
Scientific Computing, Fall 2019
Assignment V: Function Approximation

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

Posted October 30th 2019
Due 5pm Thursday Nov 21st 2019

For grading purposes the maximum is considered to be 110 points (10 additional extra points possible).

1 [55 points] Least Squares polynomial approximations

In this problem we will consider approximating a given non-linear function f(x) = exp(x) on the interval
x ∈ [0, 1] with a polynomial of degree n,

f(x) ≈ p(x) =
n∑
i=0

aix
i.

1.1 [20pts] Least Squares fitting

In class and the last homework we discussed least-squares fitting, where we evaluate the function f(x) on
a sequence of m+ 1 ≥ n equally-spaced nodes with xj = j/m, j = 0, 1, . . . ,m, and then try to minimize
the Euclidean norm of the residual:

a(m) = arg min
a

em(a) = arg min
a

m∑
j=0

[f(xj)− pm(xj)]
2 .

This gives a least-squares fit polynomial pm(x) =
∑n
i=0 a

(m)
i xi which depends on how many nodes m were

used. It is similar to interpolation (m = n), except that we do not try to force the polynomial to pass
through all of the nodes, but rather, to pass as close as possible to the interpolation nodes. We can call
this “least-squares polynomial interpolation”, and it is implemented in MATLAB’s polyfit function.

[5 pts] Write down the linear system (normal equations) for finding the polynomial coefficients a?m
explicitly, that is, write down a formula for the matrix and the right hand side of the linear system.
Hint: You can do this by relying on overdetermined linear systems, as we did in an earlier homework. But
you can also use what you learned about optimization: To find the minimum of the error em(a) you need to
look for critical points, i.e., solutions of the system of equations ∂em/∂a = 0, which will directly give you a
system of equations for the polynomial coefficients. It is good if you explore and understand the relation
between the two.

[5pts] Now solve the equations you derived above numerically for f(x) = exp(x) for a given n and m, for
example, n = 5 and m = 10, and compare to MATLAB’s function polyfit to check your solution.

[10pts] Fix n = 5 and see how the error f(x)− pm(x) behaves as you increase m, that is, check whether
adding nodes changes the (error in the) polynomial approximation significantly. Does it appear that there
is some limit as m→∞?
Hint: Make a plot of the error εm (x) = f(x)− pm(x) for several increasing m. Plot the error as a function
on a fine grid with many points, say 1000, and study it; there is no need to compute norms but rather to
examine the results and see what you find. Note that the results for a fixed-degree least squares polynomial
will be very different from the case of polynomial interpolation (see problem 2 below), where the degree of
the polynomial n = m grows also.

1

1.2 [35pts] Least Squares approximation

One may object to the least-squares fitting approach because only the error at the nodes is minimized,
and it may be that the error is large at other points in the inverval [0, 1]. Possibly a better approach to
approximating the function with a polynomial is a “least-square approximation” where we minimize the
functional Euclidean (L2) norm of the error,

a? = arg min
a

e(a) = arg min
a

ˆ 1

x=0

[f(x)− p(x)]2 dx.

The resulting approximation p(x) =
∑n
i=0 a

?
ix

i will presumably spread out the approximation error more
evenly over the whole interval instead of focusing on just the interpolation nodes.

[15pts] Write down a linear system for finding the polynomial coefficients a? explicitly, for a given function
f(x). Note: You may write this by hand and scan into the PDF.
Hint: You may encounter the ill-conditioned Hilbert matrix from the second homework.
Hint: The following explicit formula may be useful:

ˆ 1

0

xj exp(x)dx = (−1)j+1 j! + e
j∑
i=0

(−1)j−i
j!

i!
,

where i! denotes the factorial of i, obtained as factorial(i) in MATLAB, and e = exp(1).
[10pts] Solve the above system numerically for n = 5 and f(x) = exp(x) and compare the solution p(x)

to the function f(x).
[10pts] On the same plot, compare the error f(x)− pm(x) from the last part of question 1.1 (i.e., use a

“large”m) to the error f(x)− p(x), and comment on what you observe. Explain the result.

2 [65 points] Convergence of Interpolating Polynomials

In this problem we consider interpolating the following periodic function on the interval x ∈ [−π, π],

f(x) = exp (a cosx) ,

where a is a given parameter that determines the smoothness of the function; for this assignment fix a = 3.
We use a periodic function here so that we can obtain a spectrally-accurate interpolant using a Fourier
series/transform. Note that if the BCs were not periodic one could do the same with orthogonal polynomials
such as Chebyshev or Legendre polynomials, and the results will be similar. In fact, Chebyshev nodes
are uniform nodes in the variable θ where x = cosθ ∈ [−1, 1] so there is a close-link between Fourier series
and Chebyshev polynomials.

The goal of this exercise is to see whether and how fast the interpolation error converges to zero as the
number of interpolation nodes increases, for several different types of interpolants:

1. Global polynomial pequi(x) of degree n with n + 1 equi-spaced nodes, as obtained using MATLAB’s
polyfit. Note that due to periodicity the values of the function at the first and last nodes will be equal,
but that the polynomial itself does not recognize the periodicity.

2. Piecewise linear p1(x) interpolant on n+ 1 equi-spaced nodes, as obtained using MATLAB’s interp1
function.

3. Piecewise cubic (periodic) spline p3(x) on n + 1 equi-spaced nodes, as obtained using MATLAB’s spline
toolbox function csape:

p=csape (x , y , ’ p e r i od i c ’) ; % Find the p e r i o d i c s p l i n e
y t i l d e=fnva l (p , x t i l d e) ; % Evaluate on f i n e g r id

If you do not have access to the spline or curve-fitting toolbox, you can use MATLAB’s built-in function
spline or, equivalently, interp1, but you will not get a periodic interpolant, which will probably increase
the error somewhat near the endpoints.

4. The Fourier (trigonomentric) interpolant pFFT (x) on n equi-spaced nodes. [Hint: Note that for Fourier
transforms periodicity is already assumed so you should include only one of the points x = −π and
x = π, not both.]

2

For a given interpolant φ(x), we can evaluate the interpolant on a fine grid of points, for example,
x̃ = linspace(−π, π,N + 1) for N = 1000, and then compare to the actual function f(x). We can also
compute an estimate for the Euclidean norm of the interpolation error by summing the error over the fine grid,

E2 [φ(x)] =

[
h

N∑
i=0

|f(x̃i)− φ(x̃i)|2
]1/2
≈

[ˆ π

−π
|f(x)− φ(x)|2 dx

]1/2
,

where h = 2π/N .

2.1 [40pts] Comparing different interpolants

[7.5 pts for pequi, p1 and p3, and 17.5 pts for pFFT]
For a given small n, say n = 8, plot the different interpolants together with the function and see how good
they are. Plot the error ε(x) = |f(x)− φ(x)| of the different interpolants for a larger n, say n = 32, and
visually compare the accuracy of the different interpolants in different regions of the interval. Discuss the
results and relate to the theory covered in class. [Hint: For the Fourier polynomial, MATLAB’s function
interpft may be useful to interpolate the Fourier series on the fine grid of nodes.]

2.2 [25pts] Interpolation Error

[10pts] For different numbers of nodes, n = 2k, k = 2, 3, . . ., compute the estimated interpolation error E2

for p1(x) and p3(x) and then plot the error versus n using an appropriate scaling of the axes.
[7.5pts] For p1(x) and p3(x), the theoretical estimates from class suggest that

E2 [p1(x)] ≈ C1n
−2 and E2 [p3(x)] ≈ C3n

−4.

Verify this scaling from the plot of E2 versus n.
Hint: Assume that the error scales as E2 ≈ C np, where p is some unknown power exponent. Then
logE2 = lnC + p log n is a linear relation between the logs, with slope p. Therefore, plotting on a log-log
scale will show the desired scaling.

[7.5pts] For pFFT (x), theory suggests that for this sort of smooth function (specifically, exponentially-
decaying Fourier coefficients) convergence is spectral, i.e., faster than any power law, something close to
exponential,

E2 [pFFT (x)] ∼ exp(−n).

Verify that your numerical results are consistent with this prediction [Hint: The spectral convergence is so
fast that numerical roundoff will not permit really seeing the exponential decay well, but simply plotting an
exponentially-decaying curve on the same plot or plotting the error on a log-linear scale will do].

3

