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Fourier Series
Fourier Composition
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Fourier Series
Fourier Decomposition
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Fourier Series
Periodic Functions

e Consider now interpolating / approximating periodic functions
defined on the interval | = [0, 27]:

Vx f(x+2m) = f(x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

@ Also consider only the space of complex-valued square-integrable
functions [3_,

27
VEe 2. (F.F)=|f| :/ £ dx < oo
0

@ Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

@ Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

dr(x) = €™ = cos(kx) + isin(kx), k=0,4+1,42,...
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Fourier Series
Fourier Basis Functions

ou(x) =e™,  k=0,+1,42, ...

@ It is easy to see that these are orhogonal with respect to the
continuous dot product
2w

27
(¢, Pk) = B (x)Pr(x)dx = /0 exp [i(j — k)x] dx = 276

x=0
@ The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L%W, i.e.,

oo
VFel3 : f(x)= Z Fee™.
k=—00
where the Fourier coefficients can be computed for any frequency
or wavenumber k using:

» (Ff, 0k 1 [ i

fr (f, ok = —. f(x)e i dix.
2w 2 0
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Fourier Series
Fourier Decomposition
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Discrete Fourier Transform
Truncated Fourier Basis

e For a general interval [0, X] the discrete frequencies are

2
k:%n k=0,41,42, ...

@ For non-periodic functions one can take the limit X — oo in which
case we get continuous frequencies.
@ Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,
k=—-(N-1)/2,...,0,...,(N—1)/2 if Nis odd
k=-N/2,...,0,...,N/2 -1 if N is even,
and for simplicity we focus on N odd.
@ The least-squares spectral approximation for this basis is:
(N-1)/2
F)~o(x)= Y.  Fhe™
k=—(N—1)/2
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Discrete Fourier Transform
Discrete Fourier Basis

@ Let us discretize a given function on a set of N equi-spaced nodes
as a vector

fi =f(x;) where x;=jhand h= WW
Observe that j = N is the same node as j = 0 due to periodicity
so we only consider N instead of N 4 1 nodes.
@ Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,
k=—-(N-1)/2,...,0,...,(N—1)/2 if Nis odd
k=-N/2,...,0,...,N/2 -1 if N is even.
e Focus on N odd and denote K = (N —1)/2.
o Discrete dot product between discretized “functions’™

N—-1
f-g=h> fig
=0
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Discrete Fourier Transform
Fourier Interpolant

Vfeld, : f(x)= Z Free

@ We will try to approximate periodic functions with a truncated
Fourier series:

K K
F)md(x)= Y ()= D Fe*
k=K k=K
e The discrete Fourier basis is {¢_x,..., ¢},
(¢k); = exp (ikx;) ,

and it is a discretely orthonormal basis in which we can
represent periodic functions,

P P = 20y i
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Discrete Fourier Transform
Proof of Discrete Orthogonality

The case k = k' is trivial, so focus on

¢k'¢k120f0rk§ék/

Zexp ikx;) exp (—ik'x;) Zexp [i (Ak)xj] = Z[exp (ih (AK))P

J

where Ak = k — k’. This is a geometric series sum:

N

1= =0if k £ K
11—z

G- P =

since z = exp (ih (Ak)) # 1 and
N — exp (ihN (Ak)) = exp (27i (Ak)) =
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Discrete Fourier Transform
Fourier Matrix

@ Let us collect the discrete Fourier basis functions as columns in a
unitary N x N matrix (fft(eye(N)) in MATLAB)

Oy = [ kl.. . Q0 lOk] = ¢J(-,iv) = \lﬁNexp (2mijk /N)

@ The truncated Fourier series is

~

f = opf.
@ Since the matrix ® is unitary, we know that ¢Kll = &} and
therefore
f = o) f,

which is nothing more than a change of basis!
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Discrete Fourier Transform
Discrete Fourier Transform

@ The Fourier interpolating polynomial is thus easy to construct

(N-1)/2

T S

k=—(N—1)/2

where the discrete Fourier coefficients are given by

=2
-

?k(N):f'd)k_ 1

o N 4 f(x;) exp (—ikxj) ~ fi
J

Il
o

@ We can make the expressions more symmetric if we shift the
frequencies to k = 0,..., N, but one should still think of half of the
frequencies as “negative” and half as “positive”.

See MATLAB's functions fftshift and ifftshift.

A. Donev (Courant Institute) Lecture IX 10/31/2019 13 / 44



Discrete Fourier Transform
Discrete Fourier Transform

@ The Discrete Fourier Transform (DFT) is a change of basis taking
us from real/time to Fourier/frequency domain:

1 &= 2rijk

Forward f = f: f = —— ﬁexp(— J), k=0,....,N—1
N “ N

Jj=0
N—1 ..
N 1 A 2mijk

Inverse f — f: f = 1 EXP my , j=0,...,N—-1

Nk:0 N

@ There is different conventions for the DFT depending on the

interval on which the function is defined and placement of factors of
N and 27.

Read the documentation to be consistent!

e A direct matrix-vector multiplication algorithm therefore takes O(N?)
multiplications and additions. Can we do it faster?
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Discrete Fourier Transform
Discrete spectrum

o The set of discrete Fourier coefficients f is called the discrete
spectrum, and in particular,

is the power spectrum which measures the frequency content of a
signal.

o If f is real, then f satisfies the conjugacy property
Fu =12,

so that half of the spectrum is redundant and % is real.

e For an even number of points N the largest frequency k = —N/2
does not have a conjugate partner.
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Discrete Fourier Transform

Approximation error: Analytic

e If f(t = x+ iy) is analytic in a half-strip around the real axis of
half-width v and bounded by |f (t)| < M, then

‘?k‘ < Meia“(l.
@ Then the Fourier interpolant is spectrally-accurate

2Me="
ea —

If = oll, <4 ) Me =
k=n-+1

(geometric series sum)

@ The Fourier interpolating trigonometric polynomial is spectrally
accurate and a really great approximation for (very) smooth functions.
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Discrete Fourier Transform

Spectral Accuracy (or not)

@ The Fourier interpolating polynomial ¢(x) has spectral accuracy,
i.e., exponential in the number of nodes N

1 (x) = p(x)| ~e"
for sufficiently smooth functions.
@ Specifically, what is needed is sufficiently rapid decay of the Fourier
coefficients with k, e.g., exponential decay ‘?k‘ ~ eIkl
@ Discontinuities cause slowly-decaying Fourier coefficients, e.g., power
law decay ’?k’ ~ k™1 for jump discontinuities.
@ Jump discontinuities lead to slow convergence of the Fourier series for

non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

N1 at points away from jumps

1F(x) = ()l ~ {

const. at the jumps themselves
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Discrete Fourier Transform
Gibbs Phenomenon
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Discrete Fourier Transform

Gibbs Phenomenon

Approximation of a square wave timing signal (f, = 20 MHz)
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Discrete Fourier Transform
Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, ...

Standard anti-aliasing rule is the Nyquist—Shannon criterion (theorem):

Need at least 2 samples per period.
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Fast Fourier Transform

DFT

@ Recall the transformation from real space to frequency space and

back:
1 =2 2rijk (N-1)  (N-1)
fof: fh== - - =— ..
— k N Z fjexp ( N ) ) k 2 ; ) 2
Jj=0
(N1)/2 rijk
faf = Y ﬁap<7d>, j=0,...,N—1

k=—(N—1)/2

@ We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k =0,..., N:

= 2rijk
fiexp | — N

Forward f — f: f = ), k=0,...,N—1

1
VN

N—-1 ..
N 1 " 2mijk
Inverse f —f: fi=— kexp<7;\llj>, j=0,....,N=-1

A. Donev (Courant Institute) Lecture IX 10/31/2019 21 / 44



Fast Fourier Transform

FFT

@ We can write the transforms in matrix notation:

where the unitary Fourier matrix is an N x N matrix with entries
u},ﬁv) = u}jk, wy = e 2N,

e A direct matrix-vector multiplication algorithm therefore takes O(N?)
multiplications and additions.

@ Is there a faster way to compute the non-normalized

N-1
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Fast Fourier Transform

FFT

@ For now assume that N is even and in fact a power of two, N = 2".
@ The idea is to split the transform into two pieces, even and odd

points:
N/2-1 N/2-1
Sk D fehi= X oy Rl Y A (R
j=2j’ Jj=2j'+1 Jj'=0 J'=0
@ Now notice that
lev — e—4mi/N _ g—2mi/(N/2) _ W

@ This leads to a divide-and-conquer algorithm:

N/2—-1 ) N/2—-1 )
fk = Z fzjl(,JINi;z =+ WK/ Z f2j1+1uI/Nl;2
i’=0 j/:()

fe = Unf = (Up ofeven + wiUn 2foda)
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Fast Fourier Transform
FFT Complexity

@ The Fast Fourier Transform algorithm is recursive:

FFTN(f) = FFTﬁ (feven) +w[] FFTN (fodd),
2 2

where wy = w,’§, and [ denotes element-wise product. When N =1
the FFT is trivial (identity).
@ To compute the whole transform we need log, (/) steps, and at each
step we only need N multiplications and N/2 additions at each step.
@ The total cost of FFT is thus much better than the direct method's
O(N?): Log-linear
O(Nlog N).
@ Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

@ Note that there are different normalization conventions used in
different software.
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Fast Fourier Transform
In MATLAB

e The forward transform is performed by the function f = fft(f) and
the inverse by f = fft(f). Note that ifft(fft(f)) = f and f and f may
be complex.

@ In MATLAB, and other software, the frequencies are not ordered in
the “normal” way —(N —1)/2 to +(N — 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny"” ordering is

0,1,....,(N-1)/2, ——= = _—=41,...,-1

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

@ The function fftshift can be used to order the frequencies in the
“normal” way, and ifftshift does the reverse:

f = ffshift(fft(f)) (normal ordering).
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Fast Fourier Transform
Multidimensional FFT

@ DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

. Ny N1 27 (ks + iy ky)
"=, /v > Z iy © N
Jy=0 jx=
N,—1
27rUy 18 2rij, ky
-

e For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:
? - ]:row (-'Fcol (f))
@ The cost is N, one-dimensional FFTs of length N, and then N
one-dimensional FFTs of length N,:
N, N, log Ny + N, N, log N, = N, N, log (NxN,) = Nlog N
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Applications of FFT
Applications of FFTs

@ Because FFT is a very fast, almost linear algorithm, it is used often to
accomplish things that are not seemingly related to function
approximation.

@ Denote the Discrete Fourier transform, computed using FFTs in
practice, with

f=7F(f) and f = F1 (f) .

@ Plain FFT is used in signal processing for digital filtering: Multiply
the spectrum by a filter S(k) discretized as § = {g(k)}k:

fanr = Fi (§D f) .

@ Examples include low-pass, high-pass, or band-pass filters. Note
that aliasing can be a problem for digital filters.
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Applications of FFT

FFT-based noise filtering (1)

Fs = 1000; % Sampling frequency
dt = 1/Fs; % Sampling interval

L = 1000; % Length of signal

t = (0:L—1)xdt; % Time vector
T=Lxdt; % Total time interval

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7xsin (2% pi*50%t) + sin(2xpi*x120xt);
y = x + 2xrandn(size(t)); % Sinusoids plus noise

figure(1); clf;

plot(t(1:100),y(1:100),'b——"); hold on

title ('Signal Corrupted with Zero—Mean Random Noise ')
xlabel ('time ")
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Applications of FFT

FFT-based noise filtering (2)

if(0)
N=(L/2)*2; % Even N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/Tx [0:N/2—-1, -N/2:—-1];
% Normal ordering:
f_normal = 2xpi/T+x [-N/2 : N/2-1];
else
N=(L/2)x2—1; % Odd N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/Tx [0:(N-1)/2, —(N-1)/2:—-1];
% Normal ordering:
f_normal = 2xpi/T* [—(N-1)/2 : (N-1)/2];
end
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Applications of FFT

FFT-based noise filtering (3)

figure(2); clf; plot(f_funny, abs(y_hat), 'ro’'); hold

y_hat=fftshift (y_hat);
figure (2); plot(fonormal, abs(y_hat), 'b—");

title (' Single—Sided Amplitude Spectrum of y(t)')
xlabel ('Frequency (Hz)")
ylabel ('Power’)

y_hat(abs(y_hat)<250)=0; % Filter out noise

y_filtered = ifft(ifftshift(y_hat));
figure(1l); plot(t(1:100),y_filtered (1:100), ' r—")
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Applications of FFT

FFT results

Single-Sided Amplitude Spectrum of y(t)
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Applications of FFT
Spectral Derivative

e Consider approximating the derivative of a periodic function f(x),
computed at a set of N equally-spaced nodes, f.
@ One way to do it is to use the finite difference approximations:
g+ )~ Flg — ) _ frn — i

f(x;) ~ =
(%) 2h 2h

@ In order to achieve spectral accuracy of the derivative, we can
differentiate the spectral approximation:
Spectrally-accurate finite-difference derivative

N-1

f’(x) ~ gb'(x) = iqS(x) - i Z £ ek | — Nz_:l Z ieikx
dx dx — k pors kdx

N—1
¢ =3 (ik?k) eflc — F-1 (if o k)
k=0
o Differentiation becomes multiplication in Fourier space.
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Applications of FFT
Unmatched mode

@ Recall that for even N there is one unmatched mode, the one with
the highest frequency and amplitude fy 5.

@ We need to choose what we want to do with that mode; see notes by
S. G. Johnson (MIT) linked on webpage for details:

s T ikx —ikx s Nx
d(x) = fo+ Z (f o 1 Fy_ke k>+fN/2cos<2>.
0<k<N/2
This is the unique “minimal oscillation” trigonometric interpolant.
o Differentiating this we get
0 if k=N/2
(¢ = e § ik if k<N/2.
i(k—N) ifk>N/2
o Real valued interpolation samples result in real-valued ¢(x) for all x.
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Applications of FFT
FFT-based differentiation

% From Nick Trefethen's Spectral Methods book
% Differentiation of exp(sin(x)) on (0,2x%pi]:
N = 8; % Even number!
h = 2xpi/N; x = hx(1:N)";
v = exp(sin(x)); vprime = cos(x).*v;
v_hat = fft(v);
ik = 1i*[0:N/2—1 0 —N/2+1:—1]"; % Zero special mode

w_hat = ik .x v_hat;
w = real (ifft(w_hat));
error = norm(w—vprime , inf)
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Wavelets
The need for wavelets

@ Fourier basis is great for analyzing periodic signals, but is not good
for functions that are localized in space, e.g., brief bursts of speach.

@ Fourier transforms are not good with handling discontinuities in
functions because of the Gibbs phenomenon.

o Fourier polynomails assume periodicity and are not as useful for
non-periodic functions.

@ Because Fourier basis is not localized, the highest frequency present

in the signal must be used everywhere: One cannot use different
resolutions in different regions of space.
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Wavelets

An example wavelet

Donev (Courant Institute) Lecture IX



Wavelets
Wavelet basis

o A mother wavelet function W(x) is a localized function in space.
For simplicity assume that W(x) has compact support on [0, 1].

e A wavelet basis is a collection of wavelets W; -(x) obtained from
W(x) by dilation with a scaling factor s and shifting by a
translation factor 7:

Ws -(x) = W (sx — 7).

@ Here the scale plays the role of frequency in the FT, but the shift is
novel and localized the basis functions in space.

@ We focus on discrete wavelet basis, where the scaling factors are
chosen to be powers of 2 and the shifts are integers:

Wik =W(2x—k), keZ, jeZ, j>0.

A. Donev (Courant Institute) Lecture IX 10/31/2019 37 / 44



Haar Wavelet Basis

thop = W(x)
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Wavelets
Wavelet Transform

@ Any function can now be represented in the wavelet basis:

oo 2-1

)=t > uWulx)

j=0 k=0

This representation picks out frequency components in different
spatial regions.

@ As usual, we truncate the basis at j < J, which leads to a total
number of coefficients cj:
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Wavelets
Discrete Wavelet Basis

o Similarly, we discretize the function on a set of N = 27 equally-spaced
nodes X; x or intervals, to get the vector f:

J—12/-1

f-qﬁ—ZZCJkW (xjk) =

j=0 k=0

@ In order to be able to quickly and stably compute the coefficients c
we need an orthogonal wavelet basis:

/ W W/ m( )dX = 5j,15/,m
@ The Haar basis is discretely orthogonal and computing the transform
and its inverse can be done using a fast wavelet transform, in linear

time O(N) time.
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Wavelets
Discrete Wavelet Transform
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Wavelets
Scaleogram
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Wavelets
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Conclusions
Conclusions/Summary

@ Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

@ The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

@ Functions with discontinuities are not approximated well: Gibbs
phenomenon.

@ The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(N log N).

@ FFTs can be used to filter signals, to do convolutions, and to
provide spectrally-accurate derivatives, all in O(N log N) time.

e For signals that have different properties in different parts of the
domain a wavelet basis may be more appropriate.

@ Using specially-constructed orthogonal discrete wavelet basis one
can compute fast discrete wavelet transforms in time O(N).
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