Scientific Computing:
Solving Nonlinear Equations

Aleksandar Donev
Courant Institute, NYU!
donev@courant.nyu.edu

ICourse MATH-GA.2043 or CSCI-GA.2112, Fall 2019

October 10th, 2019

A. Donev (Courant Institute) Lecture VI 10/10/2015 1/26

Outline

© [One Dimensional Root Finding]

© [Systems of Non-Linear Equations|

A. Donev (Courant Institute) Lecture VI

Basics of Nonlinear Solvers!
Fundamentals

@ Simplest problem: Root finding in one dimension:

f(x) = 0 with x € [a, b]
@ Or more generally, solving a square system of nonlinear equations
f(x) =0 = fi(x,x2,...,x5) =0fori=1,...,n

@ There can be no closed-form answer, so just as for eigenvalues, we
need iterative methods.

e Most generally, starting from m > 1 initial guesses x°, x!, ..., x™

iterate:

XKL = (K xK=1 o xkem),

A. Donev (Courant Institute) Lecture VI 10/10/2015 3/26

Basics of Nonlinear Solvers!
Order of convergence

@ Consider one dimensional root finding and let the actual root be «,
f(a) =0.

@ A sequence of iterates x¥ that converges to a has order of
convergence p > 1 if as k — oo

k+1 k+1‘

Xkt —a| e

Xk —aP ~Jerp T C Tt

where the constant C is a convergence factor, C < 1 for p = 1.

@ A method should at least converge linearly (p = 1), that is, the error
should at least be reduced by a constant factor every iteration, for
example, the number of accurate digits increases by 1 every iteration.

@ A good method for root finding coverges quadratically (p = 2), that
is, the number of accurate digits doubles every iteration!

A. Donev (Courant Institute) Lecture VI 10/10/2015 4 /26

Basics of Nonlinear Solvers!
Local vs. global convergence

o A good initial guess is extremely important in nonlinear solvers!

@ Assume we are looking for a unique root a < a < b starting with an
initial guess a < xg < b.

@ A method has local convergence if it converges to a given root « for
any initial guess that is sufficiently close to « (in the neighborhood
of a root).

@ A method has global convergence if it converges to the root for any
initial guess.

@ General rule: Global convergence requires a slower (careful) method
but is safer.

@ It is best to combine a global method to first find a good initial guess
close to «¢ and then use a faster local method.

A. Donev (Courant Institute) Lecture VI 10/10/2015 5/ 26

Basics of Nonlinear Solvers!
Conditioning of root finding

fla+da) =~ f(a)+ f'(a)da = 6f

|67]
|#'(a)]

@ The problem of finding a simple root is well-conditioned when |f'(a))|
is far from zero.

[da] ~ = Kabs = | ()] 7"

e Finding roots with multiplicity m > 1 is ill-conditioned:

1/m
Pa) == |fr D) =0 = |5a]z[107 }

fm(a)]

e Note that finding roots of algebraic equations (polynomials) is a
separate subject of its own that we skip.

A. Donev (Courant Institute) Lecture VI 10/10/2015 6 /26

One Dimensional Root Finding

The bisection and Newton algorithms

Seacchn

intecedd
é,—_—> 6\&,&.‘195
ﬁ":’i Qt}\fl’\
<5
<
fétb < lj\&{)
GLo BLAL SiLow

C ONVERGEN (& WP O
A. Donev (Courant Institute) Lecture VI 10/10/2015 7 /26

ZolEeD

One Dimensional Root Finding
Bisection

o First step is to locate a root by searching for a sign change, i.e.,
finding a® and b° such that

f(a%)F(b°) < 0.
@ The simply bisect the interval, for k =0,1,...
k ak -+ bk
X = —
2
and choose the half in which the function changes sign, i.e.,
either akT1 = xk, pkt1 = pk or pkt1 = xk ak+1 = 3K 50 that
f(akTh)fF(bk1) < 0.
o Observe that each step we need one function evaluation, f(x*), but
only the sign matters.
@ The convergence is essentially linear because
bk ’Xk-i-l _ Oé’
2k+1 ’Xk _ a|

X —al <

A. Donev (Courant Institute) Lecture VI 10/10/2015 8 /26

One Dimensional Root Finding
Newton's Method

@ Bisection is a slow but sure method. It uses no information about the
value of the function or its derivatives.

o Better convergence, of order p = (1 + v/5)/2 ~ 1.63 (the golden
ratio), can be achieved by using the value of the function at two
points, as in the secant method.

@ Achieving second-order convergence requires also evaluating the
function derivative.

@ Linearize the function around the current guess using Taylor series:

F(x) & F(xK) + (x5 = xR (xF) =0

A. Donev (Courant Institute) Lecture VI 10/10/2015 9 /26

One Dimensional Root Finding

Convergence of Newton's method

Use Taylor series with remainder and divide by f/(x) # 0:

3¢ € [xn,a] - f(a)=0= f(xk)—l—(a—xk)f’(xk)—i—%(a—xk)zf"(f) =0,

f(x9) 1 f"(£)
k _ ky2
) o= gl P
1 2 (&)
k+1 k+1 k
X+_a:e+__§(e) f’(Xk)
which shows second-order convergence
|Xk+1 —Oz’ B |ek+1‘ B f”(f) f”(a)
Ixk—al®> ek [2f(xK)| T [2f'(a)

A. Donev (Courant Institute) Lecture VI 10/10/2015 10 / 26

One Dimensional Root Finding

Basin of attraction for Newton's method

@ For convergence we want ‘ek+1| < ‘ek] so we want

//(a)

f 2f'(«@)
2f'(«)

k
‘e ‘ f”(a)

’<1 = \e"\<‘

@ Newton's method converges quadratically if we start sufficiently
close to a simple root, more precisely, if

2f'(«)

‘XO _a‘ = ‘eO‘ 5 f”(a)

This is just a rough estimate, not a precise bound!

@ A robust but fast algorithm for root finding would safeguard
Newton’s method with bisection: Eventually we will accept all
Newton steps once close to the root, so we will get quadratic
convergence, but also be guaranteed to converge to a root.

A. Donev (Courant Institute) Lecture VI 10/10/2015 11 /26

One Dimensional Root Finding
Fixed-Point lteration

f(x)=0 = x=17f(x)+x=¢(x)
@ Then we can use fixed-point iteration
Xk+1 — (b(Xk)

e whose fixed point (limit), if it converges, is x — a. Taylor series
estimate:

XK = a + 1 = ¢(a) + ¢'(a) (Xk —a)=a+ ¢ (a)ek =
et xg/(a)e = wewant |¢/(a)| < 1.

@ It can be proven that the fixed-point iteration converges if ¢(x) is a
contraction mapping;:

| (x)| < K <1 VxE€|[a,b]

[If &(x) is Lipschitz continuous with Lipschitz constant L < 1.]

A. Donev (Courant Institute) Lecture VI 10/10/2015 12 /26

One Dimensional Root Finding
Stopping Criteria

@ A good library function for root finding has to implement careful
termination criteria.

@ An obvious option is to terminate when the residual becomes small
|f(xk)’ <,

which works for very well-conditioned problems, |f'(«)| ~ 1.
@ Another option is to terminate when the increment becomes small

‘Xk+1 — Xk‘ <E.

@ For example, for fixed-point iteration this test would stop at step k:
k+1 k _ . k+1 _ _k / k k €
X —x =T —e"xm|l-¢(0)| e = ||
o) M=)
so we see that the increment test works for rapidly converging
iterations, i.e., when |1 — ¢/(«)| is not small.

A. Donev (Courant Institute) Lecture VI 10/10/2015 13 /26

One Dimensional Root Finding
In practice

@ A robust but fast algorithm for root finding would combine
(safeguard) bisection with Newton’s method: Given a current
bisection interval [a, b], if x*1 € (a, b) then accept Newton step,
otherwise just set x**1 = (a + b)/2. Take new bisection interval to
be either [a,xk+1] or [xk+1, b} the same way as in bisection where
we always use x**1 = (a + b)/2.

o Newton's method requires first-order derivatives so often other
methods are preferred that require function evaluation only.
Examples include secant method (based on linear interpolation) or
inverse quadratic interpolation (fit a parabola through three past
points (f(x;),x;), i = 1,2,3, and evaluate for zero argument to give a
new point).

@ Matlab's function fzero combines bisection, secant and inverse
quadratic interpolation and is “fail-safe”.

See, for example, “Brent’s method” on Wikipedia.

A. Donev (Courant Institute) Lecture VI 10/10/2015 14 / 26

One Dimensional Root Finding

Find zeros of asin(x) + bexp(—x?/2)

% f=@mfile uses a function in an m-file

% Parameterized functions are created with:
a=1; b = 2;
f = 0(x) axsin(x) + bxexp(—x"2/2) ; % Handle

figure (1)
ezplot(f,[—5,5]); grid

xl=fzero (f, [—2,0])
[x2,f2]=fzero(f, 2.0)

x1l = —1.227430849357917
X2 = 3.155366415494801
f2 = —2.116362640691705e—16

A. Donev (Courant Institute) Lecture VI 10/10/2015 15 / 26

One Dimensional Root Finding

Figure of f(x)

a sin(x)+b exp(-x?/2)
25F T T T m|

-5 -4 -3 -2 -1 0 1 2 3 4 5

onev (Courant Institute) Lecture VI 10/10/20 16 / 26

Systems of Non-Linear Equations|
Multi-Variable Taylor Expansion

@ It is convenient to focus on one of the equations, i.e., consider a
scalar function f(x).

@ The usual Taylor series is replaced by
1
f(x+Ax)=f(x) + g’ (Ax) + 3 (Ax)" H(Ax)

where the gradient vector is

of of af]T

= Vif = Y-V
g=V [8x1 O0x2 Oxn

and the Hessian matrix is
2f
H=vr={ "
0x;0x; i

A. Donev (Courant Institute) Lecture VI 10/10/2015 17 / 26

Systems of Non-Linear Equations|

Vector Functions of Vectors

@ We are after solving a square system of nonlinear equations for
some variables x:

fx)=0 = fi(x1,x2,...,x5) =0fFori=1,...,n
@ The first-order Taylor series is
f (xk + Ax) ~f (xk) + [J (xk)] Ax =0
where the Jacobian J has the gradients of fi(x) as rows:

of
9

Xj

[()] =

A. Donev (Courant Institute) Lecture VI 10/10/2015 18 / 26

Systems of Non-Linear Equations|

Newton's Method for Systems of Equations

@ It is much harder if not impossible to do globally convergent methods
like bisection in higher dimensions!

@ A good initial guess is therefore a must when solving systems, and
Newton's method can be used to refine the guess.

@ The basic idea behind Newton's method is to linearize the equation
around the current guess:

f(x*+Ax) =~ f (x*) + [J(x¥)] Aax=0
[J(x¥)] Ax = —f (x¥) but denote J = J (x¥)

XK = xk 4+ Ax = xk — J7If (xk) .

@ This method requires computing a whole matrix of derivatives,
which can be expensive or hard to do (differentiation by hand?)!

A. Donev (Courant Institute) Lecture VI 10/10/2015 19 / 26

Systems of Non-Linear Equations|

Convergence of Newton's method

@ Near the root the Jacobian and Hessian don’t change much so just
approximate J ~ J (o) and H ~ H ().
@ Next order term in Taylor series indicates error

F(xk) = f(a)+ Jek + % (e")" He¥ = Jek + % CORLEE

el = Xk g = ek 1 (xk) = %Jfl ()7 He*

@ Newton's method converges quadratically if started sufficiently close
to a root a:
k
4|1

e Newton's method converges fast if the Jacobian J (a) is
well-conditioned.

o < Lm0

@ Newton's method requires solving many linear systems, which can
be expensive for many variables.

A. Donev (Courant Institute) Lecture VI 10/10/2015 20 / 26

Systems of Non-Linear Equations|

Quasi-Newton methods

@ For large systems one can use so called quasi-Newton methods to
estimate derivatives using finite-differences and to speed up by using
rank-1 matrix updates (see Woodbury formula in homework 2):

~k
o Approximate the Jacobian with another matrix J and solve
~k
J d = f(xh).
o Damp the step by a step length oy <1,
XK1 = xk + apd = xF + AxK.

e Update Jacobian by a rank-1 update, e.g., one of Broyden’s methods:

k1 ~k ~k (Ax")T
I =T (R = (Fx) + 37 axE)) e
2

which ensures the desired secant condition

F(xH1) — F(xk) = 1 Axk,

A. Donev (Courant Institute) Lecture VI 10/10/2015 21/ 26

Systems of Non-Linear Equations|
Continuation methods

To get a good initial guess for Newton's method and ensure that it
converges fast we can use continuation methods (also called
homotopy methods).

The basic idea is to solve

fx(X)= M)+ (1 -Nfa(x)=0

instead of the original equations, where 0 < A < 1 is a parameter.

If A =1, we are solving the original equation f (x) = 0, which is hard
because we do not have a good guess for the initial solution.

If A =0, we are solving f, (x) = 0, and we will assume that this is
easy to solve. For example, consider making this a linear function,

fa(x) =x—a,

where a is a vector of parameters that need to be chosen somehow.
One can also take a more general f, (x) = Ax —a where A is a matrix
of parameters, so that solving f, (x) = 0 amounts to a linear solve
which we know how to do already.

A. Donev (Courant Institute) Lecture VI 10/10/2015 22 /26

Systems of Non-Linear Equations|
Path Following

@ The basic idea of continuation methods is to start with A = 0, and
solve fy (x) = 0. This gives us a solution xg.

@ Then increment A by a little bit, say A = 0.05, and solve fy (x) using
Newton's method starting with xp as an initial guess.
Observe that this is a good initial guess under the assumption that
the solution has not changed much because A has not changed much.

@ We can repeat this process until we reach A = 1, when we get the
actual solution we are after:

e Choose asequence \g =0 < A\ <A< - <A1 <Ay, =1
e For k = 0 solve f, (xg) = 0 to get xo.
e For k =1,...,n, solve a nonlinear system to get x,

f}w (Xk) = 0

using Newton’s method starting from x,_; as an initial guess.

A. Donev (Courant Institute) Lecture VI 10/10/2015 23 /26

Systems of Non-Linear Equations|
Path Following

@ Observe that if we change A very slowly we have hope that the
solution will trace a continuous path of solutions.

e That is, we can think of x(\) as a continuous function defined on
[0, 1], defined implicitly via

AF(x (V) + (1= A) fa (x (V) = 0.

@ This rests on the assumption that this path will not have turning
points, bifurcate or wonder to infinity, and that there is a solution
for every .

@ It turns out that by a judicious choice of f5 one can insure this is the
case. For example, choosing a random a and taking f,(x) =x —a
works.

@ The trick now becomes how to choose the sequence Ay to make sure
A changes not too much but also not too little (i.e., not too slowly),
see HOMPACK library for an example.

A. Donev (Courant Institute) Lecture VI 10/10/2015 24 / 26

Systems of Non-Linear Equations|
In practice

@ It is much harder to construct general robust solvers in higher
dimensions and some problem-specific knowledge is required.

@ There is no built-in function for solving nonlinear systems in
MATLAB, but the Optimization Toolbox has fsolve.

@ In many practical situations there is some continuity of the problem
so that a previous solution can be used as an initial guess.

@ For example, implicit methods for differential equations have a
time-dependent Jacobian J(t) and in many cases the solution x(t)
evolves smootly in time.

@ For large problems specialized sparse-matrix solvers need to be used.

@ In many cases derivatives are not provided but there are some
techniques for automatic differentiation.

A. Donev (Courant Institute) Lecture VI 10/10/2015 25/ 26

Systems of Non-Linear Equations|

Conclusions/Summary

@ Root finding is well-conditioned for simple roots (unit multiplicity),
ill-conditioned otherwise.

@ Methods for solving nonlinear equations are always iterative and the
order of convergence matters: second order is usually good enough.

@ A good method uses a higher-order unsafe method such as Newton
method near the root, but safeguards it with something like the
bisection method.

e Newton's method is second-order but requires derivative/Jacobian
evaluation. In higher dimensions having a good initial guess for
Newton's method becomes very important.

@ Quasi-Newton methods can aleviate the complexity of solving the
Jacobian linear system.

A. Donev (Courant Institute) Lecture VI 10/10/2015 26 / 26

	Basics of Nonlinear Solvers
	One Dimensional Root Finding
	Systems of Non-Linear Equations

