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Mathematical Background

Formulation

Optimization problems are among the most important in engineering
and finance, e.g., minimizing production cost, maximizing profits,
etc.

min
x∈Rn

f (x)

where x are some variable parameters and f : Rn → R is a scalar
objective function.

Observe that one only need to consider minimization as

max
x∈Rn

f (x) = − min
x∈Rn

[−f (x)]

A local minimum x? is optimal in some neighborhood,

f (x?) ≤ f (x) ∀x s.t. ‖x− x?‖ ≤ R > 0.

(think of finding the bottom of a valley)

Finding the global minimum is generally not possible for arbitrary
functions (think of finding Mt. Everest without a satelite).
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Mathematical Background

Connection to nonlinear systems

Assume that the objective function is differentiable (i.e., first-order
Taylor series converges or gradient exists).

Then a necessary condition for a local minimizer is that x? be a
critical point

g (x?) = ∇xf (x?) =

{
∂f

∂xi
(x?)

}
i

= 0

which is a system of non-linear equations!

In fact similar methods, such as Newton or quasi-Newton, apply to
both problems.

Vice versa, observe that solving f (x) = 0 is equivalent to an
optimization problem

min
x

[
f (x)T f (x)

]
although this is only recommended under special circumstances.

A. Donev (Courant Institute) Lecture VII 10/15/2015 4 / 20



Mathematical Background

Sufficient Conditions

Assume now that the objective function is twice-differentiable (i.e.,
Hessian exists).

A critical point x?is a local minimum if the Hessian is positive
definite

H (x?) = ∇2
xf (x?) � 0

which means that the minimum really looks like a valley or a convex
bowl.

At any local minimum the Hessian is positive semi-definite,
∇2

xf (x?) � 0.

Methods that require Hessian information converge fast but are
expensive.
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Mathematical Background

Mathematical Programming

The general term used is mathematical programming.

Simplest case is unconstrained optimization

min
x∈Rn

f (x)

where x are some variable parameters and f : Rn → R is a scalar
objective function.

Find a local minimum x?:

f (x?) ≤ f (x) ∀x s.t. ‖x− x?‖ ≤ R > 0.

(think of finding the bottom of a valley).
Find the best local minimum, i.e., the global minimumx?: This is
virtually impossible in general and there are many specialized
techniques such as genetic programming, simmulated annealing,
branch-and-bound (e.g., using interval arithmetic), etc.

Special case: A strictly convex objective function has a unique
local minimum which is thus also the global minimum.
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Mathematical Background

Constrained Programming

The most general form of constrained optimization

min
x∈X

f (x)

where X ⊂ Rn is a set of feasible solutions.

The feasible set is usually expressed in terms of equality and
inequality constraints:

h(x) = 0

g(x) ≤ 0

The only generally solvable case: convex programming
Minimizing a convex function f (x) over a convex set X : every local
minimum is global.
If f (x) is strictly convex then there is a unique local and global
minimum.
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Mathematical Background

Special Cases

Special case of convex programming is linear programming:

minx∈Rn

{
cTx

}
s.t. Ax ≤ b .

The feasible set here is a convex polytope (polygon, polyhedron) in
Rn, consider for now the case when it is bounded, meaning there are
at least n + 1 constraints.

The optimal point is a vertex of the polyhedron, meaning a point
where (generically) n constraints are active,

Aactx
? = bact .

Solving the problem therefore means finding the subset of active
constraints:
Combinatorial search problem, solved using the simplex algorithm
(search along the edges of the polytope).
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Smooth Unconstrained Optimization

Necessary and Sufficient Conditions

A necessary condition for a local minimizer:
The optimum x? must be a critical point (maximum, minimum or
saddle point):

g (x?) = ∇xf (x?) =

{
∂f

∂xi
(x?)

}
i

= 0,

and an additional sufficient condition for a critical point x? to be a
local minimum:
The Hessian at the optimal point must be positive definite,

H (x?) = ∇2
xf (x?) =

{
∂2f

∂xi∂xj
(x?)

}
ij

� 0.

which means that the minimum really looks like a valley or a convex
bowl.
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Smooth Unconstrained Optimization

Direct-Search Methods

A direct search method only requires f (x) to be continuous but
not necessarily differentiable, and requires only function evaluations.

Methods that do a search similar to that in bisection can be devised
in higher dimensions also, but they may fail to converge and are
usually slow.

The MATLAB function fminsearch uses the Nelder-Mead or
simplex-search method, which can be thought of as rolling a simplex
downhill to find the bottom of a valley. But there are many others
and this is an active research area.

Curse of dimensionality: As the number of variables
(dimensionality) n becomes larger, direct search becomes hopeless
since the number of samples needed grows as 2n!
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Smooth Unconstrained Optimization

Minimum of 100(x2 − x2
1 )2 + (a − x1)2 in MATLAB

% Rosenbrock or ’ banana ’ f u n c t i o n :
a = 1 ;
banana = @( x ) 100∗( x (2)−x (1)ˆ2)ˆ2+(a−x ( 1 ) ) ˆ 2 ;

% This f u n c t i o n must accep t a r r a y arguments !
banana xy = @( x1 , x2 ) 100∗( x2−x1 .ˆ2) . ˆ2+( a−x1 ) . ˆ 2 ;

f i g u r e ( 1 ) ; e z s u r f ( banana xy , [ 0 , 2 , 0 , 2 ] )

[ x , y ] = meshgrid ( l i n s p a c e ( 0 , 2 , 1 0 0 ) ) ;
f i g u r e ( 2 ) ; c o n t ou r f ( x , y , banana xy ( x , y ) , 100)

% Cor r e c t answers a r e x =[1 ,1 ] and f ( x)=0
[ x , f v a l ] = fm in s e a r ch ( banana , [−1.2 , 1 ] , op t imse t ( ’ TolX ’ ,1 e−8))
x = 0.999999999187814 0.999999998441919
f v a l = 1.099088951919573 e−18
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Smooth Unconstrained Optimization

Figure of Rosenbrock f (x)
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Smooth Unconstrained Optimization

Descent Methods

Finding a local minimum is generally easier than the general problem
of solving the non-linear equations

g (x?) = ∇xf (x?) = 0

We can evaluate f in addition to ∇xf .
The Hessian is positive-(semi)definite near the solution (enabling
simpler linear algebra such as Cholesky).

If we have a current guess for the solution xk , and a descent
direction (i.e., downhill direction) dk :

f
(
xk + αdk

)
< f

(
xk
)

for all 0 < α ≤ αmax ,

then we can move downhill and get closer to the minimum (valley):

xk+1 = xk + αkdk ,

where αk > 0 is a step length.
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Smooth Unconstrained Optimization

Gradient Descent Methods

For a differentiable function we can use Taylor’s series:

f
(
xk + αdk

)
≈ f

(
xk
)

+ αk

[
(∇f )T dk

]
This means that fastest local decrease in the objective is achieved
when we move opposite of the gradient: steepest or gradient
descent:

dk = −∇f
(
xk
)

= −gk .

One option is to choose the step length using a line search
one-dimensional minimization:

αk = arg min
α

f
(
xk + αdk

)
,

which needs to be solved only approximately.
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Smooth Unconstrained Optimization

Steepest Descent

Assume an exact line search was used, i.e., αk = arg minα φ(α) where

φ(α) = f
(
xk + αdk

)
.

φ′(α) = 0 =
[
∇f

(
xk + αdk

)]T
dk .

This means that steepest descent takes a zig-zag path down to the
minimum.

Second-order analysis shows that steepest descent has linear
convergence with convergence coefficient

C ∼ 1− r

1 + r
, where r =

λmin (H)

λmax (H)
=

1

κ2(H)
,

inversely proportional to the condition number of the Hessian.

Steepest descent can be very slow for ill-conditioned Hessians: One
improvement is to use conjugate-gradient method instead.
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Smooth Unconstrained Optimization

Newton’s Method

Making a second-order or quadratic model of the function:

f (xk + ∆x) = f (xk) +
[
g
(
xk
)]T

(∆x) +
1

2
(∆x)T

[
H
(
xk
)]

(∆x)

we obtain Newton’s method:

g(x + ∆x) = ∇f (x + ∆x) = 0 = g + H (∆x) ⇒

∆x = −H−1g ⇒ xk+1 = xk −
[
H
(
xk
)]−1 [

g
(
xk
)]
.

Note that this is identical to using the Newton-Raphson method for
solving the nonlinear system ∇xf (x?) = 0.

At the minimum H (x?) � 0 so one can use Cholesky factorization

to compute
[
H
(
xk
)]−1 [

g
(
xk
)]

sufficiently close to the minimum.
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Smooth Unconstrained Optimization

Problems with Newton’s Method

Newton’s method is exact for a quadratic function (this is another
way to define order of convergence!) and converges in one step when
H ≡ H

(
xk
)

= const.

For non-linear objective functions, however, Newton’s method requires
solving a linear system every step: expensive.

It may not converge at all if the initial guess is not very good, or may
converge to a saddle-point or maximum: unreliable.

All of these are addressed by using variants of quasi-Newton or
trust-region methods:

xk+1 = xk − αkH−1k

[
g
(
xk
)]
,

where 0 < αk < 1 and Hk is an approximation to the true Hessian.
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Equality Constrained Optimization

Penalty Approach

The idea is the convert the constrained optimization problem:

minx∈Rn f (x)

s.t. h(x) = 0 .

into an unconstrained optimization problem.

Consider minimizing the penalized function

Lα(x) = f (x) + α ‖h(x)‖22 = f (x) + α [h(x)]T [h(x)] ,

where α > 0 is a penalty parameter.

Note that one can use penalty functions other than sum of squares.

If the constraint is exactly satisfied, then Lα(x) = f (x).
As α→∞ violations of the constraint are penalized more and more,
so that the equality will be satisfied with higher accuracy.
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Equality Constrained Optimization

Penalty Method

The above suggest the penalty method (see homework):
For a monotonically diverging sequence α1 < α2 < · · · , solve a
sequence of unconstrained problems

xk = x (αk) = arg min
x

{
Lk(x) = f (x) + αk [h(x)]T [h(x)]

}
and the solution should converge to the optimum x?,

xk → x? = x (αk →∞) .

Note that one can use xk−1 as an initial guess for, for example,
Newton’s method.

Also note that the problem becomes more and more ill-conditioned
as α grows.
A better approach uses Lagrange multipliers in addition to penalty
(augmented Lagrangian).

A. Donev (Courant Institute) Lecture VII 10/15/2015 19 / 20



Conclusions

Conclusions/Summary

Optimization, or mathematical programming, is one of the most
important numerical problems in practice.

Optimization problems can be constrained or unconstrained, and
the nature (linear, convex, quadratic, algebraic, etc.) of the functions
involved matters.

Finding a global minimum of a general function is virtually
impossible in high dimensions, but very important in practice.

An unconstrained local minimum can be found using direct search,
gradient descent, or Newton-like methods.

Equality-constrained optimization is tractable, but the best method
depends on the specifics.

Constrained optimization is tractable for the convex case, otherwise
often hard, and even NP-complete for integer programming.
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