Scientific Computing, Fall 2019
Assignment II: Linear Systems

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

September 24th, 2019
Due by Sunday October 13th

A total of 100 points is possible. Make sure to follow good programming practices in your MATLAB
codes. For example, make sure that parameters, such as the number of variables n, are not hard-wired into
the code and are thus easy to change. Use fprintf to format your output nicely for inclusion in your report.

1 [35 pts] Ill-Conditioned Systems: The Hilbert Matrix

Consider solving linear systems with the matrix of coefficients A defined by

1
A;; = —,
i1
which is a well-known example of an ill-conditioned symmetric positive-definite matrix, see for example
this Wikipedia article
http://en.wikipedia.org/wiki/Hilbert_matrix

1.1 [10 pts] Conditioning numbers

[10pts] Form the Hilbert matrix in MATLAB and compute the conditioning number for increasing size of
the matrix n for the Ly, Ly and Loo (the column sum, row sum, and spectral matrix) norms based on the

definition k(A) = || A|| HA_IH and using MATLAB’s norm function. Note that the inverse of the Hilbert

matrix can be computed analytically, and is available in MATLAB as tnvhilb. Compare to the answer
with that returned by the built-in exact calculation cond and the estimate returned by the function rcond
(check the help pages for details).

1.2 [25 pts| Solving ill-conditioned systems

[5pts] Compute the right-hand side (rhs) vector b = Ax so that the exact solution is @ = 1 (all unit
entries). Solve the linear system using MATLAB’s built-in solver (explain what method was used to solve
the system in your report) and see how many digits of accuracy you get in the solution for several n, using,
for example, the infinity norm. Also compute the relative norm of the residual | A — b|| / ||b|| and explain
how it changes with the conditioning number of the matrix.

Note: A method is called backward stable if it computes the exact solution to a nearby problem, i.e., if the
residual is small.

[5pts] Do your results conform to the theoretical expectation discussed in class? After what n does it no
longer make sense to even try solving the system due to severe ill-conditioning?

[5pts] Now do the same but solve the system using the Cholesky factorization of A, and compare the
results and report if anything has changed.

[5pts| Now try computing the solution by using the numerically-computed matrix inverse, x = inv(A) x b,
and compute the relative errors in the solution and in the residual and see how they behave. What difference
do you see between using the LU or Cholesky factorization versus using matrix inverse? Which one is better
and why?

[bpts| Finally, try @ = invhilb(A) * b and compare with using a numerical inverse. Report what you see
and try to explain your observations.

2 [35 points] Least-Squares Fitting

Consider fitting a data series (z;,;), i = 1,...,n, consisting of n = 100 data points that approximately
follow a polynomial relation,

d
y=f(z)= ch$k7
k=0

where ¢, are some unknown coefficients that we need to estimate from the data points, and d is the degree
of the polynomial. Observe that we can rewrite the problem of least-squares fitting of the data in the form
of an overdetermined linear system

[A(z)]c =y,

where the matrix A will depend on the z-coordinates of the data points, and the right hand side is formed
from the y-coordinates.

Let the correct solution for the unknown coefficients ¢ be given by ¢, = k, and the degree be d = 9.
Using the built-in function rand generate synthetic (artificial) data points by choosing n points 0 < x; < 1
randomly, uniformly distributed from 0 to 1. Then calculate

y = f(x) + €9,

where § is a random vector of normally-distributed perturbations (e.g., experimental measurement errors)
with mean zero and unit variance, generated using the function randn. Here € is a parameter that measures
the magnitude of the uncertainty in the data points. [Hint: Plot your data for some small value of € to
make sure the data points approximately follow y = f(z).]

2.1 [20pts] Different Methods

For several logarithmically-spaced perturbations (for example, ¢ = 107* for : = 0,1,...,16), estimate the

coefficients € from the least-squares fit to the synthetic data and report the error ||c — ¢||. Do this using
three different methods available in MATLAB to do the fitting:

a) [5pts| The built-in function poly fit, which fits a polynomial of a given degree to data points [Hint: Note
that in MATLAB vectors are indexed from 1 and thus the order of the coefficients that polyfit returns is
the opposite of the one we use here, namely, c; is the coefficient of x.]

b) [5pts] Using the backslash operator to solve the overdetermined linear system Aé = y.

c) [5pts] Forming the system of normal equations discussed in class,
(ATA) c=ATy,
and solving that system using the backslash operator.

[5pts| Report the results for different € from all three methods in one printout or plot, and explain what
you observe.

2.2 [15pts] The Best Method

[10pts] If € = 0 we should get the exact result from the fitting. What is the highest accuracy you can
achieve with each of the three methods? Is one of the three methods clearly inferior to the others? Can you
explain your results? Hint: Theory suggests that the conditioning number of solving overdetermined linear
systems is the square root of the conditioning number of the matriz in the normal system of equations,

k(A) =\ /r(ATA).
[5pts| Test empirically whether the conditioning of the problem get better or worse as the polynomial
degree d is increased.

3 [30 points] Rank-1 Matrix Updates

In a range of applications, such as for example machine learning, the linear system Ax = b needs to be
re-solved after a rank-1 update of the matrix,

Ao A=A+ uw",

for some given vectors v and w. More generally, problems of updating a matriz factorization (linear solver)
after small updates to the matrix appear very frequently and many algorithms have been developed for
special forms of the updates. The rank-1 update is perhaps the simplest and best known, and we explore it
in this problem. From now on, assume that A is invertible and its inverse or LU factorizations are known,
and that we want to update the solution after a rank-1 update of the matrix. We will work with random
dense matrices for simplicity.

3.1 [10pts] Direct update

[5pts] In MATLAB, generate a random (use the built-in function randn) n x n matrix A for some given
input n and compute its LU factorization (you will need it for later parts of this problem). Also generate a
right-hand-side (rhs) vector b and solve Ax = b.

[5pts] Now generate random vectors v and w and obtain the updated solution & of the system Az =b.
Verify the new solution & by directly verifying that the residual » = b — Ax is small.

3.2 [20pts] SMW Formula
It is not hard to show that A is invertible if and only if v" A 'u # —1, and in that case

1 ATlwTAT!
A=A ATy @

This is the so-called Sherman-Morrison formula, a generalization of which is the Woodbury formula, as

discussed on Wikipedia:
http://en.wikipedia.org/wiki/Sherman-Morrison-Woodbury_formula. The SMW formula (1) can
be used to compute a new solution & = A~ 'b without actually computing Al or factorizing A.
[10pts] For some n (say n = 100), compare the result from using the formula (1) versus solving the
updated system Ax = b directly as in part 3.1.
[20pts] Implement the SMW formula (1) carefully to compute & = A 'bas robustly and efficiently as
you can, that, is, not actually calculating matrix inverses but rather (re)using the LU factorization of A

[Hint: You only need to solve two triangular systems to update the solution once you have the factorization
of A]. Explain how you computed & and estimate how expensive this is in terms of number of operations

(FLOPS). Explain how much faster it is then solving A% = b directly as a function of n.

