Scientific Computing: Solving Nonlinear Equations

Aleksandar Donev

Courant Institute, NYU¹ donev@courant.nyu.edu

¹Course MATH-GA.2043 or CSCI-GA.2112. Fall 2019

October 10th, 2019

Outline

Basics of Nonlinear Solvers

- 2 One Dimensional Root Finding
- 3 Systems of Non-Linear Equations

Fundamentals

Simplest problem: Root finding in one dimension:

$$f(x) = 0$$
 with $x \in [a, b]$

• Or more generally, solving a square system of nonlinear equations

$$f(x) = 0 \implies f_i(x_1, x_2, ..., x_n) = 0 \text{ for } i = 1, ..., n.$$

- There can be no closed-form answer, so just as for eigenvalues, we need iterative methods.
- Most generally, starting from $m \ge 1$ initial guesses x^0, x^1, \dots, x^m , iterate:

$$x^{k+1} = \phi(x^k, x^{k-1}, \dots, x^{k-m}).$$

Order of convergence

- Consider one dimensional root finding and let the actual root be α , $f(\alpha) = 0$.
- A sequence of iterates x^k that converges to α has **order of** convergence $p \ge 1$ if as $k \to \infty$

$$\frac{\left|x^{k+1} - \alpha\right|}{\left|x^k - \alpha\right|^p} = \frac{\left|e^{k+1}\right|}{\left|e^k\right|^p} \to C = \text{const},$$

where the constant C is a **convergence factor**, C < 1 for p = 1.

- A method should at least converge **linearly** (p = 1), that is, the error should at least be reduced by a constant factor every iteration, for example, the number of accurate digits increases by 1 every iteration.
- A good method for root finding coverges **quadratically** (p = 2), that is, the number of accurate digits **doubles** every iteration!

Local vs. global convergence

- A good initial guess is extremely important in nonlinear solvers!
- Assume we are looking for a **unique root** $a \le \alpha \le b$ starting with an initial guess $a \le x_0 \le b$.
- A method has **local convergence** if it converges to a given root α for any initial guess that is sufficiently close to α (in the **neighborhood of a root**).
- A method has global convergence if it converges to the root for any initial guess.
- General rule: Global convergence requires a slower (careful) method but is safer.
- It is best to combine a global method to first find a good initial guess close to α and then use a faster local method.

Conditioning of root finding

$$f(\alpha + \delta \alpha) \approx f(\alpha) + f'(\alpha)\delta \alpha = \delta f$$

$$|\delta \alpha| pprox \frac{|\delta f|}{|f'(\alpha)|} \Rightarrow \kappa_{abs} = |f'(\alpha)|^{-1}.$$

- The problem of finding a **simple root** is well-conditioned when $|f'(\alpha)|$ is far from zero.
- Finding roots with multiplicity m > 1 is ill-conditioned:

$$|f'(\alpha)| = \cdots = |f^{(m-1)}(\alpha)| = 0 \quad \Rightarrow \quad |\delta\alpha| \approx \left[\frac{|\delta f|}{|f^m(\alpha)|}\right]^{1/m}$$

• Note that finding **roots of algebraic equations** (polynomials) is a separate subject of its own that we skip.

The bisection and Newton algorithms

Bisection

• First step is to **locate a root** by searching for a **sign change**, i.e., finding a^0 and b^0 such that

$$f(a^0)f(b^0)<0.$$

• The simply **bisect** the interval, for k = 0, 1, ...

$$x^k = \frac{a^k + b^k}{2}$$

and choose the half in which the function changes sign, i.e., either $a^{k+1} = x^k$, $b^{k+1} = b^k$ or $b^{k+1} = x^k$, $a^{k+1} = a^k$ so that $f(a^{k+1})f(b^{k+1}) < 0$.

- Observe that each step we need one function evaluation, $f(x^k)$, but only the sign matters.
- The convergence is essentially linear because

$$\left|x^{k}-\alpha\right| \leq \frac{b^{k}}{2^{k+1}} \quad \Rightarrow \frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|} \leq 2.$$

Newton's Method

- Bisection is a slow but sure method. It uses no information about the value of the function or its derivatives.
- Better convergence, of order $p = (1 + \sqrt{5})/2 \approx 1.63$ (the golden ratio), can be achieved by using the value of the function at two points, as in the **secant method**.
- Achieving second-order convergence requires also evaluating the function derivative.
- Linearize the function around the current guess using Taylor series:

$$f(x^{k+1}) \approx f(x^k) + (x^{k+1} - x^k)f'(x^k) = 0$$

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Convergence of Newton's method

Use Taylor series with remainder and divide by $f'(x^k) \neq 0$:

$$\exists \xi \in [x_n, \alpha] : \quad f(\alpha) = 0 = f(x^k) + (\alpha - x^k)f'(x^k) + \frac{1}{2}(\alpha - x^k)^2 f''(\xi) = 0,$$

$$\left[x^k - \frac{f(x^k)}{f'(x^k)}\right] - \alpha = -\frac{1}{2}(\alpha - x^k)^2 \frac{f''(\xi)}{f'(x^k)}$$

$$x^{k+1} - \alpha = e^{k+1} = -\frac{1}{2} (e^k)^2 \frac{f''(\xi)}{f'(x^k)}$$

which shows second-order convergence

$$\frac{\left|x^{k+1} - \alpha\right|}{\left|x^{k} - \alpha\right|^{2}} = \frac{\left|e^{k+1}\right|}{\left|e^{k}\right|^{2}} = \left|\frac{f''(\xi)}{2f'(x^{k})}\right| \to \left|\frac{f''(\alpha)}{2f'(\alpha)}\right|$$

Basin of attraction for Newton's method

ullet For convergence we want $\left|e^{k+1}\right|<\left|e^{k}\right|$ so we want

$$\left|e^{k}\right|\left|\frac{f''(\alpha)}{2f'(\alpha)}\right|<1\quad\Rightarrow\quad\left|e^{k}\right|<\left|\frac{2f'(\alpha)}{f''(\alpha)}\right|$$

 Newton's method converges quadratically if we start sufficiently close to a simple root, more precisely, if

$$|x^0 - \alpha| = |e^0| \lesssim \left| \frac{2f'(\alpha)}{f''(\alpha)} \right|.$$

This is just a rough estimate, not a precise bound!

A robust but fast algorithm for root finding would safeguard
 Newton's method with bisection: Eventually we will accept all
 Newton steps once close to the root, so we will get quadratic
 convergence, but also be guaranteed to converge to a root.

Fixed-Point Iteration

$$f(x) = 0 \quad \Rightarrow \quad x = f(x) + x = \phi(x)$$

• Then we can use fixed-point iteration

$$x^{k+1} = \phi(x^k)$$

• whose fixed point (limit), if it converges, is $x \to \alpha$. Taylor series estimate:

$$x^{k+1} = \alpha + e^{k+1} \approx \phi(\alpha) + \phi'(\alpha) (x^k - \alpha) = \alpha + \phi'(\alpha) e^k \quad \Rightarrow$$
$$e^{k+1} \approx \phi'(\alpha) e^k \quad \Rightarrow \quad \text{we want } |\phi'(\alpha)| < 1.$$

• It can be proven that the fixed-point iteration converges if $\phi(x)$ is a **contraction mapping**:

$$|\phi'(x)| \le K < 1 \quad \forall x \in [a, b]$$

[If $\phi(x)$ is Lipschitz continuous with Lipschitz constant L < 1.]

Stopping Criteria

- A good library function for root finding has to implement careful termination criteria.
- An obvious option is to terminate when the residual becomes small

$$|f(x^k)| < \varepsilon,$$

which works for very well-conditioned problems, $|f'(\alpha)| \sim 1$.

• Another option is to terminate when the increment becomes small

$$\left|x^{k+1}-x^k\right|<\varepsilon.$$

For example, for fixed-point iteration this test would stop at step k:

$$x^{k+1} - x^k = e^{k+1} - e^k \approx [1 - \phi'(\alpha)] e^k \quad \Rightarrow \quad |e^k| \approx \frac{\varepsilon}{[1 - \phi'(\alpha)]},$$

so we see that the increment test works for rapidly converging iterations, i.e., when $|1-\phi'(\alpha)|$ is not small.

In practice

- A robust but fast algorithm for root finding would **combine** (safeguard) bisection with Newton's method: Given a current bisection interval [a,b], if $x^{k+1} \in (a,b)$ then accept Newton step, otherwise just set $x^{k+1} = (a+b)/2$. Take new bisection interval to be either $[a,x^{k+1}]$ or $[x^{k+1},b]$ the same way as in bisection where we always use $x^{k+1} = (a+b)/2$.
- Newton's method requires first-order derivatives so often other methods are preferred that require **function evaluation only**. Examples include secant method (based on linear interpolation) or **inverse quadratic interpolation** (fit a parabola through three past points $(f(x_i), x_i)$, i = 1, 2, 3, and evaluate for zero argument to give a new point).
- Matlab's function fzero combines bisection, secant and inverse quadratic interpolation and is "fail-safe".
 See, for example, "Brent's method" on Wikipedia.

Find zeros of $a\sin(x) + b\exp(-x^2/2)$

```
% f=0mfile uses a function in an m-file
% Parameterized functions are created with:
a = 1: b = 2:
f = Q(x) a*sin(x) + b*exp(-x^2/2); % Handle
figure (1)
ezplot(f,[-5,5]); grid
\times 1 = fzero(f, [-2,0])
[x2, f2] = fzero(f, 2.0)
x1 = -1.227430849357917
x2 = 3.155366415494801
f2 = -2.116362640691705e-16
```

Figure of f(x)

Multi-Variable Taylor Expansion

- It is convenient to focus on one of the equations, i.e., consider a scalar function f(x).
- The usual Taylor series is replaced by

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \mathbf{g}^{T} (\Delta \mathbf{x}) + \frac{1}{2} (\Delta \mathbf{x})^{T} \mathbf{H} (\Delta \mathbf{x})$$

where the gradient vector is

$$\mathbf{g} = \mathbf{\nabla}_{\mathbf{x}} f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n} \right]^T$$

and the **Hessian matrix** is

$$\mathbf{H} = \mathbf{\nabla}_{\mathbf{x}}^2 f = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\}_{ij}$$

Vector Functions of Vectors

 We are after solving a square system of nonlinear equations for some variables x:

$$f(x) = 0$$
 $\Rightarrow f_i(x_1, x_2, ..., x_n) = 0$ for $i = 1, ..., n$.

• The first-order Taylor series is

$$\mathbf{f}\left(\mathbf{x}^{k} + \Delta\mathbf{x}\right) \approx \mathbf{f}\left(\mathbf{x}^{k}\right) + \left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta\mathbf{x} = \mathbf{0}$$

where the Jacobian **J** has the gradients of $f_i(\mathbf{x})$ as rows:

$$\left[\mathbf{J}\left(\mathbf{x}\right)\right]_{ij} = \frac{\partial f_i}{\partial x_i}$$

Newton's Method for Systems of Equations

- It is much harder if not impossible to do globally convergent methods like bisection in higher dimensions!
- A good initial guess is therefore a must when solving systems, and Newton's method can be used to refine the guess.
- The basic idea behind Newton's method is to linearize the equation around the current guess:

$$\mathbf{f}\left(\mathbf{x}^{k} + \Delta\mathbf{x}\right) \approx \mathbf{f}\left(\mathbf{x}^{k}\right) + \left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta\mathbf{x} = \mathbf{0}$$

$$\left[\mathbf{J}\left(\mathbf{x}^{k}\right) \right] \Delta \mathbf{x} = -\mathbf{f}\left(\mathbf{x}^{k}\right) \text{ but denote } \mathbf{J} \equiv \mathbf{J}\left(\mathbf{x}^{k}\right)$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x} = \mathbf{x}^k - \mathbf{J}^{-1} \mathbf{f} \left(\mathbf{x}^k \right).$$

• This method requires computing a whole **matrix of derivatives**, which can be expensive or hard to do (differentiation by hand?)!

Convergence of Newton's method

- Near the root the Jacobian and Hessian don't change much so just approximate $\mathbf{J} \approx \mathbf{J}(\alpha)$ and $\mathbf{H} \approx \mathbf{H}(\alpha)$.
- Next order term in Taylor series indicates error

$$\begin{split} \mathbf{f}\left(\mathbf{x}^{k}\right) &= \mathbf{f}\left(\alpha\right) + \mathbf{J}\mathbf{e}^{k} + \frac{1}{2}\left(\mathbf{e}^{k}\right)^{T}\mathbf{H}\mathbf{e}^{k} = \mathbf{J}\mathbf{e}^{k} + \frac{1}{2}\left(\mathbf{e}^{k}\right)^{T}\mathbf{H}\mathbf{e}^{k} &= \\ \mathbf{e}^{k+1} &= \mathbf{x}^{k+1} - \alpha = \mathbf{e}^{k} - \mathbf{J}^{-1}\mathbf{f}\left(\mathbf{x}^{k}\right) = \frac{1}{2}\mathbf{J}^{-1}\left(\mathbf{e}^{k}\right)^{T}\mathbf{H}\mathbf{e}^{k} \end{split}$$

• Newton's method converges **quadratically** if started sufficiently close to a root α :

$$\|\mathbf{e}^{k+1}\| \le \frac{\|\mathbf{J}^{-1}\| \|\mathbf{H}\|}{2} \|\mathbf{e}^{k}\|^{2}$$

- Newton's method converges fast if the Jacobian $J(\alpha)$ is well-conditioned.
- Newton's method requires solving **many linear systems**, which can be expensive for many variables.

Quasi-Newton methods

- For large systems one can use so called **quasi-Newton** methods to estimate derivatives using finite-differences and to speed up by using rank-1 matrix updates (see Woodbury formula in homework 2):
 - Approximate the Jacobian with another matrix $\widetilde{\mathbf{J}}^k$ and solve $\widetilde{\mathbf{J}}^k \mathbf{d} = \mathbf{f}(\mathbf{x}^k)$.
 - Damp the step by a step length $\alpha_k \lesssim 1$,

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d} = \mathbf{x}^k + \Delta \mathbf{x}^k.$$

• Update Jacobian by a rank-1 update, e.g., one of **Broyden's methods**:

$$\mathbf{\widetilde{J}}^{k+1} = \mathbf{\widetilde{J}}^k + \left(\mathbf{f}(\mathbf{x}^{k+1}) - \left(\mathbf{f}(\mathbf{x}^k) + \mathbf{\widetilde{J}}^k \Delta \mathbf{x}^k\right)\right) \frac{\left(\Delta \mathbf{x}^k\right)^T}{\left\|\Delta \mathbf{x}^k\right\|_2^2},$$

which ensures the desired secant condition

$$\mathbf{f}(\mathbf{x}^{k+1}) - \mathbf{f}(\mathbf{x}^k) = \widetilde{\mathbf{J}}^{k+1} \Delta \mathbf{x}^k.$$

Continuation methods

- To get a good initial guess for Newton's method and ensure that it converges fast we can use continuation methods (also called homotopy methods).
- The basic idea is to solve

$$\tilde{\mathbf{f}}_{\lambda}\left(\mathbf{x}\right)=\lambda\mathbf{f}\left(\mathbf{x}\right)+\left(1-\lambda
ight)\mathbf{f_{a}}\left(\mathbf{x}\right)=\mathbf{0}$$

instead of the original equations, where $0 \le \lambda \le 1$ is a parameter.

- If $\lambda = 1$, we are solving the original equation f(x) = 0, which is hard because we do not have a good guess for the initial solution.
- If $\lambda = 0$, we are solving $\mathbf{f_a}(\mathbf{x}) = \mathbf{0}$, and we will assume that this is easy to solve. For example, consider making this a linear function,

$$f_{a}\left(x\right) =x-a,$$

where a is a vector of parameters that need to be chosen somehow. One can also take a more general $f_a(x) = Ax - a$ where A is a matrix of parameters, so that solving $f_a(x) = 0$ amounts to a linear solve which we know how to do already.

Path Following

- The basic idea of continuation methods is to start with $\lambda=0$, and solve $\tilde{\mathbf{f}}_{\lambda}(\mathbf{x})=0$. This gives us a solution \mathbf{x}_{0} .
- Then increment λ by a little bit, say $\lambda=0.05$, and solve $\tilde{\mathbf{f}}_{\lambda}(\mathbf{x})$ using Newton's method starting with \mathbf{x}_0 as an initial guess. Observe that this is a good initial guess under the assumption that the solution has not changed much because λ has not changed much.
- We can repeat this process until we reach $\lambda=1$, when we get the actual solution we are after:
 - Choose a sequence $\lambda_0 = 0 < \lambda_1 < \lambda_2 < \cdots < \lambda_{n-1} < \lambda_n = 1$.
 - For k = 0 solve $\mathbf{f_a}(\mathbf{x_0}) = \mathbf{0}$ to get $\mathbf{x_0}$.
 - For k = 1, ..., n, solve a nonlinear system to get \mathbf{x}_k ,

$$\tilde{\mathbf{f}}_{\lambda_k}(\mathbf{x}_k) = \mathbf{0}$$

using Newton's method starting from x_{k-1} as an initial guess.

Path Following

- Observe that if we change λ very slowly we have hope that the solution will trace a **continuous path of solutions**.
- That is, we can think of $\mathbf{x}(\lambda)$ as a continuous function defined on [0, 1], defined implicitly via

$$\lambda \mathbf{f}(\mathbf{x}(\lambda)) + (1 - \lambda) \mathbf{f}_{\mathbf{a}}(\mathbf{x}(\lambda)) = \mathbf{0}.$$

- This rests on the assumption that this path will **not have turning points, bifurcate or wonder to infinity**, and that there is a solution for every λ .
- It turns out that by a judicious choice of f_a one can insure this is the case. For example, choosing a random a and taking $f_a(x) = x a$ works.
- The trick now becomes how to choose the sequence λ_k to make sure λ changes not too much but also not too little (i.e., not too slowly), see HOMPACK library for an example.

In practice

- It is much harder to construct general robust solvers in higher dimensions and some problem-specific knowledge is required.
- There is no built-in function for solving nonlinear systems in MATLAB, but the **Optimization Toolbox** has *fsolve*.
- In many practical situations there is some continuity of the problem so that a previous solution can be used as an initial guess.
- For example, **implicit methods for differential equations** have a time-dependent Jacobian $\mathbf{J}(t)$ and in many cases the solution $\mathbf{x}(t)$ evolves smootly in time.
- For large problems specialized sparse-matrix solvers need to be used.
- In many cases derivatives are not provided but there are some techniques for **automatic differentiation**.

Conclusions/Summary

- Root finding is well-conditioned for simple roots (unit multiplicity), ill-conditioned otherwise.
- Methods for solving nonlinear equations are always iterative and the order of convergence matters: second order is usually good enough.
- A good method uses a higher-order unsafe method such as Newton method near the root, but safeguards it with something like the bisection method.
- Newton's method is second-order but requires derivative/Jacobian evaluation. In higher dimensions having a good initial guess for Newton's method becomes very important.
- Quasi-Newton methods can aleviate the complexity of solving the Jacobian linear system.