,

A method is consistent with order q > 1 if |ek | = O(∆tq).

The global truncation error is the actual error

Et=k∆t =
∣∣∣x (k) − x(t = k∆t)

∣∣∣.
Numerical analysis question: Can the global error be bounded by
O (∆tp) if the local one is O(∆tq)?

A. Donev (Courant Institute) Lecture XI 11/21/2019 7 / 43

Initial Value Problems

Propagation of errors

Crude estimate: If one makes an error O(∆tq) at each time step, the
global error after T/∆t time steps can become on the order of∣∣∣x (k) − x(k∆t)

∣∣∣ = O

(
∆tq · T

∆t

)
= O

(
∆tq−1

)
= O(∆tp),

and we must have p = q − 1 > 0 for convergence.

This result is often the right one, but it has a hidden assumption that
errors made at previous steps do not grow but rather stay of the same
order so they can be added.

In practice, errors made in previous time steps will either grow or
shrink with time. If they grow “too fast” we are in trouble.

So we arrive for the first time at a recurring theme: Convergence
requires stability in addition to consistency. We discuss stability
later on, after we give some basic methods for solving ODEs.

A. Donev (Courant Institute) Lecture XI 11/21/2019 8 / 43

One-step methods for ODEs

Euler’s Method

Assume that we have our approximation x (k) and want to move by
one time step:

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f (x(s), s) ds.

The simplest possible thing is to use a piecewise constant
approximation:

f (x(s), s) ≈ f (x (k)) = f (k),

which gives the forward Euler method

x (k+1) = x (k) + f (k)∆t.

This method requires only one function evaluation per time step.

A. Donev (Courant Institute) Lecture XI 11/21/2019 10 / 43

One-step methods for ODEs

Euler’s Method

Scheme: x (k+1) − x (k) − f (k)∆t = 0

The local trunction error is easy to find using a Taylor series
expansion:

ek = x [(k + 1) ∆t]− x (k∆t)− f [x (k∆t)] ∆t =

= x [(k + 1) ∆t]− x (k∆t)−
[
x ′ (k∆t)

]
∆t =

x ′′(ξ)

2
∆t2,

for some k∆t ≤ ξ ≤ (k + 1) ∆t.

Therefore the LTE is O(∆t2), q = 2.

The global truncation error, however, is of order O(∆t), p = q + 1,
so this is a first-order accurate method.

A. Donev (Courant Institute) Lecture XI 11/21/2019 11 / 43

One-step methods for ODEs

Backward Euler

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds.

How about we use a piecewise constant-approximation, but based on
the end-point:

f [x(s), s] ≈ f (x (k+1)) = f (k+1),

which gives the first-order backward Euler method

x (k+1) = x (k) + f (x (k+1))∆t.

This implicit method requires solving a non-linear equation at
every time step, which is expensive and hard.
We will understand why implicit methods are needed when we
examine absolute stability later on.

A. Donev (Courant Institute) Lecture XI 11/21/2019 12 / 43

One-step methods for ODEs

Runge-Kutta Methods

Runge-Kutta methods are a powerful class of one-step methods
similar to Euler’s method, but more accurate.

As an example, consider using a trapezoidal rule to approximate the
integral

x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds ≈ x (k) +

∆t

2
[f (k∆t) + f ((k + 1) ∆t)] ,

x (k+1) = x (k) +
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1), t(k+1)

)]
which requires solving a nonlinear equation for x (k+1).

This is the simplest implicit Runge-Kutta method, usually called
the implicit trapezoidal method.

The local truncation error is O(∆t3), so the global error is
second-order accurate O(∆t2).

A. Donev (Courant Institute) Lecture XI 11/21/2019 13 / 43

One-step methods for ODEs

Midpoint/Trapezoidal Methods

Schemes that treat beginning and end of time step in a
symmetric fashion will lead to a cancellation of first-order error
terms in Taylor series and will thus be second order (Lesson: second
order is easy).
In addition to trapezoidal one can do implicit midpoint scheme:

x (k+1) = x (k) +
∆t

2
f

(
x (k) + x (k+1)

2
, t(k) +

∆t

2

)
Observe this is the same as trapezoidal for linear problems (why?).
In an explicit method, we would approximate x? ≈ x (k+1) first using
Euler’s method, to get the simplest explicit Runge-Kutta method,
usually called Heun’s or explicit trapezoidal method

x (k+1,?) =x (k) + f
(
x (k), t(k)

)
∆t

x (k+1) =x (k) +
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1,?), t(k+1)

)]
.

A. Donev (Courant Institute) Lecture XI 11/21/2019 14 / 43

One-step methods for ODEs

Explicit Midpoint

Explicit midpoint rule

x(k+ 1
2
,?) =x (k) + f

(
x (k), t(k)

) ∆t

2

x (k+1) =x (k) +
∆t

2
f

(
x(k+ 1

2
,?), t(k) +

∆t

2

)
.

Explicit midpoint/trapezoidal are a representative of a powerful class
of second-order methods called predictor-corrector methods:
Euler (forward or backward) method is the predictor, and then
(implicit or explicit) trapezoidal/midpoint method is the corrector.

One can also consider these as examples of multi-stage one-step
methods: the predictor is the first stage, the corrector the second.

A. Donev (Courant Institute) Lecture XI 11/21/2019 15 / 43

One-step methods for ODEs

Higher-Order Runge-Kutta Methods

The idea in RK methods is to evaluate the function f (x , t) several
times and then take a time-step based on an average of the values.

In practice, this is done by performing the calculation in stages:
Calculate an intermediate approximation x?, evaluate f (x?), and go
to the next stage.

The most celebrated Runge-Kutta methods is a four-stage
fourth-order accurate RK4 method based on Simpson’s rule for the
integral:

x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds

≈ x (k)+
∆t

6

[
f (x (k)) + 4f (x (k+1/2)) + f (x (k+1))

]
= x (k)+

∆t

6

[
f (k) + 4f (k+1/2) + f (k+1)

]
,

and we approximate 4f (k+1/2) = 2f (k+1/2;1) + 2f (k+1/2;2).

A. Donev (Courant Institute) Lecture XI 11/21/2019 16 / 43

One-step methods for ODEs

RK4 Method

f (k) = f
(
x (k)

)
, x (k+1/2;1),= x (k) +

∆t

2
f (k)

f (k+1/2;1) = f
(
x (k+1/2;1), t(k) + ∆t/2

)
x (k+1/2;2) = x (k) +

∆t

2
f (k+1/2;1)

f (k+1/2;2) = f
(
x (k+1/2;2), t(k) + ∆t/2

)
x (k+1;1) = x (k) + ∆t f (k+1/2;2)

f (k+1) = f
(
x (k+1;1), t(k) + ∆t

)
x (k+1) =x (k) +

∆t

6

[
f (k) + 2f (k+1/2;1) + 2f (k+1/2;2) + f (k+1)

]
A. Donev (Courant Institute) Lecture XI 11/21/2019 17 / 43

One-step methods for ODEs

Intro to multistep Methods

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds.

Euler’s method was based on a piecewise constant approximation
(extrapolation) of f (s) ≡ f [x(s), s].

If we instead integrate the linear extrapolation

f (s) ≈ f
(
x (k), t(k)

)
+

f
(
x (k), t(k)

)
− f

(
x (k−1), t(k−1)

)
∆t

(s − tk),

we get the second-order two-step Adams-Bashforth method

x (k+1) = x (k) +
∆t

2

[
3f
(
x (k), t(k)

)
− f

(
x (k−1), t(k−1)

)]
.

This is an example of a multi-step method, which requires keeping
previous values of f .

A. Donev (Courant Institute) Lecture XI 11/21/2019 18 / 43

MATLAB ode suite

In MATLAB

In MATLAB, there are several functions whose names begin with

[t, x] = ode(f , [t0, te], x0, odeset(. . .)).

ode23 is a second-order adaptive explicit Runge-Kutta method,
while ode45 is a fourth-order version (try it first).

ode23tb is a second-order implicit RK method.

ode113 is a variable-order explicit multi-step method that can
provide very high accuracy.

ode15s is a variable-order implicit multi-step method.

For implicit methods the Jacobian can be provided using the odeset
routine – very important!

A. Donev (Courant Institute) Lecture XI 11/21/2019 20 / 43

MATLAB ode suite

Rigid body motion

f u n c t i o n dy = r i g i d (t , y)
dy = z e r o s (3 , 1) ; % a column v e c t o r
dy (1) = y (2) ∗ y (3) ;
dy (2) = −y (1) ∗ y (3) ;
dy (3) = −0.51 ∗ y (1) ∗ y (2) ;
%−−−−−−−−−−−

opt s = ode s e t (’ RelTol ’ , 1 e−3 , ’ AbsTol ’ , [1 e−4 1e−4 1e−5]) ;
[T,Y] = ode45 (@ r i g i d , [0 12] , [0 1 1] , op t s) ;

p l o t (T,Y(: , 1) , ’ o−−r ’ , T,Y(: , 2) , ’ s−−b ’ , T,Y(: , 3) , ’ d−−g ’) ;
x l a b e l (’ t ’) ; y l a b e l (’ y ’) ; t i t l e (’ Re lTo l=1e−3 ’) ;

A. Donev (Courant Institute) Lecture XI 11/21/2019 21 / 43

MATLAB ode suite

van der Pol equation

r =10; % Try r=100
f = @(t , y) [y (2) ; r ∗(1 − y (1)ˆ2)∗ y (2) − y (1)] ;

f i g u r e (2) ; c l f
[T,Y] = ode45 (f , [0 3∗ r] , [2 1]) ;
p l o t (T,Y(: , 1) , ’ o−−r ’ , T,Y(: , 2) / r , ’ o−−b ’)
t i t l e ([’ ode45 (e x p l i c i t) n s t e p s = ’ , i n t 2 s t r (s i z e (T , 1))]) ;

f i g u r e (3) ; c l f
[T,Y] = ode15s (f , [0 3∗ r] , [2 0]) ;
p l o t (T,Y(: , 1) , ’ o−−b ’ , T,Y(: , 2) / r , ’ o−−r ’)
t i t l e ([’ ode15s (i m p l i c i t) n s t e p s = ’ , i n t 2 s t r (s i z e (T , 1))]) ;

A. Donev (Courant Institute) Lecture XI 11/21/2019 22 / 43

MATLAB ode suite

Stiff van der Pol system (r = 10)

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
ode45 (explicit) nsteps=877

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
ode15s (implicit) nsteps=326

A stiff problem is one where ∆t has to be small even though the solution
is smooth and a large ∆t is OK for accuracy.

A. Donev (Courant Institute) Lecture XI 11/21/2019 23 / 43

Stability

Zero Stability

Consistency is not enough — we must also examine error
propagation from one time step to another.
A method is called zero stable if for all sufficiently small but finite
∆t, introducing perturbations at each step (e.g., roundoff errors,
errors in evaluating f) with magnitude less than some small ε perturbs
the solution by at most O(ε).
This simply means that errors do not increase but rather decrease
from step to step.
Denote our numerical approximation with time step size τ :

x(k) ≈ x (k∆t) .

A method is convergent if applying it to any system of ODEs where
f is Lipshitz over a finite time interval T > 0 during which the ODE
has a solution, the numerical approximation converges to that
solution,

lim
∆t→0

x(N=T/∆t) = x (T).

A. Donev (Courant Institute) Lecture XI 11/21/2019 25 / 43

Stability

Convergence

A central theorem in numerical methods for differential equations is
that
Any consistent method is convergent if and only if it is zero stable, or

consistency + (zero) stability = convergence.

Note that we haven’t given a precise definition to zero stability
because in some sense it is defined as: the extra conditions that are
needed to make a consistent method convergent.

Convergence is a statement about a limit, and does not imply a
method will give reasonable answers for finite ∆t > 0.
For that we will later introduce absolute stability.

It can be shown that one-step methods are zero-stable if f is
well-behaved (Lipschitz continuous w.r.t. second argument).

A. Donev (Courant Institute) Lecture XI 11/21/2019 26 / 43

Stability

Stiff example

In section 7.1 LeVeque discusses

x ′(t) = λ (x − cos t)− sin t.

with solution x(t) = cos t if x(0) = 1.

If λ = 0 then this is very simple to solve using Euler’s method, for
example, ∆t = 10−3 up to time T = 2 gives error ∼ 10−3.

For λ = −10, one gets an even smaller error with the same time step
size.

But for λ = −2100, results for ∆t > 2/2100 = 0.000954 are
completely useless: method is unstable.

A. Donev (Courant Institute) Lecture XI 11/21/2019 27 / 43

Stability

Conditional Stability

Consider the model problem for λ < 0:

x ′(t)= λx(t)

x(0) = 1,

with an exact solution that decays exponentially, x(t) = eλt .

Applying Euler’s method to this model equation gives:

x (k+1) = x (k) + λx (k)∆t = (1 + λ∆t) x (k) ⇒

x (k) = (1 + λ∆t)k

The numerical solution will decay if the time step satisfies the
stability criterion

|1 + λ∆t| ≤ 1 ⇒ ∆t < − 2

λ
.

Otherwise, the numerical solution will eventually blow up!

A. Donev (Courant Institute) Lecture XI 11/21/2019 28 / 43

Stability

Unconditional Stability

The above analysis shows that forward Euler is conditionally
stable, meaning it is stable if ∆t < 2/ |λ|.
Let us examine the stability for the model equation x ′(t) = λx(t) for
backward Euler:

x (k+1) = x (k) + λx (k+1)∆t ⇒ x (k+1) = x (k)/ (1− λ∆t)

x (k) = x (0)/ (1− λ∆t)k

We see that the implicit backward Euler is unconditionally stable,
since for any time step

|1− λ∆t| > 1.

A. Donev (Courant Institute) Lecture XI 11/21/2019 29 / 43

Stability

Stiff Systems

An ODE or a system of ODEs is called stiff if the solution evolves on
widely-separated timescales and the fast time scale decays (dies out)
quickly.

We can make this precise for linear systems of ODEs, x(t) ∈ Rn:

x′(t) = A [x(t)] .

Assume that A has an eigenvalue decomposition, with potentially
complex eigenvalues:

A = XΛX−1,

and express x(t) in the basis formed by the eigenvectors xi :

y(t) = X−1 [x(t)] .

A. Donev (Courant Institute) Lecture XI 11/21/2019 30 / 43

Stability

contd.

x′(t) = A [x(t)] = XΛ
[
X−1x(t)

]
= XΛ [y(t)] ⇒

y′(t) = Λ [y(t)]

The different y variables are now uncoupled: each of the n ODEs is
independent of the others:

yi = yi (0)eλi t .

Assume for now that all eigenvalues are real and negative, λ < 0, so
each component of the solution decays:

x(t) =
n∑

i=1

yi (0)eλi txi → 0 as t →∞.

A. Donev (Courant Institute) Lecture XI 11/21/2019 31 / 43

Stability

Stiffness

If we solve the original system using Euler’s method, the time step
must be smaller than the smallest stability limit,

∆t <
2

maxi |Re(λi)|
.

A system is stiff if there is a strong separation of time scales in the
eigenvalues:

r =
maxi |Re(λi)|
mini |Re(λi)|

� 1.

For non-linear problems A is replaced by the Jacobian ∇xf(x, t).

In general, the Jacobian will have complex eigenvalues as well.

A. Donev (Courant Institute) Lecture XI 11/21/2019 32 / 43

Stability

Absolute Stability

We see now that for systems we need to allow λ to be a complex
number but we can still look at scalar equations.

A method is called absolutely stable if for Re(λ) < 0 the numerical
solution of the scalar model equation

x ′(t) = λx(t)

decays to zero, like the actual solution.

We call the region of absolute stability the set of complex numbers

z = λ∆t

for which the numerical solution decays to zero.

For systems of ODEs all scaled eigenvalues of the Jacobian λi∆t
should be in the stability region.

A. Donev (Courant Institute) Lecture XI 11/21/2019 33 / 43

Stability

Stability regions

For Euler’s method, the stability condition is

|1 + λ∆t| = |1 + z | = |z − (−1)| ≤ 1 ⇒

which means that z must be in a unit disk in the complex plane
centered at (−1, 0):

z ∈ C1(−1, 0).

A general one-step method of order p applied to the model equation
x ′ = λx where λ ∈ C gives:

xn+1 = R(z = λ∆t)xn.

R(z) = ez + O
(
zp+1

)
for small |z | .

The region of absolute stability is the set

S = {z ∈ C : |R(z)| ≤ 1}.

A. Donev (Courant Institute) Lecture XI 11/21/2019 34 / 43

Stability

Simple Schemes

Forward/backward Euler, implicit trapezoidal, and leapfrog schemes

A. Donev (Courant Institute) Lecture XI 11/21/2019 35 / 43

Stability

A-Stable methods

A method is A-stable if its stability region contains the entire left
half plane.

The backward Euler and the implicit midpoint scheme are both
A-stable, but they are also both implicit and thus expensive in
practice!

Theorem: No explicit one-step method can be A-stable (discuss
in class why).

Theorem: All explicit RK methods with r stages and of order r have
the same stability region (discuss why).

A. Donev (Courant Institute) Lecture XI 11/21/2019 36 / 43

Stability

One-Step Methods

Any r -stage explicit RK method will produce R(z) that is a
polynomial of degree r .

Any r -stage implicit RK method has rational R(z) (ratio of
polynomials).
The degree of the denominator cannot be larger than the number of
linear systems that are solved per time step.

RK methods give polynomial or rational approximations R(z) ≈ ez .

A 4-stage explicit RK method therefore has

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4

A. Donev (Courant Institute) Lecture XI 11/21/2019 37 / 43

Stability

Explicit RK Methods

Stability regions for all r -stage explicit RK methods

One needs at least 3 stages to be stable for purely imaginary
eigenvalues (hyperbolic PDEs later on).

A. Donev (Courant Institute) Lecture XI 11/21/2019 38 / 43

Stability

Implicit Methods

Implicit methods are generally more stable than explicit methods,
and solving stiff problems generally requires using an implicit method.

The price to pay is solving a system of non-linear equations at every
time step (linear if the ODE is linear):
This is best done using Newton-Raphson’s method, where the
solution at the previous time step is used as an initial guess.

For PDEs, the linear systems become large and implicit methods can
become very expensive...

A. Donev (Courant Institute) Lecture XI 11/21/2019 39 / 43

Stability

Implicit-Explicit Methods

When solving PDEs, we will often be faced with problems of the form

dx

dt
= f (x, t) + g (x, t) = stiff+non-stiff

where the stiffness comes only from f.

These problems are treated using implicit-explicit (IMEX) or
semi-implicit schemes, which only treat f (x) implicitly (see HW4 for
KdV equation).

A very simple example of a second-order scheme is to treat g (x)
using the Adams-Bashforth multistep method and treat f (x) using
the implicit trapezoidal rule (Crank-Nicolson method), the ABCN
scheme:

x (k+1) = x (k)+
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1), t(k+1)

)]
+∆t

[
3

2
g
(
x (k), t(k)

)
− 1

2
g
(
x (k−1), t(k−1)

)]
.

A. Donev (Courant Institute) Lecture XI 11/21/2019 40 / 43

Conclusions

Which Method is Best?

As expected, there is no universally “best” method for integrating
ordinary differential equations: It depends on the problem:

How stiff is your problem (may demand implicit method), and does this
change with time?
How many variables are there, and how long do you need to integrate
for?
How accurately do you need the solution, and how sensitive is the
solution to perturbations (chaos).
How well-behaved or not is the function f (x , t) (e.g., sharp jumps or
discontinuities, large derivatives, etc.).
How costly is the function f (x , t) and its derivatives (Jacobian) to
evaluate.
Is this really ODEs or a something coming from a PDE integration
(next lecture)?

A. Donev (Courant Institute) Lecture XI 11/21/2019 42 / 43

Conclusions

Conclusions/Summary

Time stepping methods for ODEs are convergent if and only if they
are consistent and stable.
We distinguish methods based on their order of accuracy and on
whether they are explicit (forward Euler, Heun, RK4,
Adams-Bashforth), or implicit (backward Euler, Crank-Nicolson), and
whether they are adaptive.
Runge-Kutta methods require more evaluations of f but are more
robust, especially if adaptive (e.g., they can deal with sharp changes
in f). Generally the recommended first-try (ode45 or ode23 in
MATLAB).
Multi-step methods offer high-order accuracy and require few
evaluations of f per time step. They are not very robust however.
Recommended for well-behaved non-stiff problems (ode113).
For stiff problems an implicit method is necessary, and it requires
solving (linear or nonlinear) systems of equations, which may be
complicated (evaluating Jacobian matrices) or costly (ode15s).

A. Donev (Courant Institute) Lecture XI 11/21/2019 43 / 43

	Initial Value Problems
	One-step methods for ODEs
	MATLAB ode suite
	Stability
	Conclusions

