Scientific Computing: Solving Linear Systems

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ Course MATH-GA. 2043 or CSCI-GA.2112, Fall 2019
September 19th and 26th, 2019

Outline

(1) Linear Algebra Background
(2) Conditioning of linear systems
(3) Gauss elimination and LU factorization
4) Beyond GEM

- Symmetric Positive-Definite Matrices
(5) Overdetermined Linear Systems
(6) Sparse Matrices
(7) Conclusions

Linear Spaces

- A vector space \mathcal{V} is a set of elements called vectors $\mathbf{x} \in \mathcal{V}$ that may be multiplied by a scalar c and added, e.g.,

$$
\mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}
$$

- I will denote scalars with lowercase letters and vectors with lowercase bold letters.
- Prominent examples of vector spaces are \mathbb{R}^{n} (or more generally \mathbb{C}^{n}), but there are many others, for example, the set of polynomials in x.
- A subspace $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ of a vector space is a subset such that sums and multiples of elements of \mathcal{V}^{\prime} remain in \mathcal{V}^{\prime} (i.e., it is closed).
- An example is the set of vectors in $x \in \mathbb{R}^{3}$ such that $x_{3}=0$.

Image Space

- Consider a set of n vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ and form a matrix by putting these vectors as columns

$$
\mathbf{A}=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \cdots \mid \mathbf{a}_{m}\right] \in \mathbb{R}^{m, n}
$$

- I will denote matrices with bold capital letters, and sometimes write $\mathbf{A}=[m, n]$ to indicate dimensions.
- The matrix-vector product is defined as a linear combination of the columns:

$$
\mathbf{b}=\mathbf{A} \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n} \in \mathbb{R}^{m} .
$$

- The image $\operatorname{im}(\mathbf{A})$ or range range (\mathbf{A}) of a matrix is the subspace of all linear combinations of its columns, i.e., the set of all \mathbf{b}^{\prime} s. It is also sometimes called the column space of the matrix.

Dimension

- The set of vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$ are linearly independent or form a basis for \mathbb{R}^{m} if $\mathbf{b}=\mathbf{A x}=\mathbf{0}$ implies that $\mathbf{x}=\mathbf{0}$.
- The dimension $r=\operatorname{dim} \mathcal{V}$ of a vector (sub)space \mathcal{V} is the number of elements in a basis. This is a property of \mathcal{V} itself and not of the basis, for example,

$$
\operatorname{dim} \mathbb{R}^{n}=n
$$

- Given a basis \mathbf{A} for a vector space \mathcal{V} of dimension n, every vector of $\mathbf{b} \in \mathcal{V}$ can be uniquely represented as the vector of coefficients \mathbf{x} in that particular basis,

$$
\mathbf{b}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

- A simple and common basis for \mathbb{R}^{n} is $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$, where \mathbf{e}_{k} has all components zero except for a single 1 in position k.
With this choice of basis the coefficients are simply the entries in the vector, $\mathbf{b} \equiv \mathbf{x}$.

Kernel Space

- The dimension of the column space of a matrix is called the rank of the matrix $\mathbf{A} \in \mathbb{R}^{m, n}$,

$$
r=\operatorname{rank} \mathbf{A} \leq \min (m, n)
$$

- If $r=\min (m, n)$ then the matrix is of full rank.
- The nullspace null (\mathbf{A}) or $\operatorname{kernel} \operatorname{ker}(\mathbf{A})$ of a matrix \mathbf{A} is the subspace of vectors \mathbf{x} for which

$$
A x=0
$$

- The dimension of the nullspace is called the nullity of the matrix.
- For a basis \mathbf{A} the nullspace is null $(\mathbf{A})=\{\mathbf{0}\}$ and the nullity is zero.

Orthogonal Spaces

- An inner-product space is a vector space together with an inner or dot product, which must satisfy some properties.
- The standard dot-product in \mathbb{R}^{n} is denoted with several different notations:

$$
\mathbf{x} \cdot \mathbf{y}=(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- For \mathbb{C}^{n} we need to add complex conjugates (here \star denotes a complex conjugate transpose, or adjoint),

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{\star} \mathbf{y}=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

- Two vectors \mathbf{x} and \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y}=0$.

Part I of Fundamental Theorem

- One of the most important theorems in linear algebra is that the sum of rank and nullity is equal to the number of columns: For $\mathbf{A} \in \mathbb{R}^{m, n}$

$$
\operatorname{rank} \mathbf{A}+\text { nullity } \mathbf{A}=n
$$

- In addition to the range and kernel spaces of a matrix, two more important vector subspaces for a given matrix \mathbf{A} are the:
- Row space or coimage of a matrix is the column (image) space of its transpose, im \mathbf{A}^{T}.
Its dimension is also equal to the the rank.
- Left nullspace or cokernel of a matrix is the nullspace or kernel of its transpose, $\operatorname{ker} \mathbf{A}^{T}$.

Part II of Fundamental Theorem

- The orthogonal complement \mathcal{V}^{\perp} or orthogonal subspace of a subspace \mathcal{V} is the set of all vectors that are orthogonal to every vector in \mathcal{V}.
- Let \mathcal{V} be the set of vectors in $x \in \mathbb{R}^{3}$ such that $x_{3}=0$. Then \mathcal{V}^{\perp} is the set of all vectors with $x_{1}=x_{2}=0$.
- Second fundamental theorem in linear algebra:

$$
\begin{aligned}
& \operatorname{im} \mathbf{A}^{T}=(\operatorname{ker} \mathbf{A})^{\perp} \\
& \operatorname{ker} \mathbf{A}^{T}=(\operatorname{im} \mathbf{A})^{\perp}
\end{aligned}
$$

Linear Transformation

- A function $L: \mathcal{V} \rightarrow \mathcal{W}$ mapping from a vector space \mathcal{V} to a vector space \mathcal{W} is a linear function or a linear transformation if

$$
L(\alpha \mathbf{v})=\alpha L(\mathbf{v}) \text { and } L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)
$$

- Any linear transformation L can be represented as a multiplication by a matrix L

$$
L(\mathbf{v})=\mathbf{L v} .
$$

- For the common bases of $\mathcal{V}=\mathbb{R}^{n}$ and $\mathcal{W}=\mathbb{R}^{m}$, the product $\mathbf{w}=\mathbf{L v}$ is simply the usual matix-vector product,

$$
w_{i}=\sum_{k=1}^{n} L_{i k} v_{k},
$$

which is simply the dot-product between the i-th row of the matrix and the vector \mathbf{v}.

Matrix algebra

$$
w_{i}=(\mathbf{L v})_{i}=\sum_{k=1}^{n} L_{i k} v_{k}
$$

- The composition of two linear transformations $\mathbf{A}=[m, p]$ and $\mathbf{B}=[p, n]$ is a matrix-matrix product $\mathbf{C}=\mathbf{A B}=[m, n]:$

$$
\begin{gathered}
\mathbf{z}=\mathbf{A}(\mathbf{B} \mathbf{x})=\mathbf{A} \mathbf{y}=(\mathbf{A B}) \mathbf{x} \\
z_{i}=\sum_{k=1}^{n} A_{i k} y_{k}=\sum_{k=1}^{p} A_{i k} \sum_{j=1}^{n} B_{k j} x_{j}=\sum_{j=1}^{n}\left(\sum_{k=1}^{p} A_{i k} B_{k j}\right) x_{j}=\sum_{j=1}^{n} C_{i j} x_{j} \\
C_{i j}=\sum_{k=1}^{p} A_{l k} B_{k j}
\end{gathered}
$$

- Matrix-matrix multiplication is not commutative, $\mathbf{A B} \neq \mathbf{B A}$ in general.

The Matrix Inverse

- A square matrix $\mathbf{A}=[n, n]$ is invertible or nonsingular if there exists a matrix inverse $\mathbf{A}^{-1}=\mathbf{B}=[n, n]$ such that:

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I},
$$

where \mathbf{I} is the identity matrix (ones along diagonal, all the rest zeros).

- The following statements are equivalent for $\mathbf{A} \in \mathbb{R}^{n, n}$:
- A is invertible.
- \mathbf{A} is full-rank, $\operatorname{rank} \mathbf{A}=n$.
- The columns and also the rows are linearly independent and form a basis for \mathbb{R}^{n}.
- The determinant is nonzero, $\operatorname{det} \mathbf{A} \neq 0$.
- Zero is not an eigenvalue of \mathbf{A}.

Matrix Algebra

- Matrix-vector multiplication is just a special case of matrix-matrix multiplication. Note $\mathbf{x}^{T} \mathbf{y}$ is a scalar (dot product).

$$
\begin{gathered}
\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B} \text { and } \mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C}) \\
\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A} \text { and }(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T} \\
\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \text { and }(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \text { and }\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
\end{gathered}
$$

- Instead of matrix division, think of multiplication by an inverse:

$$
\mathbf{A B}=\mathbf{C} \quad \Rightarrow \quad\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{A}^{-1} \mathbf{C} \quad \Rightarrow \quad \begin{cases}\mathbf{B} & =\mathbf{A}^{-1} \mathbf{C} \\ \mathbf{A} & =\mathbf{C B}^{-1}\end{cases}
$$

Vector norms

- Norms are the abstraction for the notion of a length or magnitude.
- For a vector $\mathbf{x} \in \mathbb{R}^{n}$, the p-norm is

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

and special cases of interest are:
(1) The 1-norm (L^{1} norm or Manhattan distance), $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
(2) The 2 -norm (L^{2} norm, Euclidian distance),

$$
\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

(3) The ∞-norm (L^{∞} or maximum norm), $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
(1) Note that all of these norms are inter-related in a finite-dimensional setting.

Matrix norms

- Matrix norm induced by a given vector norm:

$$
\|\mathbf{A}\|=\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \Rightarrow\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|
$$

- The last bound holds for matrices as well, $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$.
- Special cases of interest are:
(1) The 1-norm or column sum norm, $\|\mathbf{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
(2) The ∞-norm or row sum norm, $\|\mathbf{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$
(3) The 2-norm or spectral norm, $\|\mathbf{A}\|_{2}=\sigma_{1}$ (largest singular value)
(9) The Euclidian or Frobenius norm, $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$ (note this is not an induced norm)

Matrices and linear systems

- It is said that 70% or more of applied mathematics research involves solving systems of m linear equations for n unknowns:

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \cdots, m
$$

- Linear systems arise directly from discrete models, e.g., traffic flow in a city. Or, they may come through representing or more abstract linear operators in some finite basis (representation).
Common abstraction:

$$
\mathbf{A x}=\mathbf{b}
$$

- Special case: Square invertible matrices, $m=n, \operatorname{det} \mathbf{A} \neq 0$:

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

- The goal: Calculate solution \mathbf{x} given data \mathbf{A}, \mathbf{b} in the most numerically stable and also efficient way.

Stability analysis

Perturbations on right hand side (rhs) only:

$$
\begin{gathered}
\mathbf{A}(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b} \quad \Rightarrow \mathbf{b}+\mathbf{A} \delta \mathbf{x}=\mathbf{b}+\delta \mathbf{b} \\
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b} \quad \Rightarrow\|\delta \mathbf{x}\| \leq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|
\end{gathered}
$$

Using the bounds

$$
\|\mathbf{b}\| \leq\|\mathbf{A}\|\|\mathbf{x}\| \quad \Rightarrow\|\mathbf{x}\| \geq\|\mathbf{b}\| /\|\mathbf{A}\|
$$

the relative error in the solution can be bounded by

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|}{\|\mathbf{x}\|} \leq \frac{\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|}{\|\mathbf{b}\| /\|\mathbf{A}\|}=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

where the conditioning number $\kappa(\mathbf{A})$ depends on the matrix norm used:

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \geq 1
$$

Conditioning Number

- The full derivation, not given here, estimates the uncertainty or perturbation in the solution:

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1-\kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}}\left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}+\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right) .
$$

The worst-case conditioning of the linear system is determined by $\kappa(\mathbf{A})$.

- Best possible error with rounding unit $u \approx 10^{-16}$:

$$
\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \lesssim 2 u \kappa(\mathbf{A})
$$

- Solving an ill-conditioned system, $\kappa(\mathbf{A}) \gg 1$ (e.g., $\kappa=10^{15}$!), should only be done if something special is known.
- The conditioning number can only be estimated in practice since \mathbf{A}^{-1} is not available (see MATLAB's rcond function).

GEM: Eliminating x_{1}

Step 1:

GEM: Eliminating x_{2}

Step 2 :

$$
\underset{\substack{\text { Eliminate } \\
x_{3} \\
\text { entirely }}}{\left[\begin{array}{cc}
a_{11}^{(1)} & a_{12}^{(1)} \\
0 & a_{22}^{(2)}
\end{array}\right]} \underset{\tilde{\imath}}{[}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{1}^{(3)}-a_{13}^{(1)} & x_{3} \\
b_{2}^{(3)}-a_{23}^{(2)} & x_{3}
\end{array}\right]=\tilde{b}
$$

solve her $x_{2}=\frac{\tilde{b}}{a_{22}^{(2)}}$, then x_{1}, and done!
IDEA: Stare the multipliers in the lower triangle of A :

Matrix at Step k :
$\left[\begin{array}{ll}L^{(k)} & u^{(k)} \\ A^{(k)}\end{array}\right]\left[\begin{array}{l|l|l}u_{11} & u_{12} & u_{13} \\ \hline l_{21} & a_{22}^{(2)} & a_{23}^{(2)} \\ \hline l_{31} & a_{32}^{(2)} & a_{33}^{(2)}\end{array}\right]$

GEM as an $L U$ factorization tool

- We have actually factorized \mathbf{A} as

$$
\mathbf{A}=\mathbf{L U}
$$

\mathbf{L} is unit lower triangular ($l_{i i}=1$ on diagonal), and \mathbf{U} is upper triangular.

- GEM is thus essentially the same as the $L U$ factorization method.

GEM in MATLAB

\% Sample MATLAB code (for learning purposes only, not function $A=\operatorname{MyLU}(A)$
\% LU factorization in-place (overwrite A)
[n, m] = size (A);
if ($\mathrm{n}^{\sim}=\mathrm{m}$); error('Matrix not square'); end for $\mathrm{k}=1:(\mathrm{n}-1)$ \% For variable $\times(\mathrm{k})$
\% Calculate multipliers in column k :
$A((k+1): n, k)=A((k+1): n, k) / A(k, k)$;
\% Note: Pivot element A(k,k) assumed nonzero! for $\mathrm{j}=(\mathrm{k}+1)$: n
\% Eliminate variable $\times(k)$:
$A((k+1): n, j)=A((k+1): n, j)-\ldots$ $A((k+1): n, k) * A(k, j)$;
end
end
end

Pivoting

Zero diagonal entries (picots) pose a problem \rightarrow pivoting (swapping rows and columns)

$$
\begin{aligned}
& A x=b \\
& {\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 2 & 2 \\
3 & 6 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
6 \\
13
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 3 \\
\hline 2 & 0 & -4 \\
3 & 3 & -5
\end{array}\right] \stackrel{\swarrow}{L}} \\
& \left.\left.\left[\begin{array}{c|cc}
1 & 1 & 3 \\
\hline 3 & 3 & -5 \\
2 & 0 & -4
\end{array}\right] \Rightarrow\left[\begin{array}{c|c|c}
1 & 1 & 1 \\
\hline
\end{array}\right] \begin{array}{l}
\text { Observe } \\
\hline 3 \\
\hline 2
\end{array} \right\rvert\, \begin{array}{c}
3 \\
\hline 2
\end{array}\right] \quad \begin{array}{l}
\text { PERM } \\
\hline U=A
\end{array}
\end{aligned}
$$

Pivoting during LU factorization

- Partial (row) pivoting permutes the rows (equations) of \mathbf{A} in order to ensure sufficiently large pivots and thus numerical stability:

$$
\mathbf{P A}=\mathbf{L U}
$$

- Here \mathbf{P} is a permutation matrix, meaning a matrix obtained by permuting rows and/or columns of the identity matrix.
- Complete pivoting also permutes columns, $\mathbf{P A Q}=\mathbf{L U}$.

Gauss Elimination Method (GEM)

- GEM is a general method for dense matrices and is commonly used.
- Implementing GEM efficiently and stably is difficult and we will not discuss it here, since others have done it for you!
- The LAPACK public-domain library is the main repository for excellent implementations of dense linear solvers.
- MATLAB uses a highly-optimized variant of GEM by default, mostly based on LAPACK.
- MATLAB does have specialized solvers for special cases of matrices, so always look at the help pages!

Solving linear systems

- Once an $L U$ factorization is available, solving a linear system is simple:

$$
\mathbf{A} \mathbf{x}=\mathbf{L U x}=\mathbf{L}(\mathbf{U} \mathbf{x})=\mathbf{L} \mathbf{y}=\mathbf{b}
$$

so solve for \mathbf{y} using forward substitution.
This was implicitly done in the example above by overwriting \mathbf{b} to become y during the factorization.

- Then, solve for x using backward substitution

$$
\mathbf{U x}=\mathbf{y}
$$

- If row pivoting is necessary, the same applies but \mathbf{L} or \mathbf{U} may be permuted upper/lower triangular matrices,

$$
\mathbf{A}=\widetilde{\mathbf{L}} \mathbf{U}=\left(\mathbf{P}^{T} \mathbf{L}\right) \mathbf{U}
$$

In MATLAB

- In MATLAB, the backslash operator (see help on mldivide)

$$
x=A \backslash b \approx A^{-1} b
$$

solves the linear system $\mathbf{A x}=\mathbf{b}$ using the LAPACK library. Never use matrix inverse to do this, even if written as such on paper.

- Doing $x=A \backslash b$ is equivalent to performing an $L U$ factorization and doing two triangular solves (backward and forward substitution):

$$
\begin{aligned}
{[\tilde{L}, U] } & =l u(A) \\
y & =\tilde{L} \backslash b \\
x & =U \backslash y
\end{aligned}
$$

- This is a carefully implemented backward stable pivoted LU factorization, meaning that the returned solution is as accurate as the conditioning number allows.

GEM Matlab example (1)

$\gg A=\left[\begin{array}{llllllllll}1 & 2 & 3 & ; & 4 & 5 & 6 & ; & 7 & 8 \\ \hline\end{array}\right]$;
$\gg b=\left[\begin{array}{lll}2 & 1 & -1\end{array}\right]$;
$\gg x=A^{\wedge}(-1) * b ; x^{\prime} \%$ Don't do this!
ans $=\begin{array}{lll}-2.5556 & 2.1111 & 0.1111\end{array}$
$\gg x=A \backslash b ; x^{\prime} \%$ Do this instead
ans $=-2.5556$
$2.1111 \quad 0.1111$
>> linsolve(A,b)' \% Even more control ans $=\quad-2.5556$ 2.1111
0.1111

GEM Matlab example (2)

$\gg[L, U]=1 u(A) \%$ Even better if resolving

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{L}= & 0.1429 & 1.0000
\end{array} \\
& 0.5714 \quad 0.5000 \quad 1.0000 \\
& 1.0000 \\
& \mathrm{U}=7.0000 \\
& 8.0000 \quad 0 \\
& \begin{array}{lrr}
0 & 0.8571 & 3.0000 \\
0 & 0 & 4.5000
\end{array} \\
& \gg \operatorname{norm}(\mathrm{~L} * \mathrm{U}-\mathrm{A}, \mathrm{inf}) \\
& \text { ans }= \\
& 0 \\
& \gg y=L \backslash b ; \\
& \gg x=U \backslash y ; x^{\prime} \\
& \text { ans }=\begin{array}{lll}
-2.5556 & 2.1111 & 0.1111
\end{array}
\end{aligned}
$$

Cost estimates for GEM

- For forward or backward substitution, at step k there are $\sim(n-k)$ multiplications and subtractions, plus a few divisions.
The total over all n steps is

$$
\sum_{k=1}^{n}(n-k)=\frac{n(n-1)}{2} \approx \frac{n^{2}}{2}
$$

subtractions and multiplications, giving a total of $O\left(n^{2}\right)$
floating-point operations (FLOPs).

- The LU factorization itself costs a lot more, $O\left(n^{3}\right)$,

$$
\mathrm{FLOPS} \approx \frac{2 n^{3}}{3}
$$

and the triangular solves are negligible for large systems.

- When many linear systems need to be solved with the same \mathbf{A} the factorization can be reused.

Matrix Rescaling and Reordering

- Pivoting is not always sufficient to ensure lack of roundoff problems. In particular, large variations among the entries in A should be avoided.
- This can usually be remedied by changing the physical units for \mathbf{x} and b to be the natural units \mathbf{x}_{0} and \mathbf{b}_{0}.
- Rescaling the unknowns and the equations is generally a good idea even if not necessary:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{D}_{x} \tilde{\mathbf{x}}=\operatorname{Diag}\left\{\mathbf{x}_{0}\right\} \tilde{\mathbf{x}} \text { and } \mathbf{b}=\mathbf{D}_{b} \tilde{\mathbf{b}}=\operatorname{Diag}\left\{\mathbf{b}_{0}\right\} \tilde{\mathbf{b}} . \\
& \mathbf{A x}=\mathbf{A D}_{x} \tilde{\mathbf{x}}=\mathbf{D}_{b} \tilde{\mathbf{b}} \quad \Rightarrow \quad\left(\mathbf{D}_{b}^{-1} \mathbf{A} \mathbf{D}_{x}\right) \tilde{\mathbf{x}}=\tilde{\mathbf{b}}
\end{aligned}
$$

- The rescaled matrix $\tilde{\mathbf{A}}=\mathbf{D}_{b}^{-1} \mathbf{A D}$ x should have a better conditioning.
- Also note that reordering the variables from most important to least important may also help.

Efficiency of Solution

$$
\mathbf{A x}=\mathbf{b}
$$

- The most appropriate algorithm really depends on the properties of the matrix \mathbf{A} :
- General dense matrices, where the entries in \mathbf{A} are mostly non-zero and nothing special is known: Use $L U$ factorization.
- Symmetric $\left(a_{i j}=a_{j i}\right)$ and also positive-definite matrices.
- General sparse matrices, where only a small fraction of $a_{i j} \neq 0$.
- Special structured sparse matrices, arising from specific physical properties of the underlying system.
- It is also important to consider how many times a linear system with the same or related matrix or right hand side needs to be solved.

Positive-Definite Matrices

- A real symmetric matrix \mathbf{A} is positive definite iff (if and only if):
(1) All of its eigenvalues are real (follows from symmetry) and positive.
(2) $\forall x \neq \mathbf{0}, \mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0$, i.e., the quadratic form defined by the matrix \mathbf{A} is convex.
(3) There exists a unique lower triangular $\mathbf{L}, L_{i i}>0$,

$$
\mathbf{A}=\mathbf{L L}^{T}
$$

termed the Cholesky factorization of \mathbf{A} (symmetric $L U$ factorization).
(1) For Hermitian complex matrices just replace transposes with adjoints (conjugate transpose), e.g., $\mathbf{A}^{T} \rightarrow \mathbf{A}^{\star}$ (or \mathbf{A}^{H} in the book).

Cholesky Factorization

- The MATLAB built in function

$$
R=\operatorname{chol}(A)
$$

gives the Cholesky factorization and is a good way to test for positive-definiteness.

- The cost of a Cholesky factorization is about half the cost of $L U$ factorization, $n^{3} / 3$ FLOPS.
- Solving linear systems is as for $L U$ factorization, replacing \mathbf{U} with \mathbf{L}^{T}.
- For Hermitian/symmetric matrices with positive diagonals MATLAB tries a Cholesky factorization first, before resorting to $L U$ factorization with pivoting.

Special Matrices in MATLAB

- MATLAB recognizes (i.e., tests for) some special matrices automatically: banded, permuted lower/upper triangular, symmetric, Hessenberg, but not sparse.
- In MATLAB one may specify a matrix B instead of a single right-hand side vector \mathbf{b}.
- The MATLAB function

$$
X=\operatorname{linsolve}(A, B, \text { opts })
$$

allows one to specify certain properties that speed up the solution (triangular, upper Hessenberg, symmetric, positive definite, none), and also estimates the condition number along the way.

- Use linsolve instead of backslash if you know (for sure!) something about your matrix.

Non-Square Matrices

- In the case of over-determined (more equations than unknowns) or under-determined (more unknowns than equations), the solution to linear systems in general becomes non-unique.
- One must first define what is meant by a solution, and the common definition is to use a least-squares formulation:

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A x}-\mathbf{b}\|=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} \Phi(\mathbf{x})
$$

where the choice of the L_{2} norm leads to:

$$
\Phi(\mathbf{x})=(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})
$$

- Over-determined systems, $m>n$, can be thought of as fitting a linear model (linear regression):
The unknowns \mathbf{x} are the coefficients in the fit, the input data is in \mathbf{A} (one column per measurement), and the output data (observables) are in \mathbf{b}.

Normal Equations

- It can be shown that the least-squares solution satisfies:

$$
\nabla \Phi(\mathbf{x})=\mathbf{A}^{T}[2(\mathbf{A} \mathbf{x}-\mathbf{b})]=\mathbf{0}(\text { critical point })
$$

- This gives the square linear system of normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b} .
$$

- If \mathbf{A} is of full rank, $\operatorname{rank}(\mathbf{A})=n$, it can be shown that $\mathbf{A}^{T} \mathbf{A}$ is positive definite, and Cholesky factorization can be used to solve the normal equations.
- Multiplying $\mathbf{A}^{T}(n \times m)$ and $\mathbf{A}(m \times n)$ takes n^{2} dot-products of length m, so $O\left(m n^{2}\right)$ operations

Problems with the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b} .
$$

- The conditioning number of the normal equations is

$$
\kappa\left(\mathbf{A}^{T} \mathbf{A}\right)=[\kappa(\mathbf{A})]^{2}
$$

- Furthermore, roundoff can cause $\mathbf{A}^{T} \mathbf{A}$ to no longer appear as positive-definite and the Cholesky factorization will fail.
- If the normal equations are ill-conditioned, another approach is needed.

The $Q R$ factorization

- For nonsquare or ill-conditioned matrices of full-rank $r=n \leq m$, the $L U$ factorization can be replaced by the $Q R$ factorization:

$$
\begin{aligned}
\mathbf{A} & =\mathbf{Q R} \\
{[m \times n] } & =[m \times n][n \times n]
\end{aligned}
$$

where \mathbf{Q} has orthogonal columns, $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}_{n}$, and \mathbf{R} is a non-singular upper triangular matrix.

- Observe that orthogonal / unitary matrices are well-conditioned ($\kappa_{2}=1$), so the $Q R$ factorization is numerically better (but also more expensive!) than the $L U$ factorization.
- For matrices not of full rank there are modified $Q R$ factorizations but the SVD decomposition is better (next class).
- In MATLAB, the $Q R$ factorization can be computed using qr (with column pivoting).

Solving Linear Systems via QR factorization

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b} \text { where } \mathbf{A}=\mathbf{Q R}
$$

- Observe that \mathbf{R} is the Cholesky factor of the matrix in the normal equations:

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A}=\mathbf{R}^{T}\left(\mathbf{Q}^{\top} \mathbf{Q}\right) \mathbf{R}=\mathbf{R}^{\top} \mathbf{R} \\
\left(\mathbf{R}^{\top} \mathbf{R}\right) \mathbf{x}^{\star}=\left(\mathbf{R}^{\top} \mathbf{Q}^{T}\right) \mathbf{b} \Rightarrow \mathbf{x}^{\star}=\mathbf{R}^{-1}\left(\mathbf{Q}^{\top} \mathbf{b}\right)
\end{gathered}
$$

which amounts to solving a triangular system with matrix \mathbf{R}.

- This calculation turns out to be much more numerically stable against roundoff than forming the normal equations (and has similar cost).

Computing the QR Factorization

- The $Q R$ factorization is closely-related to the orthogonalization of a set of n vectors (columns) $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ in \mathbb{R}^{m}, which is a common problem in numerical computing.
- Classical approach is the Gram-Schmidt method: To make a vector b orthogonal to a do:

$$
\tilde{\mathbf{b}}=\mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \frac{\mathbf{a}}{(\mathbf{a} \cdot \mathbf{a})}
$$

- Repeat this in sequence: Start with $\tilde{\mathbf{a}}_{1}=\mathbf{a}_{1}$, then make $\tilde{\mathbf{a}}_{2}$ orthogonal to $\tilde{\mathbf{a}}_{1}=\mathbf{a}_{1}$, then make $\tilde{\mathbf{a}}_{3}$ orthogonal to $\operatorname{span}\left(\tilde{\mathbf{a}}_{1}, \tilde{\mathbf{a}}_{2}\right)=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$:

$$
\begin{aligned}
& \tilde{\mathbf{a}}_{1}=\mathbf{a}_{1} \\
& \tilde{\mathbf{a}}_{2}=\mathbf{a}_{2}-\left(\mathbf{a}_{2} \cdot \mathbf{a}_{1}\right) \frac{\mathbf{a}_{1}}{\left(\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right)} \\
& \tilde{\mathbf{a}}_{3}=\mathbf{a}_{3}-\left(\mathbf{a}_{3} \cdot \mathbf{a}_{1}\right) \frac{\mathbf{a}_{1}}{\left(\mathbf{a}_{1} \cdot \mathbf{a}_{1}\right)}-\left(\mathbf{a}_{3} \cdot \mathbf{a}_{2}\right) \frac{\mathbf{a}_{2}}{\left(\mathbf{a}_{2} \cdot \mathbf{a}_{2}\right)}
\end{aligned}
$$

Gram-Schmidt Orthogonalization

- More efficient formula (standard Gram-Schmidt):

$$
\tilde{\mathbf{a}}_{k+1}=\mathbf{a}_{k+1}-\sum_{j=1}^{k}\left(\mathbf{a}_{k+1} \cdot \mathbf{q}_{j}\right) \mathbf{q}_{j}, \quad \mathbf{q}_{k+1}=\frac{\tilde{\mathbf{a}}_{k+1}}{\left\|\tilde{\mathbf{a}}_{k+1}\right\|},
$$

with cost $\approx 2 m n^{2}$ FLOPS but is not numerically stable against roundoff errors (loss of orthogonality).

- In the standard method we make each vector orthogonal to all previous vectors. A numerically stable alternative is the modified Gram-Schmidt, in which we take each vector and modify all following vectors (not previous ones) to be orthogonal to it (so the sum above becomes $\sum_{j=k+1}^{m}$).
- As we saw in previous lecture, a small rearrangement of mathematically-equivalent approaches can produce a much more robust numerical method.

Sparse Matrices

- A matrix where a substantial fraction of the entries are zero is called a sparse matrix. The difference with dense matrices is that only the nonzero entries are stored in computer memory.
- Exploiting sparsity is important for large matrices (what is large depends on the computer).
- The structure of a sparse matrix refers to the set of indices i, j such that $a_{i j}>0$, and is visualized in MATLAB using spy.
- The structure of sparse matrices comes from the nature of the problem, e.g., in an inter-city road transportation problem it corresponds to the pairs of cities connected by a road.
- In fact, just counting the number of nonzero elements is not enough: the sparsity structure is the most important property that determines the best method.

Banded Matrices

- Banded matrices are a very special but common type of sparse matrix, e.g., tridiagonal matrices

$$
\left[\begin{array}{cccc}
a_{1} & c_{1} & & 0 \\
b_{2} & a_{2} & \ddots & \\
& \ddots & \ddots & c_{n-1} \\
\mathbf{0} & & b_{n} & a_{n}
\end{array}\right]
$$

- There exist special techniques for banded matrices that are much faster than the general case, e.g, only $8 n$ FLOPS and no additional memory for tridiagonal matrices.
- A general matrix should be considered sparse if it has sufficiently many zeros that exploiting that fact is advantageous: usually only the case for large matrices (what is large?)!

Sparse Matrices

4

Graph
K representation:
\rightarrow NODES are variables (VERTICES) equations
\rightarrow ARCS (EDGES) are the non-zeros
UNDIRECTED GRAPH I FOR SYMMETRIC MATRICES

Sparse matrices in MATLAB

$\gg A=$ sparse ($\left.\left[\begin{array}{lllll}1 & 2 & 2 & 4 & 4\end{array}\right],\left[\begin{array}{lllll}3 & 1 & 4 & 2 & 3\end{array}\right], 1: 5\right)$
$\mathrm{A}=$
$(2,1)$
2
$(4,2)$
4
$(1,3)$
1
$(4,3)$
5
$(2,4)$
3
$\gg n n z(A)$ \% Number of non-zeros
ans $=\quad 5$
\gg whose A
A $4 \times 4 \quad 120$ double sparse
$\gg A=$ sparse ([],[],[],4,4,5); \% Pre-allocate memory
$\gg A(2,1)=2 ; A(4,2)=4 ; A(1,3)=1 ; A(4,3)=5 ; A(2,4)=3$;

Sparse matrix factorization

$\gg B=s p r a n d(4,4,0.25)$; $\%$ Density of 25%
$>$ full(B)
ans =

0	0	0	0.7655
0	0.7952	0	0
0	0.1869	0	0
0.4898	0	0	0

$\gg B=$ sprand $(100,100,0.1) ;$ spy (B)
$\gg[L, U, P]=\operatorname{lu}(B) ; \operatorname{spy}(L)$
$\gg p=\operatorname{symrcm}(B) ;$ \% Permutation to reorder the rows an
$\gg P B P=B(p, p) ; ~ s p y(P B P)$;
$\gg[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\mathrm{lu}(\mathrm{PBP}) ; \operatorname{spy}(\mathrm{L})$;

Random matrix B

The MATLAB function spy shows where the nonzeros are (left), and what reordering does (right)

$L U$ factors of random matrix \mathbf{B}

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix. Reordering helps only a bit.

Fill-In

- There are general techniques for dealing with sparse matrices such as sparse LU factorization. How well they work depends on the structure of the matrix.
- When factorizing sparse matrices, the factors, e.g., \mathbf{L} and \mathbf{U}, can be much less sparse than A: fill-in.
- Pivoting (reordering of variables and equations) has a dual, sometimes conflicting goal:
(1) Reduce fill-in, i.e., improve memory use.
(2) Reduce roundoff error, i.e., improve stability. Typically some threshold pivoting is used only when needed.
- For many sparse matrices there is a large fill-in and iterative methods are required.

Why iterative methods?

- Direct solvers are great for dense matrices and are implemented very well on modern machines.
- Fill-in is a major problem for certain sparse matrices and leads to extreme memory requirements.
- Some matrices appearing in practice are too large to even be represented explicitly (e.g., the Google matrix).
- Often linear systems only need to be solved approximately, for example, the linear system itself may be a linear approximation to a nonlinear problem.
- Direct solvers are much harder to implement and use on (massively) parallel computers.

Stationary Linear Iterative Methods

- In iterative methods the core computation is iterative matrix-vector multiplication starting from an initial guess $\mathbf{x}^{(0)}$.
- Prototype is the linear recursion:

$$
\mathbf{x}^{(k+1)}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}
$$

where \mathbf{B} is an iteration matrix somehow related to \mathbf{A} (many different choices/algorithms exist).

- For this method to be consistent, we must have that the actual solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is a stationary point of the iteration:

$$
\begin{gathered}
\mathbf{x}=\mathbf{B} \mathbf{x}+\mathbf{f} \Rightarrow \mathbf{A}^{-1} \mathbf{b}=\mathbf{B A}^{-1} \mathbf{b}+\mathbf{f} \\
\mathbf{f}=\mathbf{A}^{-1} \mathbf{b}-\mathbf{B A}^{-1} \mathbf{b}=(\mathbf{I}-\mathbf{B}) \mathbf{x}
\end{gathered}
$$

Simple Fixed-Point Iteration

- If we just pick a matrix \mathbf{B}, in general we cannot easily figure out what f needs to be since this requires knowing the solution we are after,

$$
\mathbf{f}=(\mathbf{I}-\mathbf{B}) \mathbf{x}=(\mathbf{I}-\mathbf{B}) \mathbf{A}^{-1} \mathbf{b}
$$

- But what if we choose $\mathbf{I}-\mathbf{B}=\mathbf{A}$? Then we get

$$
\mathbf{f}=\mathbf{A} \mathbf{A}^{-1} \mathbf{b}=\mathbf{b}
$$

which we know.

- This leads us to this fixed-point iteration is an iterative method:

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}
$$

Side-note: Fixed-Point Iteration

- A naive but often successful method for solving

$$
x=f(x)
$$

is the fixed-point iteration

$$
x_{n+1}=f\left(x_{n}\right)
$$

- In the case of a linear system, consider rewriting $\mathbf{A x}=\mathbf{b}$ as:

$$
\mathbf{x}=(\mathbf{I}-\mathbf{A}) \mathbf{x}+\mathbf{b}
$$

- Fixed-point iteration gives the consistent iterative method

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}
$$

which is the same as we already derived differently.

Convergence of simple iterative methods

- For this method to be stable, and thus convergent, the error $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}$ must decrease:
$\mathbf{e}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}-\mathbf{x}=\mathbf{B}\left(\mathbf{x}+\mathbf{e}^{(k)}\right)+(\mathbf{I}-\mathbf{B}) \mathbf{x}-\mathbf{x}=\mathbf{B} \mathbf{e}^{(k)}$
- We saw that the error propagates from iteration to iteration as

$$
\mathbf{e}^{(k)}=\mathbf{B}^{k} \mathbf{e}^{(0)}
$$

- When does this converge? Taking norms,

$$
\left\|\mathbf{e}^{(k)}\right\| \leq\|\mathbf{B}\|^{k}\left\|\mathbf{e}^{(0)}\right\|
$$

which means that $\|\mathbf{B}\|<1$ is a sufficient condition for convergence.

- More precisely, $\lim _{k \rightarrow \infty} \mathbf{e}^{(k)}=\mathbf{0}$ for any $\mathbf{e}^{(0)}$ iff $\mathbf{B}^{k} \rightarrow \mathbf{0}$.

Spectral Radius

- Theorem: The simple iterative method converges iff the spectral radius of the iteration matrix is less than unity:

$$
\rho(\mathbf{B})<1
$$

- The spectral radius $\rho(\mathbf{A})$ of a matrix \mathbf{A} can be thought of as the smallest consistent matrix norm

$$
\rho(\mathbf{A})=\max _{\lambda}|\lambda| \leq\|\mathbf{A}\|
$$

- The spectral radius often determines convergence of iterative schemes for linear systems and eigenvalues and even methods for solving PDEs because it estimates the asymptotic rate of error propagation:

$$
\rho(\mathbf{A})=\lim _{k \rightarrow \infty}\left\|\mathbf{A}^{k}\right\|^{1 / k}
$$

Termination

- The iterations of an iterative method can be terminated when:
(1) The residual becomes small,

$$
\left\|\mathbf{r}^{(k)}\right\|=\left\|\mathbf{A} \mathbf{x}^{(k)}-\mathbf{b}\right\| \leq \varepsilon\|\mathbf{b}\|
$$

This is good for well-conditioned systems.
(2) The solution $\mathbf{x}^{(k)}$ stops changing, i.e., the increment becomes small,

$$
[1-\rho(\mathbf{B})]\left\|\mathbf{e}^{(k)}\right\| \leq\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\| \leq \varepsilon\|\mathbf{b}\|,
$$

which can be shown to be good if convergence is rapid.

- Usually a careful combination of the two strategies is employed along with some safeguards.

Preconditioning

- The fixed-point iteration is consistent but it may not converge or may converge very slowly

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b} .
$$

- As a way to speed it up, consider having a good approximate solver

$$
\mathbf{P}^{-1} \approx \mathbf{A}^{-1}
$$

called the preconditioner (\mathbf{P} is the preconditioning matrix), and transform

$$
\mathbf{P}^{-1} \mathbf{A} \mathbf{x}=\mathbf{P}^{-1} \mathbf{b}
$$

- Now apply fixed-point iteration to this modified system:

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

which now has an iteration matrix $\mathbf{I}-\mathbf{P}^{-1} \mathbf{A} \approx \mathbf{0}$, which means more rapid convergence.

Preconditioned Iteration

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

- In practice, we solve linear systems with the matrix \mathbf{P} instead of inverting it:

$$
\mathbf{P} \mathbf{x}^{(k+1)}=(\mathbf{P}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}=\mathbf{P} \mathbf{x}^{(k)}+\mathbf{r}^{(k)},
$$

where $\mathbf{r}^{(k)}=\mathbf{b}-\mathbf{A} \mathbf{x}^{(k)}$ is the residual vector.

- Finally, we obtain the usual form of a preconditioned stationary iterative solver

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{r}^{(k)} .
$$

- Note that convergence will be faster if we have a good initial guess $\mathbf{x}^{(0)}$.

Conclusions/Summary

- The conditioning of a linear system $\mathbf{A x}=\mathbf{b}$ is determined by the condition number

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \geq 1
$$

- Gauss elimination can be used to solve general square linear systems and also produces a factorization $\mathbf{A}=\mathbf{L U}$.
- Partial pivoting is often necessary to ensure numerical stability during GEM and leads to $\mathbf{P A}=\mathbf{L U}$ or $\mathbf{A}=\widetilde{\mathbf{L}} \mathbf{U}$.
- MATLAB has excellent linear solvers based on well-known public domain libraries like LAPACK. Use them!

Conclusions/Summary

- For symmetric positive definite matrices the Cholesky factorization $\mathbf{A}=\mathbf{L L}^{T}$ is preferred and does not require pivoting.
- The $Q R$ factorization is a numerically-stable method for solving full-rank non-square systems.
- Sparse matrices deserve special treatment but the details depend on the specific field of application.
- In particular, special sparse matrix reordering methods or iterative systems are often required.
- When sparse direct methods fail due to memory or other requirements, iterative methods are used instead.

