
Scientific Computing:
The Fast Fourier Transform

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2019

October 31st, 2019

A. Donev (Courant Institute) Lecture IX 10/31/2019 1 / 44

Outline

1 Fourier Series

2 Discrete Fourier Transform

3 Fast Fourier Transform

4 Applications of FFT

5 Wavelets

6 Conclusions

A. Donev (Courant Institute) Lecture IX 10/31/2019 2 / 44

Fourier Series

Fourier Composition

A. Donev (Courant Institute) Lecture IX 10/31/2019 3 / 44

Fourier Series

Fourier Decomposition

A. Donev (Courant Institute) Lecture IX 10/31/2019 4 / 44

Fourier Series

Periodic Functions

Consider now interpolating / approximating periodic functions
defined on the interval I = [0, 2π]:

∀x f (x + 2π) = f (x),

as appear in practice when analyzing signals (e.g., sound/image
processing).
Also consider only the space of complex-valued square-integrable
functions L2

2π,

∀f ∈ L2
w : (f , f) = ‖f ‖2 =

∫ 2π

0
|f (x)|2 dx <∞.

Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.
Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

φk(x) = e ikx = cos(kx) + i sin(kx), k = 0,±1,±2, . . .

A. Donev (Courant Institute) Lecture IX 10/31/2019 5 / 44

Fourier Series

Fourier Basis Functions

φk(x) = e ikx , k = 0,±1,±2, . . .

It is easy to see that these are orhogonal with respect to the
continuous dot product

(φj , φk) =

∫ 2π

x=0
φj (x)φ?k(x)dx =

∫ 2π

0
exp [i(j − k)x] dx = 2πδij

The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L2

2π, i.e.,

∀f ∈ L2
2π : f (x) =

∞∑
k=−∞

f̂ke ikx ,

where the Fourier coefficients can be computed for any frequency
or wavenumber k using:

f̂k =
(f , φk)

2π
=

1

2π
.

∫ 2π

0
f (x)e−ikx dx .

Note that there are different conventions in how various factors of
2π are placed! Be consistent!

A. Donev (Courant Institute) Lecture IX 10/31/2019 6 / 44

Fourier Series

Fourier Decomposition

A. Donev (Courant Institute) Lecture IX 10/31/2019 7 / 44

Discrete Fourier Transform

Truncated Fourier Basis

For a general interval [0,X] the discrete frequencies are

k =
2π

X
κ κ = 0,±1,±2, . . .

For non-periodic functions one can take the limit X →∞ in which
case we get continuous frequencies.

Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,{

k = −(N − 1)/2, . . . , 0, . . . , (N − 1)/2 if N is odd

k = −N/2, . . . , 0, . . . ,N/2− 1 if N is even,

and for simplicity we focus on N odd.

The least-squares spectral approximation for this basis is:

f (x) ≈ φ(x) =

(N−1)/2∑
k=−(N−1)/2

f̂ke ikx .

A. Donev (Courant Institute) Lecture IX 10/31/2019 8 / 44

Discrete Fourier Transform

Discrete Fourier Basis

Let us discretize a given function on a set of N equi-spaced nodes
as a vector

f j = f (xj) where xj = jh and h =
2π

N
.

Observe that j = N is the same node as j = 0 due to periodicity
so we only consider N instead of N + 1 nodes.
Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,{

k = −(N − 1)/2, . . . , 0, . . . , (N − 1)/2 if N is odd

k = −N/2, . . . , 0, . . . ,N/2− 1 if N is even.

Focus on N odd and denote K = (N − 1)/2.
Discrete dot product between discretized “functions”:

f · g = h
N−1∑
j=0

fi g
?
i

A. Donev (Courant Institute) Lecture IX 10/31/2019 9 / 44

Discrete Fourier Transform

Fourier Interpolant

∀f ∈ L2
2π : f (x) =

∞∑
k=−∞

f̂ke ikx

We will try to approximate periodic functions with a truncated
Fourier series:

f (x) ≈ φ(x) =
K∑

k=−K

φk(x) =
K∑

k=−K

f̂ke ikx .

The discrete Fourier basis is
{
φ−K , . . . ,φK

}
,

(φk)j = exp (ikxj) ,

and it is a discretely orthonormal basis in which we can
represent periodic functions,

φk · φk′ = 2πδk,k′

A. Donev (Courant Institute) Lecture IX 10/31/2019 10 / 44

Discrete Fourier Transform

Proof of Discrete Orthogonality

The case k = k ′ is trivial, so focus on

φk · φk′ = 0 for k 6= k ′

∑
j

exp (ikxj) exp
(
−ik ′xj

)
=
∑

j

exp [i (∆k) xj] =
N−1∑
j=0

[exp (ih (∆k))]j

where ∆k = k − k ′. This is a geometric series sum:

φk · φk′ =
1− zN

1− z
= 0 if k 6= k ′

since z = exp (ih (∆k)) 6= 1 and
zN = exp (ihN (∆k)) = exp (2πi (∆k)) = 1.

A. Donev (Courant Institute) Lecture IX 10/31/2019 11 / 44

Discrete Fourier Transform

Fourier Matrix

Let us collect the discrete Fourier basis functions as columns in a
unitary N × N matrix (fft(eye(N)) in MATLAB)

ΦN =
[
φ−K | . . .φ0 . . . |φK

]
⇒ Φ

(N)
jk =

1√
N

exp (2πijk/N)

The truncated Fourier series is

f = ΦN f̂.

Since the matrix ΦN is unitary, we know that Φ−1N = Φ?
N and

therefore
f̂ = Φ?

N f,

which is nothing more than a change of basis!

A. Donev (Courant Institute) Lecture IX 10/31/2019 12 / 44

Discrete Fourier Transform

Discrete Fourier Transform

The Fourier interpolating polynomial is thus easy to construct

φN(x) =

(N−1)/2∑
k=−(N−1)/2

f̂
(N)

k e ikx

where the discrete Fourier coefficients are given by

f̂
(N)

k =
f · φk

2π
=

1

N

N−1∑
j=0

f (xj) exp (−ikxj) ≈ f̂k

We can make the expressions more symmetric if we shift the
frequencies to k = 0, . . . ,N, but one should still think of half of the
frequencies as “negative” and half as “positive”.
See MATLAB’s functions fftshift and ifftshift.

A. Donev (Courant Institute) Lecture IX 10/31/2019 13 / 44

Discrete Fourier Transform

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a change of basis taking
us from real/time to Fourier/frequency domain:

Forward f → f̂ : f̂k =
1√
N

N−1∑
j=0

fj exp

(
−2πijk

N

)
, k = 0, . . . ,N−1

Inverse f̂ → f : fj =
1√
N

N−1∑
k=0

f̂k exp

(
2πijk

N

)
, j = 0, . . . ,N − 1

There is different conventions for the DFT depending on the
interval on which the function is defined and placement of factors of
N and 2π.
Read the documentation to be consistent!

A direct matrix-vector multiplication algorithm therefore takes O(N2)
multiplications and additions. Can we do it faster?

A. Donev (Courant Institute) Lecture IX 10/31/2019 14 / 44

Discrete Fourier Transform

Discrete spectrum

The set of discrete Fourier coefficients f̂ is called the discrete
spectrum, and in particular,

Sk =
∣∣∣f̂k

∣∣∣2 = f̂k f̂ ?k ,

is the power spectrum which measures the frequency content of a
signal.

If f is real, then f̂ satisfies the conjugacy property

f̂−k = f̂ ?k ,

so that half of the spectrum is redundant and f̂0 is real.

For an even number of points N the largest frequency k = −N/2
does not have a conjugate partner.

A. Donev (Courant Institute) Lecture IX 10/31/2019 15 / 44

Discrete Fourier Transform

Approximation error: Analytic

If f (t = x + iy) is analytic in a half-strip around the real axis of
half-width α and bounded by |f (t)| < M, then∣∣∣f̂k

∣∣∣ ≤ Me−α|k|.

Then the Fourier interpolant is spectrally-accurate

‖f − φ‖∞ ≤4
∞∑

k=n+1

Me−αk =
2Me−αn

eα − 1
(geometric series sum)

The Fourier interpolating trigonometric polynomial is spectrally
accurate and a really great approximation for (very) smooth functions.

A. Donev (Courant Institute) Lecture IX 10/31/2019 16 / 44

Discrete Fourier Transform

Spectral Accuracy (or not)

The Fourier interpolating polynomial φ(x) has spectral accuracy,
i.e., exponential in the number of nodes N

‖f (x)− φ(x)‖ ∼ e−N

for sufficiently smooth functions.

Specifically, what is needed is sufficiently rapid decay of the Fourier

coefficients with k, e.g., exponential decay
∣∣∣f̂k

∣∣∣ ∼ e−|k|.

Discontinuities cause slowly-decaying Fourier coefficients, e.g., power

law decay
∣∣∣f̂k

∣∣∣ ∼ k−1 for jump discontinuities.

Jump discontinuities lead to slow convergence of the Fourier series for
non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

‖f (x)− φ(x)‖ ∼

{
N−1 at points away from jumps

const. at the jumps themselves

A. Donev (Courant Institute) Lecture IX 10/31/2019 17 / 44

Discrete Fourier Transform

Gibbs Phenomenon

A. Donev (Courant Institute) Lecture IX 10/31/2019 18 / 44

Discrete Fourier Transform

Gibbs Phenomenon

A. Donev (Courant Institute) Lecture IX 10/31/2019 19 / 44

Discrete Fourier Transform

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, . . .

Standard anti-aliasing rule is the Nyquist–Shannon criterion (theorem):
Need at least 2 samples per period.

A. Donev (Courant Institute) Lecture IX 10/31/2019 20 / 44

Fast Fourier Transform

DFT

Recall the transformation from real space to frequency space and
back:

f → f̂ : f̂k =
1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)
, k = −(N − 1)

2
, . . . ,

(N − 1)

2

f̂ → f : fj =

(N−1)/2∑
k=−(N−1)/2

f̂k exp

(
2πijk

N

)
, j = 0, . . . ,N − 1

We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k = 0, . . . ,N:

Forward f → f̂ : f̂k =
1√
N

N−1∑
j=0

fj exp

(
−2πijk

N

)
, k = 0, . . . ,N−1

Inverse f̂ → f : fj =
1√
N

N−1∑
k=0

f̂k exp

(
2πijk

N

)
, j = 0, . . . ,N − 1

A. Donev (Courant Institute) Lecture IX 10/31/2019 21 / 44

Fast Fourier Transform

FFT

We can write the transforms in matrix notation:

f̂ =
1√
N

UN f

f =
1√
N

U?
N f̂,

where the unitary Fourier matrix is an N × N matrix with entries

u
(N)
jk = ωjk

N , ωN = e−2πi/N .

A direct matrix-vector multiplication algorithm therefore takes O(N2)
multiplications and additions.

Is there a faster way to compute the non-normalized

f̂k =
N−1∑
j=0

fjω
jk
N ?

A. Donev (Courant Institute) Lecture IX 10/31/2019 22 / 44

Fast Fourier Transform

FFT

For now assume that N is even and in fact a power of two, N = 2n.

The idea is to split the transform into two pieces, even and odd
points:

∑
j=2j ′

fjω
jk
N +

∑
j=2j ′+1

fjω
jk
N =

N/2−1∑
j ′=0

f2j ′
(
ω2

N

)j ′k
+ ωk

N

N/2−1∑
j ′=0

f2j ′+1

(
ω2

N

)j ′k

Now notice that

ω2
N = e−4πi/N = e−2πi/(N/2) = ωN/2

This leads to a divide-and-conquer algorithm:

f̂k =

N/2−1∑
j ′=0

f2j ′ω
j ′k
N/2 + ωk

N

N/2−1∑
j ′=0

f2j ′+1ω
j ′k
N/2

f̂k = UN f =
(
UN/2feven + ωk

NUN/2fodd

)
A. Donev (Courant Institute) Lecture IX 10/31/2019 23 / 44

Fast Fourier Transform

FFT Complexity

The Fast Fourier Transform algorithm is recursive:

FFTN(f) = FFT N
2

(feven) + w � FFT N
2

(fodd),

where wk = ωk
N and � denotes element-wise product. When N = 1

the FFT is trivial (identity).

To compute the whole transform we need log2(N) steps, and at each
step we only need N multiplications and N/2 additions at each step.

The total cost of FFT is thus much better than the direct method’s
O(N2): Log-linear

O(N log N).

Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

Note that there are different normalization conventions used in
different software.

A. Donev (Courant Institute) Lecture IX 10/31/2019 24 / 44

Fast Fourier Transform

In MATLAB

The forward transform is performed by the function f̂ = fft(f) and
the inverse by f = fft(f̂). Note that ifft(fft(f)) = f and f and f̂ may
be complex.

In MATLAB, and other software, the frequencies are not ordered in
the “normal” way −(N − 1)/2 to +(N − 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny” ordering is

0, 1, . . . , (N − 1)/2, −N − 1

2
,−N − 1

2
+ 1, . . . ,−1.

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

The function fftshift can be used to order the frequencies in the
“normal” way, and ifftshift does the reverse:

f̂ = fftshift(fft(f)) (normal ordering).

A. Donev (Courant Institute) Lecture IX 10/31/2019 25 / 44

Fast Fourier Transform

Multidimensional FFT

DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

f̂ =
1

Nx Ny

Ny−1∑
jy=0

Nx−1∑
jx=0

fjx ,jy exp

[
−2πi (jx kx + jy ky)

N

]

f̂kx ,ky =
1

Nx

Ny−1∑
jy=0

exp

(
−2πijy kx

N

) 1

Ny

Ny−1∑
jy=0

fjx ,jy exp

(
−2πijy ky

N

)
For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:

f̂ = F row (Fcol (f))

The cost is Ny one-dimensional FFTs of length Nx and then Nx

one-dimensional FFTs of length Ny :

Nx Ny log Nx + Nx Ny log Ny = Nx Ny log (Nx Ny) = N log N

A. Donev (Courant Institute) Lecture IX 10/31/2019 26 / 44

Applications of FFT

Applications of FFTs

Because FFT is a very fast, almost linear algorithm, it is used often to
accomplish things that are not seemingly related to function
approximation.

Denote the Discrete Fourier transform, computed using FFTs in
practice, with

f̂ = F (f) and f = F−1
(

f̂
)
.

Plain FFT is used in signal processing for digital filtering: Multiply

the spectrum by a filter Ŝ(k) discretized as ŝ =
{

Ŝ(k)
}

k
:

ffilt = F−1
(

ŝ � f̂
)
.

Examples include low-pass, high-pass, or band-pass filters. Note
that aliasing can be a problem for digital filters.

A. Donev (Courant Institute) Lecture IX 10/31/2019 27 / 44

Applications of FFT

FFT-based noise filtering (1)

Fs = 1 0 0 0 ; % Sampl ing f r e q u e n c y
dt = 1/ Fs ; % Sampl ing i n t e r v a l
L = 1 0 0 0 ; % Length o f s i g n a l
t = (0 : L−1)∗dt ; % Time v e c t o r
T=L∗ dt ; % T o t a l t ime i n t e r v a l

% Sum o f a 50 Hz s i n u s o i d and a 120 Hz s i n u s o i d
x = 0 . 7∗ s i n (2∗ p i ∗50∗ t) + s i n (2∗ p i ∗120∗ t) ;
y = x + 2∗ randn (s i z e (t)) ; % S i n u s o i d s p l u s n o i s e

f i g u r e (1) ; c l f ;
p l o t (t (1 : 1 0 0) , y (1 : 1 0 0) , ’ b−− ’); h o l d on
t i t l e (’ S i g n a l C o r r u p t e d w i t h Zero−Mean Random Noise ’)
x l a b e l (’ t ime ’)

A. Donev (Courant Institute) Lecture IX 10/31/2019 28 / 44

Applications of FFT

FFT-based noise filtering (2)

i f (0)
N=(L / 2)∗2 ; % Even N
y h a t = f f t (y (1 :N)) ;

% F r e q u e n c i e s o r d e r e d i n a funny way :
f f u n n y = 2∗ p i /T∗ [0 : N/2−1, −N/ 2 : −1] ;

% Normal o r d e r i n g :
f n o r m a l = 2∗ p i /T∗ [−N/2 : N/2−1];

e l s e
N=(L/2)∗2−1; % Odd N
y h a t = f f t (y (1 :N)) ;

% F r e q u e n c i e s o r d e r e d i n a funny way :
f f u n n y = 2∗ p i /T∗ [0 : (N−1)/2 , −(N−1)/2:−1] ;

% Normal o r d e r i n g :
f n o r m a l = 2∗ p i /T∗ [−(N−1)/2 : (N−1) / 2] ;

end

A. Donev (Courant Institute) Lecture IX 10/31/2019 29 / 44

Applications of FFT

FFT-based noise filtering (3)

f i g u r e (2) ; c l f ; p l o t (f f u n n y , abs (y h a t) , ’ ro ’) ; h o l d on ;

y h a t= f f t s h i f t (y h a t) ;
f i g u r e (2) ; p l o t (f n o r m a l , abs (y h a t) , ’ b− ’) ;

t i t l e (’ S i n g l e−S i d e d Ampl i tude Spectrum o f y (t) ’)
x l a b e l (’ Frequency (Hz) ’)
y l a b e l (’ Power ’)

y h a t (abs (y h a t)<250)=0; % F i l t e r out n o i s e
y f i l t e r e d = i f f t (i f f t s h i f t (y h a t)) ;
f i g u r e (1) ; p l o t (t (1 : 1 0 0) , y f i l t e r e d (1 : 1 0 0) , ’ r − ’)

A. Donev (Courant Institute) Lecture IX 10/31/2019 30 / 44

Applications of FFT

FFT results

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−8

−6

−4

−2

0

2

4

6

8
Signal Corrupted with Zero−Mean Random Noise

time

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
0

100

200

300

400

500

600
Single−Sided Amplitude Spectrum of y(t)

Frequency (Hz)

P
o

w
e

r

A. Donev (Courant Institute) Lecture IX 10/31/2019 31 / 44

Applications of FFT

Spectral Derivative

Consider approximating the derivative of a periodic function f (x),
computed at a set of N equally-spaced nodes, f.

One way to do it is to use the finite difference approximations:

f ′(xj) ≈
f (xj + h)− f (xj − h)

2h
=

fj+1 − fj−1
2h

.

In order to achieve spectral accuracy of the derivative, we can
differentiate the spectral approximation:
Spectrally-accurate finite-difference derivative

f ′(x) ≈ φ′(x) =
d

dx
φ(x) =

d

dx

(
N−1∑
k=0

f̂ke ikx

)
=

N−1∑
k=0

f̂k
d

dx
e ikx

φ′ =
N−1∑
k=0

(
ik f̂k

)
e ikx = F−1

(
i f̂ � k

)
Differentiation becomes multiplication in Fourier space.

A. Donev (Courant Institute) Lecture IX 10/31/2019 32 / 44

Applications of FFT

Unmatched mode

Recall that for even N there is one unmatched mode, the one with
the highest frequency and amplitude f̂N/2.

We need to choose what we want to do with that mode; see notes by
S. G. Johnson (MIT) linked on webpage for details:

φ(x) = f̂0 +
∑

0<k<N/2

(
f̂ke ikx + f̂N−ke−ikx

)
+ f̂N/2 cos

(
Nx

2

)
.

This is the unique “minimal oscillation” trigonometric interpolant.

Differentiating this we get

(̂φ′)k = f̂k


0 if k = N/2

ik if k < N/2

i (k − N) if k > N/2

.

Real valued interpolation samples result in real-valued φ(x) for all x .

A. Donev (Courant Institute) Lecture IX 10/31/2019 33 / 44

Applications of FFT

FFT-based differentiation

% From Nick T r e f e t h e n ’ s S p e c t r a l Methods book
% D i f f e r e n t i a t i o n o f exp (s i n (x)) on (0 ,2∗ p i] :

N = 8 ; % Even number !
h = 2∗ p i /N; x = h ∗ (1 :N) ’ ;
v = exp (s i n (x)) ; vpr ime = cos (x) . ∗ v ;
v h a t = f f t (v) ;
i k = 1 i ∗ [0 :N/2−1 0 −N/2+1:−1] ’ ; % Zero s p e c i a l mode
w hat = i k .∗ v h a t ;
w = r e a l (i f f t (w hat)) ;
e r r o r = norm (w−vpr ime , i n f)

A. Donev (Courant Institute) Lecture IX 10/31/2019 34 / 44

Wavelets

The need for wavelets

Fourier basis is great for analyzing periodic signals, but is not good
for functions that are localized in space, e.g., brief bursts of speach.

Fourier transforms are not good with handling discontinuities in
functions because of the Gibbs phenomenon.

Fourier polynomails assume periodicity and are not as useful for
non-periodic functions.

Because Fourier basis is not localized, the highest frequency present
in the signal must be used everywhere: One cannot use different
resolutions in different regions of space.

A. Donev (Courant Institute) Lecture IX 10/31/2019 35 / 44

Wavelets

An example wavelet

A. Donev (Courant Institute) Lecture IX 10/31/2019 36 / 44

Wavelets

Wavelet basis

A mother wavelet function W (x) is a localized function in space.
For simplicity assume that W (x) has compact support on [0, 1].

A wavelet basis is a collection of wavelets Ws,τ (x) obtained from
W (x) by dilation with a scaling factor s and shifting by a
translation factor τ :

Ws,τ (x) = W (sx − τ) .

Here the scale plays the role of frequency in the FT, but the shift is
novel and localized the basis functions in space.

We focus on discrete wavelet basis, where the scaling factors are
chosen to be powers of 2 and the shifts are integers:

Wj ,k = W (2j x − k), k ∈ Z, j ∈ Z, j ≥ 0.

A. Donev (Courant Institute) Lecture IX 10/31/2019 37 / 44

Wavelets

Haar Wavelet Basis

A. Donev (Courant Institute) Lecture IX 10/31/2019 38 / 44

Wavelets

Wavelet Transform

Any function can now be represented in the wavelet basis:

f (x) = c0 +
∞∑

j=0

2j−1∑
k=0

cjkWj ,k(x)

This representation picks out frequency components in different
spatial regions.

As usual, we truncate the basis at j < J, which leads to a total
number of coefficients cjk :

J−1∑
j=0

2j = 2J

A. Donev (Courant Institute) Lecture IX 10/31/2019 39 / 44

Wavelets

Discrete Wavelet Basis

Similarly, we discretize the function on a set of N = 2J equally-spaced
nodes xj ,k or intervals, to get the vector f:

f = c0 +
J−1∑
j=0

2j−1∑
k=0

cjkWj ,k(xj ,k) = Wj c

In order to be able to quickly and stably compute the coefficients c
we need an orthogonal wavelet basis:∫

Wj ,k(x)Wl ,m(x)dx = δj ,lδl ,m

The Haar basis is discretely orthogonal and computing the transform
and its inverse can be done using a fast wavelet transform, in linear
time O(N) time.

A. Donev (Courant Institute) Lecture IX 10/31/2019 40 / 44

Wavelets

Discrete Wavelet Transform

A. Donev (Courant Institute) Lecture IX 10/31/2019 41 / 44

Wavelets

Scaleogram

A. Donev (Courant Institute) Lecture IX 10/31/2019 42 / 44

Wavelets

Another scaleogram

A. Donev (Courant Institute) Lecture IX 10/31/2019 43 / 44

Conclusions

Conclusions/Summary

Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

Functions with discontinuities are not approximated well: Gibbs
phenomenon.

The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(N log N).

FFTs can be used to filter signals, to do convolutions, and to
provide spectrally-accurate derivatives, all in O(N log N) time.

For signals that have different properties in different parts of the
domain a wavelet basis may be more appropriate.

Using specially-constructed orthogonal discrete wavelet basis one
can compute fast discrete wavelet transforms in time O(N).

A. Donev (Courant Institute) Lecture IX 10/31/2019 44 / 44

	Fourier Series
	Discrete Fourier Transform
	Fast Fourier Transform
	Applications of FFT
	Wavelets
	Conclusions

