
Scientific Computing:
Solving Nonlinear Equations

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2019

October 10th, 2019

A. Donev (Courant Institute) Lecture VI 10/10/2015 1 / 26

Outline

1 Basics of Nonlinear Solvers

2 One Dimensional Root Finding

3 Systems of Non-Linear Equations

A. Donev (Courant Institute) Lecture VI 10/10/2015 2 / 26

Basics of Nonlinear Solvers

Fundamentals

Simplest problem: Root finding in one dimension:

f (x) = 0 with x ∈ [a, b]

Or more generally, solving a square system of nonlinear equations

f(x) = 0 ⇒ fi (x1, x2, . . . , xn) = 0 for i = 1, . . . , n.

There can be no closed-form answer, so just as for eigenvalues, we
need iterative methods.

Most generally, starting from m ≥ 1 initial guesses x0, x1, . . . , xm,
iterate:

xk+1 = φ(xk , xk−1, . . . , xk−m).

A. Donev (Courant Institute) Lecture VI 10/10/2015 3 / 26

Basics of Nonlinear Solvers

Order of convergence

Consider one dimensional root finding and let the actual root be α,
f (α) = 0.

A sequence of iterates xk that converges to α has order of
convergence p ≥ 1 if as k →∞∣∣xk+1 − α

∣∣
|xk − α|p

=

∣∣ek+1
∣∣

|ek |p
→ C = const,

where the constant C is a convergence factor, C < 1 for p = 1.

A method should at least converge linearly (p = 1), that is, the error
should at least be reduced by a constant factor every iteration, for
example, the number of accurate digits increases by 1 every iteration.

A good method for root finding coverges quadratically (p = 2), that
is, the number of accurate digits doubles every iteration!

A. Donev (Courant Institute) Lecture VI 10/10/2015 4 / 26

Basics of Nonlinear Solvers

Local vs. global convergence

A good initial guess is extremely important in nonlinear solvers!

Assume we are looking for a unique root a ≤ α ≤ b starting with an
initial guess a ≤ x0 ≤ b.

A method has local convergence if it converges to a given root α for
any initial guess that is sufficiently close to α (in the neighborhood
of a root).

A method has global convergence if it converges to the root for any
initial guess.

General rule: Global convergence requires a slower (careful) method
but is safer.

It is best to combine a global method to first find a good initial guess
close to α and then use a faster local method.

A. Donev (Courant Institute) Lecture VI 10/10/2015 5 / 26

Basics of Nonlinear Solvers

Conditioning of root finding

f (α + δα) ≈ f (α) + f ′(α)δα = δf

|δα| ≈ |δf |
|f ′(α)|

⇒ κabs =
∣∣f ′(α)

∣∣−1 .
The problem of finding a simple root is well-conditioned when |f ′(α)|
is far from zero.

Finding roots with multiplicity m > 1 is ill-conditioned:

∣∣f ′(α)
∣∣ = · · · =

∣∣∣f (m−1)(α)
∣∣∣ = 0 ⇒ |δα| ≈

[
|δf |
|f m(α)|

]1/m
Note that finding roots of algebraic equations (polynomials) is a
separate subject of its own that we skip.

A. Donev (Courant Institute) Lecture VI 10/10/2015 6 / 26

One Dimensional Root Finding

The bisection and Newton algorithms

A. Donev (Courant Institute) Lecture VI 10/10/2015 7 / 26

One Dimensional Root Finding

Bisection

First step is to locate a root by searching for a sign change, i.e.,
finding a0 and b0 such that

f (a0)f (b0) < 0.

The simply bisect the interval, for k = 0, 1, . . .

xk =
ak + bk

2

and choose the half in which the function changes sign, i.e.,
either ak+1 = xk , bk+1 = bk or bk+1 = xk , ak+1 = ak so that
f (ak+1)f (bk+1) < 0.

Observe that each step we need one function evaluation, f (xk), but
only the sign matters.

The convergence is essentially linear because∣∣xk − α∣∣ ≤ bk

2k+1
⇒
∣∣xk+1 − α

∣∣
|xk − α|

≤ 2.

A. Donev (Courant Institute) Lecture VI 10/10/2015 8 / 26

One Dimensional Root Finding

Newton’s Method

Bisection is a slow but sure method. It uses no information about the
value of the function or its derivatives.

Better convergence, of order p = (1 +
√

5)/2 ≈ 1.63 (the golden
ratio), can be achieved by using the value of the function at two
points, as in the secant method.

Achieving second-order convergence requires also evaluating the
function derivative.

Linearize the function around the current guess using Taylor series:

f (xk+1) ≈ f (xk) + (xk+1 − xk)f ′(xk) = 0

xk+1 = xk − f (xk)

f ′(xk)

A. Donev (Courant Institute) Lecture VI 10/10/2015 9 / 26

One Dimensional Root Finding

Convergence of Newton’s method

Use Taylor series with remainder and divide by f ′(xk) 6= 0:

∃ξ ∈ [xn, α] : f (α) = 0 = f (xk) + (α−xk)f ′(xk) +
1

2
(α−xk)2f ′′(ξ) = 0,

[
xk − f (xk)

f ′(xk)

]
− α = −1

2
(α− xk)2

f ′′(ξ)

f ′(xk)

xk+1 − α = ek+1 = −1

2

(
ek
)2 f ′′(ξ)

f ′(xk)

which shows second-order convergence∣∣xk+1 − α
∣∣

|xk − α|2
=

∣∣ek+1
∣∣

|ek |2
=

∣∣∣∣ f ′′(ξ)

2f ′(xk)

∣∣∣∣→ ∣∣∣∣ f ′′(α)

2f ′(α)

∣∣∣∣
A. Donev (Courant Institute) Lecture VI 10/10/2015 10 / 26

One Dimensional Root Finding

Basin of attraction for Newton’s method

For convergence we want
∣∣ek+1

∣∣ < ∣∣ek ∣∣ so we want

∣∣ek ∣∣ ∣∣∣∣ f ′′(α)

2f ′(α)

∣∣∣∣ < 1 ⇒
∣∣ek ∣∣ < ∣∣∣∣2f ′(α)

f ′′(α)

∣∣∣∣
Newton’s method converges quadratically if we start sufficiently
close to a simple root, more precisely, if

∣∣x0 − α∣∣ =
∣∣e0∣∣ . ∣∣∣∣2f ′(α)

f ′′(α)

∣∣∣∣ .
This is just a rough estimate, not a precise bound!

A robust but fast algorithm for root finding would safeguard
Newton’s method with bisection: Eventually we will accept all
Newton steps once close to the root, so we will get quadratic
convergence, but also be guaranteed to converge to a root.

A. Donev (Courant Institute) Lecture VI 10/10/2015 11 / 26

One Dimensional Root Finding

Fixed-Point Iteration

f (x) = 0 ⇒ x = f (x) + x = φ(x)

Then we can use fixed-point iteration

xk+1 = φ(xk)

whose fixed point (limit), if it converges, is x → α. Taylor series
estimate:

xk+1 = α + ek+1 ≈ φ(α) + φ′(α)
(
xk − α

)
= α + φ′(α)ek ⇒

ek+1 ≈ φ′(α)ek ⇒ we want
∣∣φ′(α)

∣∣ < 1.

It can be proven that the fixed-point iteration converges if φ(x) is a
contraction mapping:∣∣φ′(x)

∣∣ ≤ K < 1 ∀x ∈ [a, b]

[If φ(x) is Lipschitz continuous with Lipschitz constant L < 1.]

A. Donev (Courant Institute) Lecture VI 10/10/2015 12 / 26

One Dimensional Root Finding

Stopping Criteria

A good library function for root finding has to implement careful
termination criteria.

An obvious option is to terminate when the residual becomes small∣∣f (xk)
∣∣ < ε,

which works for very well-conditioned problems, |f ′(α)| ∼ 1.

Another option is to terminate when the increment becomes small∣∣xk+1 − xk
∣∣ < ε.

For example, for fixed-point iteration this test would stop at step k:

xk+1 − xk = ek+1 − ek ≈
[
1− φ′(α)

]
ek ⇒

∣∣ek ∣∣ ≈ ε

[1− φ′(α)]
,

so we see that the increment test works for rapidly converging
iterations, i.e., when |1− φ′(α)| is not small.

A. Donev (Courant Institute) Lecture VI 10/10/2015 13 / 26

One Dimensional Root Finding

In practice

A robust but fast algorithm for root finding would combine
(safeguard) bisection with Newton’s method: Given a current
bisection interval [a, b], if xk+1 ∈ (a, b) then accept Newton step,
otherwise just set xk+1 = (a + b)/2. Take new bisection interval to
be either

[
a, xk+1

]
or
[
xk+1, b

]
the same way as in bisection where

we always use xk+1 = (a + b)/2.

Newton’s method requires first-order derivatives so often other
methods are preferred that require function evaluation only.
Examples include secant method (based on linear interpolation) or
inverse quadratic interpolation (fit a parabola through three past
points (f (xi), xi), i = 1, 2, 3, and evaluate for zero argument to give a
new point).

Matlab’s function fzero combines bisection, secant and inverse
quadratic interpolation and is “fail-safe”.
See, for example, “Brent’s method” on Wikipedia.

A. Donev (Courant Institute) Lecture VI 10/10/2015 14 / 26

One Dimensional Root Finding

Find zeros of a sin(x) + b exp(−x2/2)

% f=@ m f i l e u s e s a f u n c t i o n i n an m− f i l e

% P a r a m e t e r i z e d f u n c t i o n s a r e c r e a t e d w i t h :
a = 1 ; b = 2 ;
f = @(x) a∗ s i n (x) + b∗ exp(−x ˆ2/2) ; % Handle

f i g u r e (1)
e z p l o t (f , [− 5 , 5]) ; g r i d

x1=f z e r o (f , [−2 ,0])
[x2 , f 2]= f z e r o (f , 2 . 0)

x1 = −1.227430849357917
x2 = 3.155366415494801
f 2 = −2.116362640691705 e−16

A. Donev (Courant Institute) Lecture VI 10/10/2015 15 / 26

One Dimensional Root Finding

Figure of f (x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

a sin(x)+b exp(−x
2
/2)

A. Donev (Courant Institute) Lecture VI 10/10/2015 16 / 26

Systems of Non-Linear Equations

Multi-Variable Taylor Expansion

It is convenient to focus on one of the equations, i.e., consider a
scalar function f (x).

The usual Taylor series is replaced by

f (x + ∆x) = f (x) + gT (∆x) +
1

2
(∆x)T H (∆x)

where the gradient vector is

g = ∇xf =

[
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

]T
and the Hessian matrix is

H = ∇2
xf =

{
∂2f

∂xi∂xj

}
ij

A. Donev (Courant Institute) Lecture VI 10/10/2015 17 / 26

Systems of Non-Linear Equations

Vector Functions of Vectors

We are after solving a square system of nonlinear equations for
some variables x:

f(x) = 0 ⇒ fi (x1, x2, . . . , xn) = 0 for i = 1, . . . , n.

The first-order Taylor series is

f
(
xk + ∆x

)
≈ f

(
xk
)

+
[
J
(
xk
)]

∆x = 0

where the Jacobian J has the gradients of fi (x) as rows:

[J (x)]ij =
∂fi
∂xj

A. Donev (Courant Institute) Lecture VI 10/10/2015 18 / 26

Systems of Non-Linear Equations

Newton’s Method for Systems of Equations

It is much harder if not impossible to do globally convergent methods
like bisection in higher dimensions!

A good initial guess is therefore a must when solving systems, and
Newton’s method can be used to refine the guess.

The basic idea behind Newton’s method is to linearize the equation
around the current guess:

f
(
xk + ∆x

)
≈ f

(
xk
)

+
[
J
(
xk
)]

∆x = 0

[
J
(
xk
)]

∆x = −f
(
xk
)

but denote J ≡ J
(
xk
)

xk+1 = xk + ∆x = xk − J−1f
(
xk
)
.

This method requires computing a whole matrix of derivatives,
which can be expensive or hard to do (differentiation by hand?)!

A. Donev (Courant Institute) Lecture VI 10/10/2015 19 / 26

Systems of Non-Linear Equations

Convergence of Newton’s method

Near the root the Jacobian and Hessian don’t change much so just
approximate J ≈ J (α) and H ≈ H (α).

Next order term in Taylor series indicates error

f
(
xk
)

= f (α) + Jek +
1

2

(
ek
)T

Hek = Jek +
1

2

(
ek
)T

Hek ⇒

ek+1 = xk+1 −α = ek − J−1f
(
xk
)

=
1

2
J−1

(
ek
)T

Hek

Newton’s method converges quadratically if started sufficiently close
to a root α: ∥∥ek+1

∥∥ ≤ ∥∥J−1
∥∥ ‖H‖
2

∥∥ek
∥∥2

Newton’s method converges fast if the Jacobian J (α) is
well-conditioned.

Newton’s method requires solving many linear systems, which can
be expensive for many variables.

A. Donev (Courant Institute) Lecture VI 10/10/2015 20 / 26

Systems of Non-Linear Equations

Quasi-Newton methods

For large systems one can use so called quasi-Newton methods to
estimate derivatives using finite-differences and to speed up by using
rank-1 matrix updates (see Woodbury formula in homework 2):

Approximate the Jacobian with another matrix J̃
k

and solve

J̃
k
d = f(xk).

Damp the step by a step length αk . 1,

xk+1 = xk + αkd = xk + ∆xk .

Update Jacobian by a rank-1 update, e.g., one of Broyden’s methods:

J̃
k+1

= J̃
k

+
(

f(xk+1)−
(

f(xk) + J̃
k
∆xk

)) (∆xk
)T

‖∆xk‖22
,

which ensures the desired secant condition

f(xk+1)− f(xk) = J̃
k+1

∆xk .

A. Donev (Courant Institute) Lecture VI 10/10/2015 21 / 26

Systems of Non-Linear Equations

Continuation methods

To get a good initial guess for Newton’s method and ensure that it
converges fast we can use continuation methods (also called
homotopy methods).
The basic idea is to solve

f̃λ (x) = λf (x) + (1− λ) fa (x) = 0

instead of the original equations, where 0 ≤ λ ≤ 1 is a parameter.
If λ = 1, we are solving the original equation f (x) = 0, which is hard
because we do not have a good guess for the initial solution.
If λ = 0, we are solving fa (x) = 0, and we will assume that this is
easy to solve. For example, consider making this a linear function,

fa (x) = x− a,

where a is a vector of parameters that need to be chosen somehow.
One can also take a more general fa (x) = Ax− a where A is a matrix
of parameters, so that solving fa (x) = 0 amounts to a linear solve
which we know how to do already.

A. Donev (Courant Institute) Lecture VI 10/10/2015 22 / 26

Systems of Non-Linear Equations

Path Following

The basic idea of continuation methods is to start with λ = 0, and
solve f̃λ (x) = 0. This gives us a solution x0.

Then increment λ by a little bit, say λ = 0.05, and solve f̃λ (x) using
Newton’s method starting with x0 as an initial guess.
Observe that this is a good initial guess under the assumption that
the solution has not changed much because λ has not changed much.

We can repeat this process until we reach λ = 1, when we get the
actual solution we are after:

Choose a sequence λ0 = 0 < λ1 < λ2 < · · · < λn−1 < λn = 1.
For k = 0 solve fa (x0) = 0 to get x0.
For k = 1, . . . , n, solve a nonlinear system to get xk ,

f̃λk (xk) = 0

using Newton’s method starting from xk−1 as an initial guess.

A. Donev (Courant Institute) Lecture VI 10/10/2015 23 / 26

Systems of Non-Linear Equations

Path Following

Observe that if we change λ very slowly we have hope that the
solution will trace a continuous path of solutions.

That is, we can think of x (λ) as a continuous function defined on
[0, 1], defined implicitly via

λf (x (λ)) + (1− λ) fa (x (λ)) = 0.

This rests on the assumption that this path will not have turning
points, bifurcate or wonder to infinity, and that there is a solution
for every λ.

It turns out that by a judicious choice of fa one can insure this is the
case. For example, choosing a random a and taking fa (x) = x− a
works.

The trick now becomes how to choose the sequence λk to make sure
λ changes not too much but also not too little (i.e., not too slowly),
see HOMPACK library for an example.

A. Donev (Courant Institute) Lecture VI 10/10/2015 24 / 26

Systems of Non-Linear Equations

In practice

It is much harder to construct general robust solvers in higher
dimensions and some problem-specific knowledge is required.

There is no built-in function for solving nonlinear systems in
MATLAB, but the Optimization Toolbox has fsolve.

In many practical situations there is some continuity of the problem
so that a previous solution can be used as an initial guess.

For example, implicit methods for differential equations have a
time-dependent Jacobian J(t) and in many cases the solution x(t)
evolves smootly in time.

For large problems specialized sparse-matrix solvers need to be used.

In many cases derivatives are not provided but there are some
techniques for automatic differentiation.

A. Donev (Courant Institute) Lecture VI 10/10/2015 25 / 26

Systems of Non-Linear Equations

Conclusions/Summary

Root finding is well-conditioned for simple roots (unit multiplicity),
ill-conditioned otherwise.

Methods for solving nonlinear equations are always iterative and the
order of convergence matters: second order is usually good enough.

A good method uses a higher-order unsafe method such as Newton
method near the root, but safeguards it with something like the
bisection method.

Newton’s method is second-order but requires derivative/Jacobian
evaluation. In higher dimensions having a good initial guess for
Newton’s method becomes very important.

Quasi-Newton methods can aleviate the complexity of solving the
Jacobian linear system.

A. Donev (Courant Institute) Lecture VI 10/10/2015 26 / 26

	Basics of Nonlinear Solvers
	One Dimensional Root Finding
	Systems of Non-Linear Equations

