Scientific Computing: Numerical Integration

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ Course MATH-GA. 2043 or CSCI-GA.2112, Fall 2019
Nov 7th, 2019

Outline

(1) Numerical Integration in 1D
(2) Adaptive / Refinement Methods
(3) Higher Dimensions
(4) Conclusions

Numerical Quadrature

- We want to numerically approximate a definite integral

$$
J=\int_{a}^{b} f(x) d x
$$

- The function $f(x)$ may not have a closed-form integral, or it may itself not be in closed form.
- Recall that the integral gives the area under the curve $f(x)$, and also the Riemann sum:

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)=J, \text { where } x_{i} \leq t_{i} \leq x_{i+1}
$$

- A quadrature formula approximates the Riemann integral as a discrete sum over a set of n nodes:

$$
J \approx J_{n}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

Midpoint Quadrature

Split the interval into n intervals of width $h=(b-a) / n$ (stepsize), and then take as the nodes the midpoint of each interval:

$$
x_{k}=a+(2 k-1) h / 2, \quad k=1, \ldots, n
$$

$$
J_{n}=h \sum_{k=1}^{n} f\left(x_{k}\right), \text { and clearly } \lim _{n \rightarrow \infty} J_{n}=J
$$

Quadrature Error

- Focus on one of the sub intervals, and estimate the quadrature error using the midpoint rule assuming $f(x) \in C^{(2)}$:

$$
\varepsilon^{(i)}=\left[\int_{x_{i}-h / 2}^{x_{i}+h / 2} f(x) d x\right]-h f\left(x_{i}\right)
$$

- Expanding $f(x)$ into a Taylor series around x_{i} to first order,

$$
f(x)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)+\frac{1}{2} f^{\prime \prime}[\eta(x)]\left(x-x_{i}\right)^{2}
$$

The linear term integrates to zero, so we get

$$
\begin{gathered}
\int_{x_{i}-h / 2}^{x_{i}+h / 2} f^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)=0 \Rightarrow \\
\varepsilon^{(i)}=\frac{1}{2} \int_{x_{i}-h / 2}^{x_{i}+h / 2} f^{\prime \prime}[\eta(x)]\left(x-x_{i}\right)^{2} d x
\end{gathered}
$$

Composite Quadrature Error

- Using a generalized mean value theorem we can show

$$
\varepsilon^{(i)}=f^{\prime \prime}[\xi] \frac{1}{2} \int_{h}\left(x-x_{i}\right)^{2} d x=\frac{h^{3}}{24} f^{\prime \prime}[\xi] \quad \text { for some } a<\xi<b
$$

- Now, combining the errors from all of the intervals together gives the global error

$$
\varepsilon=\int_{a}^{b} f(x) d x-h \sum_{k=1}^{n} f\left(x_{k}\right)=J-J_{n}=\frac{h^{3}}{24} \sum_{k=1}^{n} f^{\prime \prime}\left[\xi_{k}\right]
$$

- Use a discrete generalization of the mean value theorem to prove second-order accuracy

$$
\varepsilon=\frac{h^{3}}{24} n\left(f^{\prime \prime}[\xi]\right)=\frac{b-a}{24} \cdot h^{2} \cdot f^{\prime \prime}[\xi] \quad \text { for some } a<\xi<b
$$

Interpolatory Quadrature

Instead of integrating $f(x)$, integrate a polynomial interpolant $\phi(x) \approx f(x):$

Figure 6.2. Four quadrature rules.

Trapezoidal Rule

- Consider integrating an interpolating function $\phi(x)$ which passes through $n+1$ nodes x_{i} :

$$
\phi\left(x_{i}\right)=y_{i}=f\left(x_{i}\right) \text { for } i=0,2, \ldots, m
$$

- First take the piecewise linear interpolant and integrate it over the sub-interval $I_{i}=\left[x_{i-1}, x_{i}\right]$:

$$
\phi_{i}^{(1)}(x)=y_{i-1}+\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}\left(x-x_{i}\right)
$$

to get the trapezoidal formula (the area of a trapezoid):

$$
\int_{x \in I_{i}} \phi_{i}^{(1)}(x) d x=h \frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}
$$

Composite Trapezoidal Rule

- Now add the integrals over all of the sub-intervals we get the composite trapezoidal quadrature rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{h}{2} \sum_{i=1}^{n}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \\
& =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

with similar error to the midpoint rule.

Simpson's Quadrature Formula

- As for the midpoint rule, split the interval into n intervals of width $h=(b-a) / n$, and then take as the nodes the endpoints and midpoint of each interval:

$$
\begin{aligned}
& x_{k}=a+k h, \quad k=0, \ldots, n \\
& \bar{x}_{k}=a+(2 k-1) h / 2, \quad k=1, \ldots, n
\end{aligned}
$$

- Then, take the piecewise quadratic interpolant $\phi_{i}(x)$ in the sub-interval $I_{i}=\left[x_{i-1}, x_{i}\right]$ to be the parabola passing through the nodes $\left(x_{i-1}, y_{i-1}\right),\left(x_{i}, y_{i}\right)$, and $\left(\bar{x}_{i}, \bar{y}_{i}\right)$.
- Integrating this interpolant in each interval and summing gives the Simpson quadrature rule:

$$
\begin{gathered}
J_{S}=\frac{h}{6}\left[f\left(x_{0}\right)+4 f\left(\bar{x}_{1}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+4 f\left(\bar{x}_{n}\right)+f\left(x_{n}\right)\right] \\
\varepsilon=J-J_{s}=-\frac{(b-a)}{2880} \cdot h^{4} \cdot f^{(4)}(\xi)
\end{gathered}
$$

Gauss Quadrature

- To reach spectral accuracy for smooth functions, instead of using higher-degree polynomial interpolants (recall Runge's phenomenon), let's try using n non-equispaced nodes:

$$
J \approx J_{n}=\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)
$$

- It can be shown that there is a special set of $n+1$ nodes and weights, so that the quadrature formula is exact for polynomials of degree up to $m=2 n-1$,

$$
\int_{a}^{b} p_{m}(x) d x=\sum_{i=0}^{n} w_{i} p_{m}\left(x_{i}\right)
$$

- This gives the Gauss quadrature based on the Gauss nodes and weights, usually pre-tabulated for the standard interval $[-1,1]$:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2} \sum_{i=0}^{n} w_{i} f\left(x_{i}\right)
$$

Gauss Weights and Nodes

- The low-order Gauss formulas are:

$$
\begin{aligned}
& n=1: \int_{-1}^{1} f(x) d x \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \\
& n=2: \int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\frac{\sqrt{15}}{5}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\frac{\sqrt{15}}{5}\right)
\end{aligned}
$$

- The weights and nodes are either tabulated or calculated to numerical precision on the fly, for example, using eigenvalue methods.
- Gauss quadrature is very accurate for smooth functions even with few nodes.
- The MATLAB function quadl(f, a, b) uses (adaptive) Gauss-Lobatto quadrature.
- An alternative is to use Chebyshev nodes and weights, called Clenshaw-Curtis quadrature (exact for polynomials of degree n).

Asymptotic Error Expansions

- The idea in Richardson extrapolation is to use an error estimate formula to extrapolate a more accurate answer from less-accurate answers.
- Assume that we have a quadrature formula for which we have a theoretical error estimate:

$$
J_{h}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)=J+\alpha h^{p}+O\left(h^{p+1}\right)
$$

- Recall the big \mathbf{O} notation: $g(x)=O\left(h^{p}\right)$ if:

$$
\exists\left(h_{0}, C\right)>0 \text { s.t. }|g(x)|<C|h|^{p} \text { whenever }|h|<h_{0}
$$

- For trapezoidal formula

$$
\varepsilon=\frac{b-a}{24} \cdot h^{2} \cdot f^{\prime \prime}[\xi]=O\left(h^{2}\right)
$$

Richardson Extrapolation

- Now repeat the calculation but with step size $2 h$ (for equi-spaced nodes just skip the odd nodes):

$$
\begin{aligned}
\tilde{J}(h) & =J+\alpha h^{p}+O\left(h^{p+1}\right) \\
\tilde{J}(2 h) & =J+\alpha 2^{p} h^{p}+O\left(h^{p+1}\right)
\end{aligned}
$$

- Solve for α and obtain

$$
J=\frac{2^{p \tilde{J}}(h)-\tilde{J}(2 h)}{2^{p}-1}+O\left(h^{p+1}\right)
$$

which now has order of accuracy $p+1$ instead of p.

- The composite trapezoidal quadrature gives $\tilde{J}(h)$ with order of accuracy $p=2, \tilde{J}(h)=J+O\left(h^{2}\right)$.

Romberg Quadrature

- Assume that we have evaluated $f(x)$ at $n=2^{m}+1$ equi-spaced nodes, $h=2^{-m}(b-a)$, giving approximation $\tilde{J}(h)$.
- We can also easily compute $\tilde{J}(2 h)$ by simply skipping the odd nodes. And also $\tilde{J}(4 h)$, and in general, $\tilde{J}\left(2^{q} h\right), q=0, \ldots, m$.
- We can keep applying Richardson extrapolation recursively to get Romberg's quadrature:
Combine $\tilde{J}\left(2^{q} h\right)$ and $\tilde{J}\left(2^{q-1} h\right)$ to get a better estimate. Then combine the estimates to get an even better estimates, etc.

$$
\begin{gathered}
J_{r, 0}=\tilde{J}\left(\frac{b-a}{2^{r}}\right), \quad r=0, \ldots, m \\
J_{r, q+1}=\frac{4^{q+1} J_{r, q}-J_{r-1, q}}{4^{q+1}-1}, \quad q=0, \ldots, m-1, \quad r=q+1, \ldots, m
\end{gathered}
$$

- The final answer, $J_{m, m}=J+O\left(h^{2(m+1)}\right)$ is much more accurate than the starting $J_{m, 0}=J+O\left(h^{2}\right)$, for smooth functions.

Adaptive (Automatic) Integration

- We would like a way to control the error of the integration, that is, specify a target error $\varepsilon_{\max }$ and let the algorithm figure out the correct step size h to satisfy

$$
|\varepsilon| \lesssim \varepsilon_{\max },
$$

where ε is an error estimate.

- Importantly, h may vary adaptively in different parts of the integration interval:
Smaller step size when the function has larger derivatives.
- The crucial step is obtaining an error estimate: Use the same idea as in Richardson extrapolation.

Error Estimate for Simpson's Quadrature

- Assume we are using Simpson's quadrature and compute the integral $J(h)$ with step size h.
- Then also compute integrals for the left half and for the right half with step size $h / 2, J(h / 2)=J_{L}(h / 2)+J_{R}(h / 2)$.

$$
\begin{aligned}
& J=J(h)-\frac{1}{2880} \cdot h^{5} \cdot f^{(4)}(\xi) \\
& J=J(h / 2)-\frac{1}{2880} \cdot \frac{h^{4}}{32} \cdot\left[f^{(4)}\left(\xi_{L}\right)+f^{(4)}\left(\xi_{R}\right)\right]
\end{aligned}
$$

- Now assume that the fourth derivative varies little over the interval, $f^{(4)}\left(\xi_{L}\right) \approx f^{(4)}\left(\xi_{L}\right) \approx f^{(4)}(\xi)$, to estimate:

$$
\begin{aligned}
& \frac{1}{2880} \cdot h^{5} \cdot f^{(4)}(\xi) \approx \frac{16}{15}[J(h)-J(h / 2)] \\
& J(h / 2)-J \approx \varepsilon=\frac{1}{16}[J(h)-J(h / 2)]
\end{aligned}
$$

Adaptive Integration

- Now assume that we have split the integration interval $[a, b]$ into sub-intervals, and we are considering computing the integral over the sub-interval $[\alpha, \beta]$, with stepsize

$$
h=\beta-\alpha .
$$

- We need to compute this sub-integral with accuracy

$$
|\varepsilon(\alpha, \beta)|=\frac{1}{16}|[J(h)-J(h / 2)]| \leq \varepsilon \frac{h}{b-a}
$$

- An adaptive integration algorithm is $J \approx J(a, b, \epsilon)$ where the recursive function is:

$$
J(\alpha, \beta, \epsilon)= \begin{cases}J(h / 2) & \text { if }|J(h)-J(h / 2)| \leq 16 \varepsilon \\ J\left(\alpha, \frac{\alpha+\beta}{2}, \frac{\epsilon}{2}\right)+J\left(\frac{\alpha+\beta}{2}, \beta, \frac{\epsilon}{2}\right) & \text { otherwise }\end{cases}
$$

- In practice one also stops the refinement if $h<h_{\text {min }}$ and is more conservative e.g., use 10 instead of 16 .

Piecewise constant / linear basis functions

Fig. 9.4. Distribution of quadrature nodes (left); density of the integration stepsize in the approximation of the integral of Example 9.9 (right)

Regular Grids in Two Dimensions

- A separable integral can be done by doing integration along one axes first, then another:

$$
J=\int_{x=0}^{1} \int_{y=0}^{1} f(x, y) d x d y=\int_{x=0}^{1} d x\left[\int_{y=0}^{1} f(x, y) d y\right]
$$

- Consider evaluating the function at nodes on a regular grid

$$
\mathbf{x}_{i, j}=\left\{x_{i}, y_{j}\right\}, \quad f_{i, j}=f\left(\mathbf{x}_{i, j}\right)
$$

- We can use separable basis functions:

$$
\phi_{i, j}(\mathbf{x})=\phi_{i}(x) \phi_{j}(y)
$$

Bilinear basis functions

Piecewise-Polynomial Integration

- Use a different interpolation function $\phi_{(i, j)}: \Omega_{i, j} \rightarrow \mathbb{R}$ in each rectange of the grid

$$
\Omega_{i, j}=\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]
$$

and it is sufficient to look at a unit reference rectangle $\hat{\Omega}=[0,1] \times[0,1]$.

- Recall: The equivalent of piecewise linear interpolation in 1D is the piecewise bilinear interpolation

$$
\phi_{(i, j)}(x, y)=\phi_{(i)}^{(x)}(x) \cdot \phi_{(j)}^{(y)}(y)
$$

where $\phi_{(i)}^{(x)}$ and $\phi_{(j)}^{(y)}$ are linear function.

- The global interpolant can be written in the tent-function basis

$$
\phi(x, y)=\sum_{i, j} f_{i, j} \phi_{i, j}(x, y) .
$$

Bilinear Integration

- The composite two-dimensional trapezoidal quadrature is then:

$$
J \approx \int_{x=0}^{1} \int_{y=0}^{1} \phi(x, y) d x d y=\sum_{i, j} f_{i, j} \iint \phi_{i, j}(x, y) d x d y=\sum_{i, j} w_{i, j} f_{i, j}
$$

- Consider one of the corners $(0,0)$ of the reference rectangle and the corresponding basis $\hat{\phi}_{0,0}$ restricted to $\hat{\Omega}$:

$$
\hat{\phi}_{0,0}(\hat{x}, \hat{y})=(1-\hat{x})(1-\hat{y})
$$

- Now integrate $\hat{\phi}_{0,0}$ over $\hat{\Omega}$:

$$
\int_{\hat{\Omega}} \hat{\phi}_{0,0}(\hat{x}, \hat{y}) d \hat{x} d \hat{y}=\frac{1}{4}
$$

- Since each interior node contributes to 4 rectangles, its weight is 1 . Edge nodes contribute to 2 rectangles, so their weight is $1 / 2$. Corners contribute to only one rectangle, so their weight is $1 / 4$.

Adaptive Meshes：Quadtrees and Block－Structured

¢	¢	雨	¢	\square	¢	\square	－		＊	¢	里	¢	\square	¢	早	¢
韦	－	雨	里	－	－	里	率		－	里	里	¢	里	－	－	¢
弗	4	¢	聿	\square	－	\square	\square		－	\square	－	弗	雨	－	¢	¢
¢	\％	＋		－.$^{-1}$	－$\cdot 1$.	－$\cdot 1$.	－$\cdot 1$.		.$^{-1}$	${ }_{-1} \cdot 1$.	\％	¢	衰	里	¢	¢
雨	\％	¢		－	－	－	－		－	－	\square	里	率	里	\square	\square
为	雨	¢		－	－	－	－		－	－	¢	¢	为	¢	¢	¢
¢	¢	里		－	－	$\cdots \cdot$	$\cdots \cdot$		\cdots	${ }_{-1} \cdot$	¢	¢	橆	¢	¢	¢
¢	\square	\square	－	－	－	$\cdots \cdot$	－		$\begin{aligned} -1 \\ \hline \end{aligned}$	－	－${ }_{\text {－}}$	\cdots		韩	¢	\square
为	\square	里	\cdots	－	$\cdots \cdot$	$\cdots \cdot$	$\cdots \cdot$		$\begin{aligned} & \text { •跚 } \end{aligned}$		䃲	－	\cdots	¢	¢	¢
包	\square	早		\cdots	－	－			$\begin{aligned} & \text { - 錐 } \\ & \hline \end{aligned}$		唓㖺	$\begin{array}{ll} 1 . \\ \hline-1 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline & 1 \\ \hline . & 1 \\ \hline \end{array}$	－	¢	¢
\％	¢	里	\square	¢	－	¢	－		¢	－	里	¢	里	¢	\％	¢
里	¢	里	¢	里	里	衰	¢		¢	¢	里	里	畀	¢	¢	早
\％	雨	¢	\square	¢	－	\％	\square		¢	\％	－	\％	－	\square	\％	\square

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles. Similarly tetrahedral meshes in 3D.

In MATLAB

- The MATLAB function quad (f, a, b, ε) uses adaptive Simpson quadrature to compute the integral.
- The MATLAB function quadl(f, a, b, ε) uses adaptive Gauss-Lobatto quadrature.
- MATLAB says: "The function quad may be more efficient with low accuracies or nonsmooth integrands."
- In two dimensions, for separable integrals over rectangles, use

$$
\begin{gathered}
J=d b l q u a d\left(f, x_{\min }, x_{\max }, y_{\min }, y_{\max }, \varepsilon\right) \\
J=d b / q u a d\left(f, x_{\min }, x_{\max }, y_{\min }, y_{\max }, \varepsilon, @ q u a d l\right)
\end{gathered}
$$

- There is also triplequad.

Conclusions/Summary

- Numerical integration or quadrature approximates an integral via a discrete weighted sum of function values over a set of nodes.
- Integration is based on interpolation: Integrate the interpolant to get a good approximation.
- Piecewise polynomial interpolation over equi-spaced nodes gives the trapezoidal and Simpson quadratures for lower order, and higher order are generally not recommended.
- In higher dimensions we split the domain into rectangles for regular grids (separable integration), or triangles/tetrahedra for simplicial meshes.
- Integration in high dimensions d becomes harder and harder because the number of nodes grows as N^{d} : Curse of dimensionality. Monte Carlo is one possible cure...

