Scientific Computing: Solving Nonlinear Equations

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course MATH-GA. 2043 or CSCI-GA.2112, Fall 2019
October 10th, 2019

Outline

(1) Basics of Nonlinear Solvers

(2) One Dimensional Root Finding

3 Systems of Non-Linear Equations

Fundamentals

- Simplest problem: Root finding in one dimension:

$$
f(x)=0 \text { with } x \in[a, b]
$$

- Or more generally, solving a square system of nonlinear equations

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \quad \Rightarrow f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { for } i=1, \ldots, n
$$

- There can be no closed-form answer, so just as for eigenvalues, we need iterative methods.
- Most generally, starting from $m \geq 1$ initial guesses $x^{0}, x^{1}, \ldots, x^{m}$, iterate:

$$
x^{k+1}=\phi\left(x^{k}, x^{k-1}, \ldots, x^{k-m}\right)
$$

Order of convergence

- Consider one dimensional root finding and let the actual root be α, $f(\alpha)=0$.
- A sequence of iterates x^{k} that converges to α has order of convergence $p \geq 1$ if as $k \rightarrow \infty$

$$
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|^{p}}=\frac{\left|e^{k+1}\right|}{\left|e^{k}\right|^{p}} \rightarrow C=\text { const }
$$

where the constant C is a convergence factor, $C<1$ for $p=1$.

- A method should at least converge linearly $(p=1)$, that is, the error should at least be reduced by a constant factor every iteration, for example, the number of accurate digits increases by 1 every iteration.
- A good method for root finding coverges quadratically $(p=2)$, that is, the number of accurate digits doubles every iteration!

Local vs. global convergence

- A good initial guess is extremely important in nonlinear solvers!
- Assume we are looking for a unique root $a \leq \alpha \leq b$ starting with an initial guess $a \leq x_{0} \leq b$.
- A method has local convergence if it converges to a given root α for any initial guess that is sufficiently close to α (in the neighborhood of a root).
- A method has global convergence if it converges to the root for any initial guess.
- General rule: Global convergence requires a slower (careful) method but is safer.
- It is best to combine a global method to first find a good initial guess close to α and then use a faster local method.

Conditioning of root finding

$$
\begin{gathered}
f(\alpha+\delta \alpha) \approx f(\alpha)+f^{\prime}(\alpha) \delta \alpha=\delta f \\
|\delta \alpha| \approx \frac{|\delta f|}{\left|f^{\prime}(\alpha)\right|} \quad \Rightarrow \kappa_{\text {abs }}=\left|f^{\prime}(\alpha)\right|^{-1} .
\end{gathered}
$$

- The problem of finding a simple root is well-conditioned when $\left|f^{\prime}(\alpha)\right|$ is far from zero.
- Finding roots with multiplicity $m>1$ is ill-conditioned:

$$
\left|f^{\prime}(\alpha)\right|=\cdots=\left|f^{(m-1)}(\alpha)\right|=0 \quad \Rightarrow \quad|\delta \alpha| \approx\left[\frac{|\delta f|}{\left|f^{m}(\alpha)\right|}\right]^{1 / m}
$$

- Note that finding roots of algebraic equations (polynomials) is a separate subject of its own that we skip.

The bisection and Newton algorithms

LOCAL FAST convergence

Bisection

- First step is to locate a root by searching for a sign change, i.e., finding a^{0} and b^{0} such that

$$
f\left(a^{0}\right) f\left(b^{0}\right)<0
$$

- The simply bisect the interval, for $k=0,1, \ldots$

$$
x^{k}=\frac{a^{k}+b^{k}}{2}
$$

and choose the half in which the function changes sign, i.e., either $a^{k+1}=x^{k}, b^{k+1}=b^{k}$ or $b^{k+1}=x^{k}, a^{k+1}=a^{k}$ so that $f\left(a^{k+1}\right) f\left(b^{k+1}\right)<0$.

- Observe that each step we need one function evaluation, $f\left(x^{k}\right)$, but only the sign matters.
- The convergence is essentially linear because

$$
\left|x^{k}-\alpha\right| \leq \frac{b^{k}}{2^{k+1}} \quad \Rightarrow \frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|} \leq 2
$$

Newton's Method

- Bisection is a slow but sure method. It uses no information about the value of the function or its derivatives.
- Better convergence, of order $p=(1+\sqrt{5}) / 2 \approx 1.63$ (the golden ratio), can be achieved by using the value of the function at two points, as in the secant method.
- Achieving second-order convergence requires also evaluating the function derivative.
- Linearize the function around the current guess using Taylor series:

$$
f\left(x^{k+1}\right) \approx f\left(x^{k}\right)+\left(x^{k+1}-x^{k}\right) f^{\prime}\left(x^{k}\right)=0
$$

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
$$

Convergence of Newton's method

Use Taylor series with remainder and divide by $f^{\prime}\left(x^{k}\right) \neq 0$:
$\exists \xi \in\left[x_{n}, \alpha\right]: \quad f(\alpha)=0=f\left(x^{k}\right)+\left(\alpha-x^{k}\right) f^{\prime}\left(x^{k}\right)+\frac{1}{2}\left(\alpha-x^{k}\right)^{2} f^{\prime \prime}(\xi)=0$,

$$
\begin{gathered}
{\left[x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}\right]-\alpha=-\frac{1}{2}\left(\alpha-x^{k}\right)^{2} \frac{f^{\prime \prime}(\xi)}{f^{\prime}\left(x^{k}\right)}} \\
x^{k+1}-\alpha=e^{k+1}=-\frac{1}{2}\left(e^{k}\right)^{2} \frac{f^{\prime \prime}(\xi)}{f^{\prime}\left(x^{k}\right)}
\end{gathered}
$$

which shows second-order convergence

$$
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|^{2}}=\frac{\left|e^{k+1}\right|}{\left|e^{k}\right|^{2}}=\left|\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(x^{k}\right)}\right| \rightarrow\left|\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right|
$$

Basin of attraction for Newton's method

- For convergence we want $\left|e^{k+1}\right|<\left|e^{k}\right|$ so we want

$$
\left|e^{k}\right|\left|\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right|<1 \quad \Rightarrow \quad\left|e^{k}\right|<\left|\frac{2 f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}\right|
$$

- Newton's method converges quadratically if we start sufficiently close to a simple root, more precisely, if

$$
\left|x^{0}-\alpha\right|=\left|e^{0}\right| \lesssim\left|\frac{2 f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}\right|
$$

This is just a rough estimate, not a precise bound!

- A robust but fast algorithm for root finding would safeguard Newton's method with bisection: Eventually we will accept all Newton steps once close to the root, so we will get quadratic convergence, but also be guaranteed to converge to a root.

Fixed-Point Iteration

$$
f(x)=0 \Rightarrow x=f(x)+x=\phi(x)
$$

- Then we can use fixed-point iteration

$$
x^{k+1}=\phi\left(x^{k}\right)
$$

- whose fixed point (limit), if it converges, is $x \rightarrow \alpha$. Taylor series estimate:

$$
\begin{gathered}
x^{k+1}=\alpha+e^{k+1} \approx \phi(\alpha)+\phi^{\prime}(\alpha)\left(x^{k}-\alpha\right)=\alpha+\phi^{\prime}(\alpha) e^{k} \quad \Rightarrow \\
e^{k+1} \approx \phi^{\prime}(\alpha) e^{k} \quad \Rightarrow \quad \text { we want }\left|\phi^{\prime}(\alpha)\right|<1
\end{gathered}
$$

- It can be proven that the fixed-point iteration converges if $\phi(x)$ is a contraction mapping:

$$
\left|\phi^{\prime}(x)\right| \leq K<1 \quad \forall x \in[a, b]
$$

[If $\phi(x)$ is Lipschitz continuous with Lipschitz constant $L<1$.]

Stopping Criteria

- A good library function for root finding has to implement careful termination criteria.
- An obvious option is to terminate when the residual becomes small

$$
\left|f\left(x^{k}\right)\right|<\varepsilon
$$

which works for very well-conditioned problems, $\left|f^{\prime}(\alpha)\right| \sim 1$.

- Another option is to terminate when the increment becomes small

$$
\left|x^{k+1}-x^{k}\right|<\varepsilon
$$

- For example, for fixed-point iteration this test would stop at step k :

$$
x^{k+1}-x^{k}=e^{k+1}-e^{k} \approx\left[1-\phi^{\prime}(\alpha)\right] e^{k} \quad \Rightarrow \quad\left|e^{k}\right| \approx \frac{\varepsilon}{\left[1-\phi^{\prime}(\alpha)\right]}
$$

so we see that the increment test works for rapidly converging iterations, i.e., when $\left|1-\phi^{\prime}(\alpha)\right|$ is not small.

In practice

- A robust but fast algorithm for root finding would combine (safeguard) bisection with Newton's method: Given a current bisection interval $[a, b]$, if $x^{k+1} \in(a, b)$ then accept Newton step, otherwise just set $x^{k+1}=(a+b) / 2$. Take new bisection interval to be either $\left[a, x^{k+1}\right]$ or $\left[x^{k+1}, b\right]$ the same way as in bisection where we always use $x^{k+1}=(a+b) / 2$.
- Newton's method requires first-order derivatives so often other methods are preferred that require function evaluation only. Examples include secant method (based on linear interpolation) or inverse quadratic interpolation (fit a parabola through three past points $\left(f\left(x_{i}\right), x_{i}\right), i=1,2,3$, and evaluate for zero argument to give a new point).
- Matlab's function fzero combines bisection, secant and inverse quadratic interpolation and is "fail-safe".
See, for example, "Brent's method" on Wikipedia.

Find zeros of $a \sin (x)+b \exp \left(-x^{2} / 2\right)$

\% $f=@ m f i l e$ uses a function in an m-file
\% Parameterized functions are created with:
$\mathrm{a}=1 ; \mathrm{b}=2$;
$f=@(x) \quad a * \sin (x)+b * \exp \left(-x^{\wedge} 2 / 2\right) ; \%$ Handle
figure (1)
ezplot (f,[-5,5]); grid
$x 1=f z e r o(f, \quad[-2,0])$
$[x 2, f 2]=$ fzero(f, 2.0)
$x 1=-1.227430849357917$
$x 2=3.155366415494801$
$\mathrm{f} 2=-2.116362640691705 \mathrm{e}-16$

Figure of $f(x)$

Multi-Variable Taylor Expansion

- It is convenient to focus on one of the equations, i.e., consider a scalar function $f(\mathbf{x})$.
- The usual Taylor series is replaced by

$$
f(\mathbf{x}+\Delta \mathbf{x})=f(\mathbf{x})+\mathbf{g}^{T}(\Delta \mathbf{x})+\frac{1}{2}(\Delta \mathbf{x})^{T} \mathbf{H}(\Delta \mathbf{x})
$$

where the gradient vector is

$$
\mathbf{g}=\nabla_{\mathbf{x}} f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right]^{T}
$$

and the Hessian matrix is

$$
\mathbf{H}=\nabla_{\mathbf{x}}^{2} f=\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\}_{i j}
$$

Vector Functions of Vectors

- We are after solving a square system of nonlinear equations for some variables \mathbf{x} :

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \quad \Rightarrow f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { for } i=1, \ldots, n
$$

- The first-order Taylor series is

$$
\mathbf{f}\left(\mathbf{x}^{k}+\Delta \mathbf{x}\right) \approx \mathbf{f}\left(\mathbf{x}^{k}\right)+\left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta \mathbf{x}=\mathbf{0}
$$

where the Jacobian \mathbf{J} has the gradients of $f_{i}(\mathbf{x})$ as rows:

$$
[\mathbf{J}(\mathbf{x})]_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

Newton's Method for Systems of Equations

- It is much harder if not impossible to do globally convergent methods like bisection in higher dimensions!
- A good initial guess is therefore a must when solving systems, and Newton's method can be used to refine the guess.
- The basic idea behind Newton's method is to linearize the equation around the current guess:

$$
\begin{gathered}
\mathbf{f}\left(\mathbf{x}^{k}+\Delta \mathbf{x}\right) \approx \mathbf{f}\left(\mathbf{x}^{k}\right)+\left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta \mathbf{x}=\mathbf{0} \\
{\left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta \mathbf{x}=-\mathbf{f}\left(\mathbf{x}^{k}\right) \text { but denote } \mathbf{J} \equiv \mathbf{J}\left(\mathbf{x}^{k}\right)} \\
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\Delta \mathbf{x}=\mathbf{x}^{k}-\mathbf{J}^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)
\end{gathered}
$$

- This method requires computing a whole matrix of derivatives, which can be expensive or hard to do (differentiation by hand?)!

Convergence of Newton's method

- Near the root the Jacobian and Hessian don't change much so just approximate $\mathbf{J} \approx \mathbf{J}(\boldsymbol{\alpha})$ and $\mathbf{H} \approx \mathbf{H}(\boldsymbol{\alpha})$.
- Next order term in Taylor series indicates error

$$
\begin{gathered}
\mathbf{f}\left(\mathbf{x}^{k}\right)=\mathbf{f}(\boldsymbol{\alpha})+\mathbf{J} \mathbf{e}^{k}+\frac{1}{2}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H} \mathbf{e}^{k}=\mathbf{J} \mathbf{e}^{k}+\frac{1}{2}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H} \mathbf{e}^{k} \Rightarrow \\
\mathbf{e}^{k+1}=\mathbf{x}^{k+1}-\boldsymbol{\alpha}=\mathbf{e}^{k}-\mathbf{J}^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)=\frac{1}{2} \mathbf{J}^{-1}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H e}^{k}
\end{gathered}
$$

- Newton's method converges quadratically if started sufficiently close to a root $\boldsymbol{\alpha}$:

$$
\left\|\mathbf{e}^{k+1}\right\| \leq \frac{\left\|\mathbf{J}^{-1}\right\|\|\mathbf{H}\|}{2}\left\|\mathbf{e}^{k}\right\|^{2}
$$

- Newton's method converges fast if the Jacobian $\mathbf{J}(\boldsymbol{\alpha})$ is well-conditioned.
- Newton's method requires solving many linear systems, which can be expensive for many variables.

Quasi-Newton methods

- For large systems one can use so called quasi-Newton methods to estimate derivatives using finite-differences and to speed up by using rank-1 matrix updates (see Woodbury formula in homework 2):
- Approximate the Jacobian with another matrix $\widetilde{\mathbf{J}}^{k}$ and solve $\widetilde{\mathbf{J}}^{k} \mathbf{d}=\mathbf{f}\left(\mathbf{x}^{k}\right)$.
- Damp the step by a step length $\alpha_{k} \lesssim 1$,

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}=\mathbf{x}^{k}+\Delta \mathbf{x}^{k}
$$

- Update Jacobian by a rank-1 update, e.g., one of Broyden's methods:

$$
\tilde{\mathbf{J}}^{k+1}=\tilde{\mathbf{J}}^{k}+\left(\mathbf{f}\left(\mathbf{x}^{k+1}\right)-\left(\mathbf{f}\left(\mathbf{x}^{k}\right)+\tilde{\mathbf{\jmath}}^{k} \Delta \mathbf{x}^{k}\right)\right) \frac{\left(\Delta \mathbf{x}^{k}\right)^{T}}{\left\|\Delta \mathbf{x}^{k}\right\|_{2}^{2}},
$$

which ensures the desired secant condition

$$
\mathbf{f}\left(\mathbf{x}^{k+1}\right)-\mathbf{f}\left(\mathbf{x}^{k}\right)=\tilde{\mathbf{J}}^{k+1} \Delta \mathbf{x}^{k}
$$

Continuation methods

- To get a good initial guess for Newton's method and ensure that it converges fast we can use continuation methods (also called homotopy methods).
- The basic idea is to solve

$$
\tilde{\mathbf{f}}_{\lambda}(\mathbf{x})=\lambda \mathbf{f}(\mathbf{x})+(1-\lambda) \mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{0}
$$

instead of the original equations, where $0 \leq \lambda \leq 1$ is a parameter.

- If $\lambda=1$, we are solving the original equation $\mathbf{f}(\mathbf{x})=\mathbf{0}$, which is hard because we do not have a good guess for the initial solution.
- If $\lambda=0$, we are solving $\mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{0}$, and we will assume that this is easy to solve. For example, consider making this a linear function,

$$
\mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{x}-\mathbf{a},
$$

where \mathbf{a} is a vector of parameters that need to be chosen somehow.
One can also take a more general $\mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{A x}-\mathbf{a}$ where \mathbf{A} is a matrix of parameters, so that solving $\mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{0}$ amounts to a linear solve which we know how to do already.

Path Following

- The basic idea of continuation methods is to start with $\lambda=0$, and solve $\tilde{\mathbf{f}}_{\lambda}(\mathbf{x})=0$. This gives us a solution \mathbf{x}_{0}.
- Then increment λ by a little bit, say $\lambda=0.05$, and solve $\tilde{\mathbf{f}}_{\lambda}(\mathbf{x})$ using Newton's method starting with \mathbf{x}_{0} as an initial guess.
Observe that this is a good initial guess under the assumption that the solution has not changed much because λ has not changed much.
- We can repeat this process until we reach $\lambda=1$, when we get the actual solution we are after:
- Choose a sequence $\lambda_{0}=0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n-1}<\lambda_{n}=1$.
- For $k=0$ solve $\mathbf{f}_{\mathbf{a}}\left(\mathbf{x}_{0}\right)=\mathbf{0}$ to get \mathbf{x}_{0}.
- For $k=1, \ldots, n$, solve a nonlinear system to get \mathbf{x}_{k},

$$
\tilde{\mathbf{f}}_{\lambda_{k}}\left(\mathbf{x}_{k}\right)=\mathbf{0}
$$

using Newton's method starting from \mathbf{x}_{k-1} as an initial guess.

Path Following

- Observe that if we change λ very slowly we have hope that the solution will trace a continuous path of solutions.
- That is, we can think of $\mathbf{x}(\lambda)$ as a continuous function defined on $[0,1]$, defined implicitly via

$$
\lambda \mathbf{f}(\mathbf{x}(\lambda))+(1-\lambda) \mathbf{f}_{\mathbf{a}}(\mathbf{x}(\lambda))=\mathbf{0} .
$$

- This rests on the assumption that this path will not have turning points, bifurcate or wonder to infinity, and that there is a solution for every λ.
- It turns out that by a judicious choice of \mathbf{f}_{a} one can insure this is the case. For example, choosing a random \mathbf{a} and taking $\mathbf{f}_{\mathbf{a}}(\mathbf{x})=\mathbf{x}-\mathbf{a}$ works.
- The trick now becomes how to choose the sequence λ_{k} to make sure λ changes not too much but also not too little (i.e., not too slowly), see HOMPACK library for an example.

In practice

- It is much harder to construct general robust solvers in higher dimensions and some problem-specific knowledge is required.
- There is no built-in function for solving nonlinear systems in MATLAB, but the Optimization Toolbox has fsolve.
- In many practical situations there is some continuity of the problem so that a previous solution can be used as an initial guess.
- For example, implicit methods for differential equations have a time-dependent Jacobian $\mathbf{J}(t)$ and in many cases the solution $\mathbf{x}(t)$ evolves smootly in time.
- For large problems specialized sparse-matrix solvers need to be used.
- In many cases derivatives are not provided but there are some techniques for automatic differentiation.

Conclusions/Summary

- Root finding is well-conditioned for simple roots (unit multiplicity), ill-conditioned otherwise.
- Methods for solving nonlinear equations are always iterative and the order of convergence matters: second order is usually good enough.
- A good method uses a higher-order unsafe method such as Newton method near the root, but safeguards it with something like the bisection method.
- Newton's method is second-order but requires derivative/Jacobian evaluation. In higher dimensions having a good initial guess for Newton's method becomes very important.
- Quasi-Newton methods can aleviate the complexity of solving the Jacobian linear system.

