
Scientific Computing:
Interpolation

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015

October 22nd, 2015

A. Donev (Courant Institute) Lecture VIII 10/22/2015 1 / 47

Outline

1 Function spaces

2 Polynomial Interpolation in 1D

3 Piecewise Polynomial Interpolation

4 Higher Dimensions

5 Advanced: Orthogonal Polynomials

A. Donev (Courant Institute) Lecture VIII 10/22/2015 2 / 47

Function spaces

Function Spaces

Function spaces are the equivalent of finite vector spaces for
functions (space of polynomial functions P, space of smoothly
twice-differentiable functions C2, etc.).

Consider a one-dimensional interval I = [a, b]. Standard norms for
functions similar to the usual vector norms:

Maximum norm: ‖f (x)‖∞ = maxx∈I |f (x)|
L1 norm: ‖f (x)‖1 =

∫ b

a
|f (x)| dx

Euclidian L2 norm: ‖f (x)‖2 =
[∫ b

a
|f (x)|2 dx

]1/2
Weighted norm: ‖f (x)‖w =

[∫ b

a
|f (x)|2 w(x)dx

]1/2
An inner or scalar product (equivalent of dot product for vectors):

(f , g) =

∫ b

a
f (x)g?(x)dx

A. Donev (Courant Institute) Lecture VIII 10/22/2015 3 / 47

Function spaces

Finite-Dimensional Function Spaces

Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.

Consider a set of m + 1 nodes xi ∈ X ⊂ I , i = 0, . . . ,m, and define:

‖f (x)‖X2 =

[
m∑
i=0

|f (xi)|2
]1/2

,

which is equivalent to thinking of the function as being the vector
fX = y = {f (x0), f (x1), · · · , f (xm)}.
Finite representations lead to semi-norms, but this is not that
important.

A discrete dot product can be just the vector product:

(f , g)X = fX · gX =
m∑
i=0

f (xi)g?(xi)

A. Donev (Courant Institute) Lecture VIII 10/22/2015 4 / 47

Function spaces

Function Space Basis

Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{φ0(x), φ1(x), . . . , φn(x)} ,

for example, the monomial basis φk(x) = xk for polynomials.

A finite-dimensional approximation to a given function f (x):

f̃ (x) =
n∑

i=1

ciφi (x)

Least-squares approximation for m > n (usually m� n):

c? = arg min
c

∥∥∥f (x)− f̃ (x)
∥∥∥
2
,

which gives the orthogonal projection of f (x) onto the
finite-dimensional basis.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 5 / 47

Polynomial Interpolation in 1D

Interpolation in 1D (Cleve Moler)

A. Donev (Courant Institute) Lecture VIII 10/22/2015 6 / 47

Polynomial Interpolation in 1D

Interpolation

The task of interpolation is to find an interpolating function φ(x)
which passes through m + 1 data points (xi , yi):

φ(xi) = yi = f (xi) for i = 0, 2, . . . ,m,

where xi are given nodes.

The type of interpolation is classified based on the form of φ(x):

Full-degree polynomial interpolation if φ(x) is globally polynomial.
Piecewise polynomial if φ(x) is a collection of local polynomials:

Piecewise linear or quadratic
Hermite interpolation
Spline interpolation

Trigonometric if φ(x) is a trigonometric polynomial (polynomial of
sines and cosines), leading to the Fast Fourier Transform.

As for root finding, in dimensions higher than one things are more
complicated!

A. Donev (Courant Institute) Lecture VIII 10/22/2015 7 / 47

Polynomial Interpolation in 1D

Polynomial interpolation in 1D

The interpolating polynomial is degree at most m

φ(x) =
m∑
i=0

aix
i =

m∑
i=0

aipi (x),

where the monomials pi (x) = x i form a basis for the space of
polynomial functions.
The coefficients a = {a1, . . . , am} are solutions to the square linear
system:

φ(xi) =
m∑
j=0

ajx
j
i = yi for i = 0, 2, . . . ,m

In matrix notation, if we start indexing at zero:

[V(x0, x1, . . . , xm)] a = y

where the Vandermonde matrix V = {vi ,j} is given by

vi ,j = x j
i .

A. Donev (Courant Institute) Lecture VIII 10/22/2015 8 / 47

Polynomial Interpolation in 1D

The Vandermonde approach

Va = x

One can prove by induction that

det V =
∏
j<k

(xk − xj)

which means that the Vandermonde system is non-singular and thus:
The intepolating polynomial is unique if the nodes are distinct.

Polynomail interpolation is thus equivalent to solving a linear system.

However, it is easily seen that the Vandermonde matrix can be very
ill-conditioned.

Solving a full linear system is also not very efficient because of the
special form of the matrix.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 9 / 47

Polynomial Interpolation in 1D

Choosing the right basis functions

There are many mathematically equivalent ways to rewrite the unique
interpolating polynomial:

x2 − 2x + 4 = (x − 2)2.

One can think of this as choosing a different polynomial basis
{φ0(x), φ1(x), . . . , φm(x)} for the function space of polynomials of
degree at most m:

φ(x) =
m∑
i=0

aiφi (x)

For a given basis, the coefficients a can easily be found by solving the
linear system

φ(xj) =
m∑
i=0

aiφi (xj) = yj ⇒ Φa = y

A. Donev (Courant Institute) Lecture VIII 10/22/2015 10 / 47

Polynomial Interpolation in 1D

Lagrange basis

Instead of writing polynomials as sums of monomials, let’s consider a
more general polynomial basis {φ0(x), φ1(x), . . . , φm(x)}:

φ(x) =
m∑
i=0

aiφi (x),

as in x2 − 2x + 4 = (x − 2)2.

In particular let’s consider the Lagrange basis which consists of
polynomials that vanish at all but exactly one of the nodes, where
they are unity:

φi (xj) = δij =

{
1 if i = j

0 if i 6= j
.

The following characteristic polynomial provides the desired basis:

φi (x) =

∏
j 6=i (x − xj)∏
j 6=i (xi − xj)

A. Donev (Courant Institute) Lecture VIII 10/22/2015 11 / 47

Polynomial Interpolation in 1D

Lagrange basis on 10 nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

2
A few Lagrange basis functions for 10 nodes

φ
5

φ
1

φ
3

We see that the Lagrange polynomials develop sharp peaks near the
boundaries of the approximation interval, suggesting that so will the
interpolant φ(x) (this will lead to Runge’s phenomenon).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 12 / 47

Polynomial Interpolation in 1D

Convergence, stability, etc.

We have lost track of our goal: How good is polynomial interpolation?

Assume we have a function f (x) that we are trying to approximate
over an interval I = [x0, xm] using a polynomial interpolant.

Using Taylor series type analysis it can be shown that for
equi-spaced nodes, xi+1 = xi + h, where h is a grid spacing,

‖Em(x)‖∞ = maxx∈I |f (x)− φ(x)| ≤ hn+1

4(m + 1)

∥∥∥f (m+1) (x)
∥∥∥
∞
.

Question: Does ‖Em(x)‖∞ → 0 as m→∞?

In practice we may be dealing with non-smooth functions, e.g.,
discontinuous function or derivatives.
Furthermore, higher-order derivatives of seemingly nice functions can
be very large!

A. Donev (Courant Institute) Lecture VIII 10/22/2015 13 / 47

Polynomial Interpolation in 1D

Runge’s counter-example: f (x) = (1 + x2)−1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1
Runges phenomenon for 10 nodes

x

y

A. Donev (Courant Institute) Lecture VIII 10/22/2015 14 / 47

Polynomial Interpolation in 1D

Uniformly-spaced nodes

Not all functions can be approximated well by an interpolating
polynomial with equally-spaced nodes over an interval.

Interpolating polynomials of higher degree tend to be very oscillatory
and peaked, especially near the endpoints of the interval.

Even worse, the interpolation is unstable, under small perturbations
of the points ỹ = y + δy,

‖δφ(x)‖∞ ≤
2m+1

m log m
‖δy‖∞

It is possible to vastly improve the situation by using
specially-chosen non-equispaced nodes (e.g., Chebyshev nodes), or
by interpolating derivatives (Hermite interpolation).

A true understanding would require developing approximation theory
and looking into orthogonal polynomials, which we will not do here.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 15 / 47

Polynomial Interpolation in 1D

Chebyshev Nodes

A simple but good alternative to equally-spaced nodes are the
Chebyshev nodes,

xi = cos

(
2i − 1

2k
π

)
, i = 1, . . . , k,

which have a simple geometric interpretation as the projection of
uniformly spaced points on the unit circle.

Polynomial interpolation using the Chebyshev nodes eliminates
Runge’s phenomenon.

Furthermore, such polynomial interpolation gives spectral accuracy,
which approximately means that for sufficiently smooth functions
the error decays exponentially in the number of points, faster than
any power law (fixed order of accuracy).

There are very fast and robust numerical methods to actually perform
the interpolation (function approximation) on Chebyshev nodes, see
for example the package chebfun from Nick Trefethen.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 16 / 47

Piecewise Polynomial Interpolation

Interpolation in 1D (Cleve Moler)

A. Donev (Courant Institute) Lecture VIII 10/22/2015 17 / 47

Piecewise Polynomial Interpolation

Piecewise interpolants

The idea is to use a different low-degree polynomial function φi (x)
in each interval Ii = [xi , xi+1].

Piecewise-constant interpolation: φ
(0)
i (x) = yi , which is first-order

accurate: ∥∥∥f (x)− φ(0)(x)
∥∥∥
∞
≤ h

∥∥∥f (1) (x)
∥∥∥
∞

Piecewise-linear interpolation:

φ
(1)
i (x) = yi +

yi+1 − yi
xi+1 − xi

(x − xi) for x ∈ Ii

For node spacing h the error estimate is now bounded but only
second-order accurate∥∥∥f (x)− φ(1)(x)

∥∥∥
∞
≤ h2

8

∥∥∥f (2) (x)
∥∥∥
∞

A. Donev (Courant Institute) Lecture VIII 10/22/2015 18 / 47

Piecewise Polynomial Interpolation

Cubic Splines

One can think about piecewise-quadratic interpolants but even
better are piecewise-cubic interpolants.

Going after twice continuously-differentiable interpolant,
φ(x) ∈ C 2

I , leads us to cubic spline interpolation:

The function φi (x) is cubic in each interval Ii = [xi , xi+1] (requires 4m
coefficients).
We interpolate the function at the nodes: φi (xi) = φi−1(xi) = yi .
This gives m + 1 conditions plus m − 1 conditions at interior nodes.
The first and second derivatives are continuous at the interior
nodes:

φ′i (xi) = φ′i−1(xi) and φ′′i (xi) = φ′′i−1(xi) for i = 1, 2, . . . ,m − 1,

which gives 2(m − 1) equations.

Now we have (m + 1) + (m − 1) + 2(m − 1) = 4m − 2 conditions for
4m unknowns.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 19 / 47

Piecewise Polynomial Interpolation

Types of Splines

We need to specify two more conditions arbitrarily (for splines of
order k ≥ 3, there are k − 1 arbitrary conditions).

The most appropriate choice depends on the problem, e.g.:

Periodic splines, we think of node 0 and node m as one interior node
and add the two conditions:

φ′0(x0) = φ′m(xm) and φ′′0 (x0) = φ′′m(xm).

Natural spline: Two conditions φ′′(x0) = φ′′(xm) = 0.

Once the type of spline is chosen, finding the coefficients of the cubic
polynomials requires solving a sparse tridiagonal linear system,
which can be done very fast (O(m)).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 20 / 47

Piecewise Polynomial Interpolation

Nice properties of splines

The spline approximation converges for zeroth, first and second
derivatives and even third derivatives (for equi-spaced nodes):

‖f (x)− φ(x)‖∞ ≤
5

384
· h4 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′(x)− φ′(x)

∥∥
∞ ≤

1

24
· h3 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′′(x)− φ′′(x)

∥∥
∞ ≤

3

8
· h2 ·

∥∥∥f (4) (x)
∥∥∥
∞

We see that cubic spline interpolants are fourth-order accurate for
functions. For each derivative we loose one order of accuracy
(this is typical of all interpolants).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 21 / 47

Piecewise Polynomial Interpolation

In MATLAB

c = polyfit(x , y , n) does least-squares polynomial of degree n which is
interpolating if n = length(x).

Note that MATLAB stores the coefficients in reverse order, i.e., c(1)
is the coefficient of xn.

y = polyval(c, x) evaluates the interpolant at new points.

y1 = interp1(x , y , xnew ,
′method ′) or if x is ordered use interp1q.

Method is one of ’linear’, ’spline’, ’cubic’.

The actual piecewise polynomial can be obtained and evaluated using
ppval .

A. Donev (Courant Institute) Lecture VIII 10/22/2015 22 / 47

Piecewise Polynomial Interpolation

Interpolating (1 + x2)−1 in MATLAB

n=10;
x=l i n s p a c e (−5 ,5 , n) ;
y=(1+x . ˆ 2) . ˆ (−1) ;
p l o t (x , y , ’ ro ’) ; h o l d on ;

x f i n e=l i n s p a c e (−5 ,5 ,100) ;
y f i n e =(1+ x f i n e . ˆ 2) . ˆ (−1) ;
p l o t (x f i n e , y f i n e , ’ b− ’) ;

c=p o l y f i t (x , y , n) ;
y i n t e r p=p o l y v a l (c , x f i n e) ;
p l o t (x f i n e , y i n t e r p , ’ k−− ’);

y i n t e r p=i n t e r p 1 (x , y , x f i n e , ’ s p l i n e ’) ;
% Or : pp=s p l i n e (x , y) ; y i n t e r p=p p v a l (pp , x f i n e)
p l o t (x f i n e , y i n t e r p , ’ k−− ’);

A. Donev (Courant Institute) Lecture VIII 10/22/2015 23 / 47

Piecewise Polynomial Interpolation

Runge’s function with spline

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Not−a−knot spline interpolant

A. Donev (Courant Institute) Lecture VIII 10/22/2015 24 / 47

Higher Dimensions

Two Dimensions

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A. Donev (Courant Institute) Lecture VIII 10/22/2015 25 / 47

Higher Dimensions

Regular grids

Now x = {x1, . . . , xn} ∈ Rn is a multidimensional data point. Focus
on two-dimensions (2D) since three-dimensions (3D) is similar.

The easiest case is when the data points are all inside a rectangle

Ω = [x0, xmx]× [y0, ymy]

where the m = (mx + 1)(my + 1) nodes lie on a regular grid

xi ,j = {xi , yj} , fi ,j = f (xi ,j).

Just as in 1D, one can use a different interpolation function
φi ,j : Ωi ,j → R in each rectangle of the grid (pixel)

Ωi ,j = [xi , xi+1]× [yj , yj+1].

A. Donev (Courant Institute) Lecture VIII 10/22/2015 26 / 47

Higher Dimensions

Bilinear Interpolation

The equivalent of piecewise linear interpolation for 1D in 2D is the
piecewise bilinear interpolation

φi ,j(x , y) = (αx + β) (γy + δ) = ai ,jxy + bi ,jx + ci ,jy + di ,j .

There are 4 unknown coefficients in φi ,j that can be found from the 4
data (function) values at the corners of rectangle Ωi ,j . This requires
solving a small 4× 4 linear system inside each pixel independently.

Note that the pieces of the interpolating function φi ,j(x , y) are not
linear (but also not quadratic since no x2 or y2) since they contain
quadratic product terms xy : bilinear functions.
This is because there is not a plane that passes through 4 generic
points in 3D.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 27 / 47

Higher Dimensions

Piecewise-Polynomial Interpolation

The key distinction about regular grids is that we can use separable
basis functions:

φi ,j(x) = φi (x)φj(y).

Furthermore, it is sufficient to look at a unit reference rectangle
Ω̂ = [0, 1]× [0, 1] since any other rectangle or even parallelogram
can be obtained from the reference one via a linear transformation.

Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis φ̂0,0 restricted to Ω̂:

φ̂0,0(x̂ , ŷ) = (1− x̂)(1− ŷ)

Generalization of bilinear to 3D is trilinear interpolation

φi ,j ,k = ai ,j ,kxyz+bi ,j ,kxy+ci ,j ,kxz+di ,j ,kyz+ei ,j ,kx+fi ,j ,ky+gi ,j ,kz+hi ,j ,k ,

which has 8 coefficients which can be solved for given the 8 values at
the vertices of the cube.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 28 / 47

Higher Dimensions

Bilinear basis functions

0

0.5

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Bilinear basis function φ
0,0

 on reference rectangle

−2

−1

0

1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

Bilinear basis function φ
3,3

 on a 5x5 grid

A. Donev (Courant Institute) Lecture VIII 10/22/2015 29 / 47

Higher Dimensions

Bicubic basis functions

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2

−2

−1

0

1

2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bicubic basis function φ
3,3

 on a 5x5 grid

A. Donev (Courant Institute) Lecture VIII 10/22/2015 30 / 47

Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 31 / 47

Higher Dimensions

Basis functions on triangles

For irregular grids the x and y directions are no longer separable.

But the idea of using basis functions φi ,j , a reference triangle, and
piecewise polynomial interpolants still applies.

For a piecewise constant function we need one coefficient per triangle,
for a linear function we need 3 coefficients (x , y , const), for quadratic
6 (x , y , x2, y2, xy , const), so we choose the reference nodes:

A. Donev (Courant Institute) Lecture VIII 10/22/2015 32 / 47

Higher Dimensions

In MATLAB

For regular grids the function

qz = interp2(x , y , z , qx , qy ,′ linear ′)

will evaluate the piecewise bilinear interpolant of the data
x , y , z = f (x , y) at the points (qx , qy).

Other method are ’spline’ and ’cubic’, and there is also interp3 for 3D.

For irregular grids one can use the old function griddata which will
generate its own triangulation or there are more sophisticated routines
to manipulate triangulations also.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 33 / 47

Higher Dimensions

Regular grids

[x , y] = meshgr id (−2 : . 5 : 2 , −2 : . 5 : 2) ;
z = x .∗ exp(−x .ˆ2−y . ˆ 2) ;

t i = −2 : . 1 : 2 ;
[qx , qy] = meshgr id (t i , t i) ;

qz= i n t e r p 2 (x , y , z , qx , qy , ’ c u b i c ’) ;

mesh (qx , qy , qz) ; h o l d on ;
p l o t 3 (x , y , z , ’ o ’) ; h o l d o f f ;

A. Donev (Courant Institute) Lecture VIII 10/22/2015 34 / 47

Higher Dimensions

MATLAB’s interp2

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A. Donev (Courant Institute) Lecture VIII 10/22/2015 35 / 47

Higher Dimensions

Irregular grids

x = rand (100 ,1)∗4−2; y = rand (100 ,1)∗4−2;
z = x .∗ exp(−x .ˆ2−y . ˆ 2) ;

t i = −2 : . 1 : 2 ;
[qx , qy] = meshgr id (t i , t i) ;

qz= g r i d d a t a (x , y , z , qx , qy , ’ c u b i c ’) ;

mesh (qx , qy , qz) ; h o l d on ;
p l o t 3 (x , y , z , ’ o ’) ; h o l d o f f ;

A. Donev (Courant Institute) Lecture VIII 10/22/2015 36 / 47

Higher Dimensions

MATLAB’s griddata

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

Piecewise linear

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

Cubic linear

A. Donev (Courant Institute) Lecture VIII 10/22/2015 37 / 47

Advanced: Orthogonal Polynomials

Advanced optional material: Orthogonal Polynomials

Any finite interval [a, b] can be transformed to I = [−1, 1] by a simple
transformation.

Using a weight function w(x), define a function dot product as:

(f , g) =

∫ b

a
w(x) [f (x)g(x)] dx

For different choices of the weight w(x), one can explicitly construct
basis of orthogonal polynomials where φk(x) is a polynomial of
degree k (triangular basis):

(φi , φj) =

∫ b

a
w(x) [φi (x)φj(x)] dx = δij ‖φi‖2 .

For Chebyshev polynomials we set w = (1− x2)−1/2 and this gives

φk(x) = cos (k arccos x) .

A. Donev (Courant Institute) Lecture VIII 10/22/2015 38 / 47

Advanced: Orthogonal Polynomials

Legendre Polynomials

For equal weighting w(x) = 1, the resulting triangular family of of
polynomials are called Legendre polynomials:

φ0(x) =1

φ1(x) =x

φ2(x) =
1

2
(3x2 − 1)

φ3(x) =
1

2
(5x3 − 3x)

φk+1(x) =
2k + 1

k + 1
xφk(x)− k

k + 1
φk−1(x) =

1

2nn!

dn

dxn

[(
x2 − 1

)n]
These are orthogonal on I = [−1, 1]:∫ −1

−1
φi (x)φj(x)dx = δij ·

2

2i + 1
.

A. Donev (Courant Institute) Lecture VIII 10/22/2015 39 / 47

Advanced: Orthogonal Polynomials

Interpolation using Orthogonal Polynomials

Let’s look at the interpolating polynomial φ(x) of a function f (x)
on a set of m + 1 nodes {x0, . . . , xm} ∈ I , expressed in an orthogonal
basis:

φ(x) =
m∑
i=0

aiφi (x)

Due to orthogonality, taking a dot product with φj (weak
formulation):

(φ, φj) =
m∑
i=0

ai (φi , φj) =
m∑
i=0

aiδij ‖φi‖2 = aj ‖φj‖2

This is equivalent to normal equations if we use the right dot
product:

(Φ?Φ)ij = (φi , φj) = δij ‖φi‖2 and Φ?y = (φ, φj)

A. Donev (Courant Institute) Lecture VIII 10/22/2015 40 / 47

Advanced: Orthogonal Polynomials

Gauss Integration

aj ‖φj‖2 = (φ, φj) ⇒ aj =
(
‖φj‖2

)−1
(φ, φj)

Question: Can we easily compute

(φ, φj) =

∫ b

a
w(x) [φ(x)φj(x)] dx =

∫ b

a
w(x)p2m(x)dx

for a polynomial p2m(x) = φ(x)φj(x) of degree at most 2m?

A. Donev (Courant Institute) Lecture VIII 10/22/2015 41 / 47

Advanced: Orthogonal Polynomials

Gauss nodes

If we choose the nodes to be zeros of φm+1(x), then we can quickly
project any polynomial onto the basis of orthogonal polynomials:

(φ, φj) =
m∑
i=0

wiφ(xi)φj(xi) =
m∑
i=0

wi f (xi)φj(xi)

where the Gauss weights w are given by

wi =

∫ b

a
w(x)φi (x)dx .

The orthogonality relation can be expressed as a sum instead of
integral:

(φi , φj) =
m∑
i=0

wiφi (xi)φj(xi) = δij ‖φi‖2

A. Donev (Courant Institute) Lecture VIII 10/22/2015 42 / 47

Advanced: Orthogonal Polynomials

Gauss-Legendre polynomials

For any weighting function the polynomial φk(x) has k simple zeros
all of which are in (−1, 1), called the (order k) Gauss nodes,
φm+1(xi) = 0.

The interpolating polynomial φ(xi) = f (xi) on the Gauss nodes is the
Gauss-Legendre interpolant φGL(x).

We can thus define a new weighted discrete dot product

f · g =
m∑
i=0

wi figi

The Gauss-Legendre interpolant is thus easy to compute:

φGL(x) =
m∑
i=0

f · φi

φi · φi

φi (x).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 43 / 47

Advanced: Orthogonal Polynomials

Discrete spectral approximation

Using orthogonal polynomails has many advantages for function
approximation: stability, rapid convergence, and computational
efficiency.

The convergence, for sufficiently smooth (nice) functions (analytic in
the neighborhood of [−1, 1] in the complex plane), is more rapid
than any power law

‖f (x)− φGL(x)‖ ∼ C−m,

This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 44 / 47

Advanced: Orthogonal Polynomials

Gauss-Legendre Interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2
Function and approximations for n=10

Actual

Equi−spaced nodes

Standard approx

Gauss nodes

Spectral approx

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1

2
Error of interpolants/approximants for n=10

Standard approx

Spectral approx

A. Donev (Courant Institute) Lecture VIII 10/22/2015 45 / 47

Advanced: Orthogonal Polynomials

Global polynomial interpolation error

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error for equispaced nodes for n=8,16,32,..128

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error for Gauss nodes for n=8,16,32,..128

A. Donev (Courant Institute) Lecture VIII 10/22/2015 46 / 47

Advanced: Orthogonal Polynomials

Conclusions/Summary

Interpolation means approximating function values in the interior of a
domain when there are known samples of the function at a set of
interior and boundary nodes.
Given a basis set for the interpolating functions, interpolation
amounts to solving a linear system for the coefficients of the basis
functions.
Polynomial interpolants in 1D can be constructed using several basis.
Using polynomial interpolants of high order is a bad idea: Not
accurate and not stable!
Instead, it is better to use piecewise polynomial interpolation:
constant, linear, Hermite cubic, cubic spline interpolant on each
interval.
In higher dimensions one must be more careful about how the domain
is split into disjoint elements (analogues of intervals in 1D): regular
grids (separable basis such as bilinear), or simplicial meshes
(triangular or tetrahedral).

A. Donev (Courant Institute) Lecture VIII 10/22/2015 47 / 47

	Function spaces
	Polynomial Interpolation in 1D
	Piecewise Polynomial Interpolation
	Higher Dimensions
	Advanced: Orthogonal Polynomials

