
Scientific Computing:
Numerical Integration

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2019

Nov 7th, 2019

A. Donev (Courant Institute) Lecture IX 11/7/2019 1 / 27

Outline

1 Numerical Integration in 1D

2 Adaptive / Refinement Methods

3 Higher Dimensions

4 Conclusions

A. Donev (Courant Institute) Lecture IX 11/7/2019 2 / 27

Numerical Integration in 1D

Numerical Quadrature

We want to numerically approximate a definite integral

J =

∫ b

a
f (x)dx .

The function f (x) may not have a closed-form integral, or it may
itself not be in closed form.

Recall that the integral gives the area under the curve f (x), and also
the Riemann sum:

lim
n→∞

n∑
i=0

f (ti)(xi+1 − xi) = J, where xi ≤ ti ≤ xi+1

A quadrature formula approximates the Riemann integral as a
discrete sum over a set of n nodes:

J ≈ Jn =
n∑

i=1

αi f (xi)

A. Donev (Courant Institute) Lecture IX 11/7/2019 3 / 27

Numerical Integration in 1D

Midpoint Quadrature

Split the interval into n intervals of width h = (b − a)/n (stepsize), and
then take as the nodes the midpoint of each interval:

xk = a + (2k − 1)h/2, k = 1, . . . , n

Jn = h
n∑

k=1

f (xk), and clearly lim
n→∞

Jn = J

A. Donev (Courant Institute) Lecture IX 11/7/2019 4 / 27

Numerical Integration in 1D

Quadrature Error

Focus on one of the sub intervals, and estimate the quadrature error
using the midpoint rule assuming f (x) ∈ C (2):

ε(i) =

[∫ xi+h/2

xi−h/2
f (x)dx

]
− hf (xi)

Expanding f (x) into a Taylor series around xi to first order,

f (x) = f (xi) + f ′(xi)(x − xi) +
1

2
f ′′ [η(x)] (x − xi)

2,

The linear term integrates to zero, so we get∫ xi+h/2

xi−h/2
f ′(xi)(x − xi) = 0 ⇒

ε(i) =
1

2

∫ xi+h/2

xi−h/2
f ′′ [η(x)] (x − xi)

2dx

A. Donev (Courant Institute) Lecture IX 11/7/2019 5 / 27

Numerical Integration in 1D

Composite Quadrature Error

Using a generalized mean value theorem we can show

ε(i) = f ′′ [ξ]
1

2

∫
h
(x − xi)

2dx =
h3

24
f ′′ [ξ] for some a < ξ < b

Now, combining the errors from all of the intervals together gives the
global error

ε =

∫ b

a
f (x)dx − h

n∑
k=1

f (xk) = J − Jn =
h3

24

n∑
k=1

f ′′ [ξk]

Use a discrete generalization of the mean value theorem to prove
second-order accuracy

ε =
h3

24
n
(
f ′′ [ξ]

)
=

b − a

24
· h2 · f ′′ [ξ] for some a < ξ < b

A. Donev (Courant Institute) Lecture IX 11/7/2019 6 / 27

Numerical Integration in 1D

Interpolatory Quadrature

Instead of integrating f (x), integrate a polynomial interpolant
φ(x) ≈ f (x):

A. Donev (Courant Institute) Lecture IX 11/7/2019 7 / 27

Numerical Integration in 1D

Trapezoidal Rule

Consider integrating an interpolating function φ(x) which passes
through n + 1 nodes xi :

φ(xi) = yi = f (xi) for i = 0, 2, . . . ,m.

First take the piecewise linear interpolant and integrate it over the
sub-interval Ii = [xi−1, xi]:

φ
(1)
i (x) = yi−1 +

yi − yi−1

xi − xi−1
(x − xi)

to get the trapezoidal formula (the area of a trapezoid):∫
x∈Ii

φ
(1)
i (x)dx = h

f (xi−1) + f (xi)

2

A. Donev (Courant Institute) Lecture IX 11/7/2019 8 / 27

Numerical Integration in 1D

Composite Trapezoidal Rule

Now add the integrals over all of the sub-intervals we get the
composite trapezoidal quadrature rule:∫ b

a
f (x)dx ≈ h

2

n∑
i=1

[f (xi−1) + f (xi)]

=
h

2
[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

with similar error to the midpoint rule.
A. Donev (Courant Institute) Lecture IX 11/7/2019 9 / 27

Numerical Integration in 1D

Simpson’s Quadrature Formula

As for the midpoint rule, split the interval into n intervals of width
h = (b − a)/n, and then take as the nodes the endpoints and
midpoint of each interval:

xk = a + kh, k = 0, . . . , n

x̄k = a + (2k − 1)h/2, k = 1, . . . , n

Then, take the piecewise quadratic interpolant φi (x) in the
sub-interval Ii = [xi−1, xi] to be the parabola passing through the
nodes (xi−1, yi−1), (xi , yi), and (x̄i , ȳi).

Integrating this interpolant in each interval and summing gives the
Simpson quadrature rule:

JS =
h

6
[f (x0) + 4f (x̄1) + 2f (x1) + · · ·+ 2f (xn−1) + 4f (x̄n) + f (xn)]

ε = J − Js = −(b − a)

2880
· h4 · f (4) (ξ) .

A. Donev (Courant Institute) Lecture IX 11/7/2019 10 / 27

Numerical Integration in 1D

Gauss Quadrature

To reach spectral accuracy for smooth functions, instead of using
higher-degree polynomial interpolants (recall Runge’s phenomenon),
let’s try using n non-equispaced nodes:

J ≈ Jn =
n∑

i=0

wi f (xi)

It can be shown that there is a special set of n + 1 nodes and weights,
so that the quadrature formula is exact for polynomials of degree up
to m = 2n − 1, ∫ b

a
pm(x)dx =

n∑
i=0

wipm(xi).

This gives the Gauss quadrature based on the Gauss nodes and
weights, usually pre-tabulated for the standard interval [−1, 1]:∫ b

a
f (x)dx ≈ b − a

2

n∑
i=0

wi f (xi).

A. Donev (Courant Institute) Lecture IX 11/7/2019 11 / 27

Numerical Integration in 1D

Gauss Weights and Nodes

The low-order Gauss formulas are:

n = 1 :

∫ 1

−1
f (x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
n = 2 :

∫ 1

−1
f (x)dx ≈ 5

9
f

(
−
√

15

5

)
+

8

9
f (0) +

5

9
f

(√
15

5

)
The weights and nodes are either tabulated or calculated to
numerical precision on the fly, for example, using eigenvalue
methods.

Gauss quadrature is very accurate for smooth functions even with
few nodes.

The MATLAB function quadl(f , a, b) uses (adaptive) Gauss-Lobatto
quadrature.

An alternative is to use Chebyshev nodes and weights, called
Clenshaw-Curtis quadrature (exact for polynomials of degree n).

A. Donev (Courant Institute) Lecture IX 11/7/2019 12 / 27

Adaptive / Refinement Methods

Asymptotic Error Expansions

The idea in Richardson extrapolation is to use an error estimate
formula to extrapolate a more accurate answer from less-accurate
answers.

Assume that we have a quadrature formula for which we have a
theoretical error estimate:

Jh =
n∑

i=1

αi f (xi) = J + αhp + O
(
hp+1

)
Recall the big O notation: g(x) = O (hp) if:

∃ (h0,C) > 0 s.t. |g(x)| < C |h|p whenever |h| < h0

For trapezoidal formula

ε =
b − a

24
· h2 · f ′′ [ξ] = O

(
h2
)
.

A. Donev (Courant Institute) Lecture IX 11/7/2019 13 / 27

Adaptive / Refinement Methods

Richardson Extrapolation

Now repeat the calculation but with step size 2h (for equi-spaced
nodes just skip the odd nodes):

J̃(h) = J + αhp + O
(
hp+1

)
J̃(2h) = J + α2php + O

(
hp+1

)
Solve for α and obtain

J =
2p J̃(h)− J̃(2h)

2p − 1
+ O

(
hp+1

)
,

which now has order of accuracy p + 1 instead of p.

The composite trapezoidal quadrature gives J̃(h) with order of
accuracy p = 2, J̃(h) = J + O

(
h2
)
.

A. Donev (Courant Institute) Lecture IX 11/7/2019 14 / 27

Adaptive / Refinement Methods

Romberg Quadrature

Assume that we have evaluated f (x) at n = 2m + 1 equi-spaced
nodes, h = 2−m(b − a), giving approximation J̃(h).

We can also easily compute J̃(2h) by simply skipping the odd nodes.
And also J̃(4h) , and in general, J̃(2qh), q = 0, . . . ,m.

We can keep applying Richardson extrapolation recursively to get
Romberg’s quadrature:
Combine J̃(2qh) and J̃(2q−1h) to get a better estimate. Then
combine the estimates to get an even better estimates, etc.

Jr ,0 = J̃

(
b − a

2r

)
, r = 0, . . . ,m

Jr ,q+1 =
4q+1Jr ,q − Jr−1,q

4q+1 − 1
, q = 0, . . . ,m − 1, r = q + 1, . . . ,m

The final answer, Jm,m = J + O
(
h2(m+1)

)
is much more accurate

than the starting Jm,0 = J + O
(
h2
)
, for smooth functions.

A. Donev (Courant Institute) Lecture IX 11/7/2019 15 / 27

Adaptive / Refinement Methods

Adaptive (Automatic) Integration

We would like a way to control the error of the integration, that is,
specify a target error εmax and let the algorithm figure out the
correct step size h to satisfy

|ε| . εmax ,

where ε is an error estimate.

Importantly, h may vary adaptively in different parts of the
integration interval:
Smaller step size when the function has larger derivatives.

The crucial step is obtaining an error estimate: Use the same idea as
in Richardson extrapolation.

A. Donev (Courant Institute) Lecture IX 11/7/2019 16 / 27

Adaptive / Refinement Methods

Error Estimate for Simpson’s Quadrature

Assume we are using Simpson’s quadrature and compute the integral
J(h) with step size h.

Then also compute integrals for the left half and for the right half
with step size h/2, J(h/2) = JL(h/2) + JR(h/2).

J = J(h)− 1

2880
· h5 · f (4) (ξ)

J = J(h/2)− 1

2880
· h

4

32
·
[
f (4) (ξL) + f (4) (ξR)

]
.

Now assume that the fourth derivative varies little over the interval,
f (4) (ξL) ≈ f (4) (ξL) ≈ f (4) (ξ), to estimate:

1

2880
· h5 · f (4) (ξ) ≈ 16

15
[J(h)− J(h/2)]

J(h/2)− J ≈ ε =
1

16
[J(h)− J(h/2)] .

A. Donev (Courant Institute) Lecture IX 11/7/2019 17 / 27

Adaptive / Refinement Methods

Adaptive Integration

Now assume that we have split the integration interval [a, b] into
sub-intervals, and we are considering computing the integral over the
sub-interval [α, β], with stepsize

h = β − α.

We need to compute this sub-integral with accuracy

|ε(α, β)| =
1

16
|[J(h)− J(h/2)]| ≤ ε h

b − a
.

An adaptive integration algorithm is J ≈ J(a, b, ε) where the
recursive function is:

J(α, β, ε) =

{
J(h/2) if |J(h)− J(h/2)| ≤ 16ε

J(α, α+β
2 , ε2) + J(α+β

2 , β, ε2) otherwise

In practice one also stops the refinement if h < hmin and is more
conservative e.g., use 10 instead of 16.

A. Donev (Courant Institute) Lecture IX 11/7/2019 18 / 27

Adaptive / Refinement Methods

Piecewise constant / linear basis functions

A. Donev (Courant Institute) Lecture IX 11/7/2019 19 / 27

Higher Dimensions

Regular Grids in Two Dimensions

A separable integral can be done by doing integration along one
axes first, then another:

J =

∫ 1

x=0

∫ 1

y=0
f (x , y)dxdy =

∫ 1

x=0
dx

[∫ 1

y=0
f (x , y)dy

]
Consider evaluating the function at nodes on a regular grid

xi ,j = {xi , yj} , fi ,j = f (xi ,j).

We can use separable basis functions:

φi ,j(x) = φi (x)φj(y).

A. Donev (Courant Institute) Lecture IX 11/7/2019 20 / 27

Higher Dimensions

Bilinear basis functions

−2

−1

0

1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

Bilinear basis function φ
3,3

 on a 5x5 grid

A. Donev (Courant Institute) Lecture IX 11/7/2019 21 / 27

Higher Dimensions

Piecewise-Polynomial Integration

Use a different interpolation function φ(i ,j) : Ωi ,j → R in each
rectange of the grid

Ωi ,j = [xi , xi+1]× [yj , yj+1],

and it is sufficient to look at a unit reference rectangle
Ω̂ = [0, 1]× [0, 1].

Recall: The equivalent of piecewise linear interpolation in 1D is the
piecewise bilinear interpolation

φ(i ,j)(x , y) = φ
(x)
(i) (x) · φ(y)

(j) (y),

where φ
(x)
(i) and φ

(y)
(j) are linear function.

The global interpolant can be written in the tent-function basis

φ(x , y) =
∑
i ,j

fi ,jφi ,j(x , y).

A. Donev (Courant Institute) Lecture IX 11/7/2019 22 / 27

Higher Dimensions

Bilinear Integration

The composite two-dimensional trapezoidal quadrature is then:

J ≈
∫ 1

x=0

∫ 1

y=0
φ(x , y)dxdy =

∑
i ,j

fi ,j

∫ ∫
φi ,j(x , y)dxdy =

∑
i ,j

wi ,j fi ,j

Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis φ̂0,0 restricted to Ω̂:

φ̂0,0(x̂ , ŷ) = (1− x̂)(1− ŷ)

Now integrate φ̂0,0 over Ω̂:∫
Ω̂
φ̂0,0(x̂ , ŷ)dx̂dŷ =

1

4
.

Since each interior node contributes to 4 rectangles, its weight is 1.
Edge nodes contribute to 2 rectangles, so their weight is 1/2.
Corners contribute to only one rectangle, so their weight is 1/4.

A. Donev (Courant Institute) Lecture IX 11/7/2019 23 / 27

Higher Dimensions

Adaptive Meshes: Quadtrees and Block-Structured

A. Donev (Courant Institute) Lecture IX 11/7/2019 24 / 27

Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

A. Donev (Courant Institute) Lecture IX 11/7/2019 25 / 27

Conclusions

In MATLAB

The MATLAB function quad(f , a, b, ε) uses adaptive Simpson
quadrature to compute the integral.

The MATLAB function quadl(f , a, b, ε) uses adaptive Gauss-Lobatto
quadrature.

MATLAB says: “The function quad may be more efficient with low
accuracies or nonsmooth integrands.”

In two dimensions, for separable integrals over rectangles, use

J = dblquad(f , xmin, xmax , ymin, ymax , ε)

J = dblquad(f , xmin, xmax , ymin, ymax , ε,@quadl)

There is also triplequad .

A. Donev (Courant Institute) Lecture IX 11/7/2019 26 / 27

Conclusions

Conclusions/Summary

Numerical integration or quadrature approximates an integral via a
discrete weighted sum of function values over a set of nodes.

Integration is based on interpolation: Integrate the interpolant to get
a good approximation.

Piecewise polynomial interpolation over equi-spaced nodes gives the
trapezoidal and Simpson quadratures for lower order, and higher
order are generally not recommended.

In higher dimensions we split the domain into rectangles for regular
grids (separable integration), or triangles/tetrahedra for simplicial
meshes.

Integration in high dimensions d becomes harder and harder because
the number of nodes grows as Nd : Curse of dimensionality. Monte
Carlo is one possible cure...

A. Donev (Courant Institute) Lecture IX 11/7/2019 27 / 27

	Numerical Integration in 1D
	Adaptive / Refinement Methods
	Higher Dimensions
	Conclusions

