
Scientific Computing:
Ordinary Differential Equations

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015

Nov 19th, 2015

A. Donev (Courant Institute) Lecture XI 11/19/2015 1 / 36

Outline

1 Initial Value Problems

2 Numerical Methods for ODEs

3 Higher-Order Methods

4 Conclusions

A. Donev (Courant Institute) Lecture XI 11/19/2015 2 / 36

Initial Value Problems

Initial Value Problems

We want to numerically approximate the solution to the ordinary
differential equation

dx

dt
= x ′(t) = ẋ(t) = f [x(t), t] ,

with initial condition x(t = 0) = x(0) = x0.

This means that we want to generate an approximation to the
trajectory x(t), for example, a sequence x(tk = k∆t) for
k = 1, 2, . . . ,N = T/∆t, where ∆t is the time step used to
discretize time.

If f is independent of t we call the system autonomous.

Note that second-order equations can be written as a system of
first-order equations:

d2x

dt2
= ẍ(t) = f [x(t), t] ≡

{
ẋ(t) = v(t)

v̇(t) = f [x(t), t]

A. Donev (Courant Institute) Lecture XI 11/19/2015 4 / 36

Initial Value Problems

Relation to Numerical Integration

If f is independent of x then the problem is equivalent to numerical
integration

x(t) = x0 +

∫ t

0
f (s)ds.

More generally, we cannot compute the integral because it depends
on the unknown answer x(t):

x(t) = x0 +

∫ t

0
f [x(s), s] ds.

Numerical methods are based on approximations of f [x(s), s] into the
“future” based on knowledge of x(t) in the “past” and “present”.

A. Donev (Courant Institute) Lecture XI 11/19/2015 5 / 36

Initial Value Problems

Convergence

Consider a trajectory numerically discretized as a sequence that
approximates the exact solution at a discrete set of points:

x (k) ≈ x(tk = k∆t), k = 1, . . . ,T/∆t.

A method is said to converge with order p > 0, or to have order of
accuracy p, if for any finite T for which the ODE has a solution,∣∣∣x (k) − x(k∆t)

∣∣∣ = O(∆tp) for all 0 ≤ k ≤ T/∆t.

All methods are recursions that compute a new x (k+1) from previous
x (k) by evaluating f (x) several times. For example, one-step
methods have the form

x (k+1) = G
(
x (k); f

)
.

A. Donev (Courant Institute) Lecture XI 11/19/2015 6 / 36

Initial Value Problems

Consistency

The local trunction error of a method is the amount by which the
exact solution does not satisfy the numerical scheme:

ek = x [(k + 1) ∆t]− G [x(k∆t); f]

A method is consistent if the local truncation error vanishes as
∆t → 0.

A method is consistent with order q > 1 if |ek | = O(∆tq).

The global truncation error is the sum of the local truncations from
each time step.

Note that the local truncation order must be at least 1, since if one
makes an error O(∆tq) at each time step, the global error after
T/∆t time steps can become on the order of∣∣∣x (k) − x(k∆t)

∣∣∣ = O(∆tq · T
∆t

) = O(∆tq−1) = O(∆tp),

and we must have p > 0 for convergence.

A. Donev (Courant Institute) Lecture XI 11/19/2015 7 / 36

Initial Value Problems

Zero Stability

It turns out consistency is not sufficient for convergence: One must
also examine how perturbations grow with time: error propagation.

A method is called zero-stable if for all sufficiently small but finite
∆t, introducing perturbations at each step (e.g., roundoff errors,
errors in evaluating f) with magnitude less than some small ε perturbs
the solution by at most O(ε).

This simply means that errors do not increase but rather decrease
from step to step, as we saw with roundoff errors in the first
homework.

A central theorem in numerical methods for differential equations is
the Lax equivalence theorem:
Any consistent method is convergent if and only if it is zero-stable, or

consistency + stability = convergence.

One-step methods can be shown to be zero-stable if f is well-behaved
(Lipschitz continuous with respect to its second argument).

A. Donev (Courant Institute) Lecture XI 11/19/2015 8 / 36

Numerical Methods for ODEs

Euler’s Method

Assume that we have our approximation x (k) and want to move by
one time step:

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds.

The simplest possible thing is to use a piecewise constant
approximation:

f [x(s), s] ≈ f (x (k)) = f (k),

which gives the forward Euler method

x (k+1) = x (k) + f (k)∆t.

This method requires only one function evaluation per time step.

A. Donev (Courant Institute) Lecture XI 11/19/2015 10 / 36

Numerical Methods for ODEs

Euler’s Method

Scheme: x (k+1) − x (k) − f (k)∆t = 0

The local trunction error is easy to find using a Taylor series
expansion:

ek =x [(k + 1) ∆t]− x (k∆t)− f [x (k∆t)] ∆t =

x̃ (k+1) − x̃k − f
(
x̃k
)

∆t = x̃ (k+1) − x̃k −
[
x ′ (k∆t)

]
∆t =

x ′′(ξ)

2
∆t2,

for some k∆t ≤ ξ ≤ (k + 1) ∆t.

Therefore the order of the local truncation error is O(∆t2).

The global truncation error, however, is of order O(∆t), so this is a
first-order accurate method.

A. Donev (Courant Institute) Lecture XI 11/19/2015 11 / 36

Numerical Methods for ODEs

Long-Time Stability

Consider the model problem for λ < 0:

x ′(t) = λx(t)

x(0) = 1,

with an exact solution that decays exponentially, x(t) = eλt .
Applying Euler’s method to this model equation gives:

x (k+1) = x (k) + λx (k)∆t = (1 + λ∆t) x (k) ⇒

x (k) = (1 + λ∆t)k

The numerical solution will decay if the time step satisfies the
stability criterion

|1 + λ∆t| ≤ 1 ⇒ ∆t < − 2

λ
.

Otherwise, the numerical solution will blow up over a sufficiently long
period!

A. Donev (Courant Institute) Lecture XI 11/19/2015 12 / 36

Numerical Methods for ODEs

Global Error

Now assume that the stability criterion is satisfied, and see what the
error is at time T :

x (k) − eλT = (1 + λ∆t)T/∆t − eλT =

=

(
1 +

λT

N

)N

− eλT .

In the limit N → 0 the first term converges to eλT so the error is zero
(the method converges).
Furthermore, the correction terms are:(

1 +
λT

N

)N

= eλT

[
1− (λT)2

2N
+ O(N−2)

]

= eλT
[

1− λ2T

2
∆t + O(∆t2)

]
,

which now shows that the relative error is O(∆t) but generally grows
with T .

A. Donev (Courant Institute) Lecture XI 11/19/2015 13 / 36

Numerical Methods for ODEs

Absolute Stability

A method is called absolutely stable if for λ < 0 the numerical
solution decays to zero, like the actual solution.

The above analysis shows that Euler’s method is conditionally
stable, meaning it is stable if ∆t < 2/ |λ|.
One can make the analysis more general by allowing λ to be a
complex number. This is particularly useful when studying stability
in numerical methods for PDEs...

The theoretical solution decays if λ has a negative real part,
Re(λ) < 0.

We call the region of absolute stability the set of complex numbers

z = λ∆t

for which the numerical solution decays to zero.

A. Donev (Courant Institute) Lecture XI 11/19/2015 14 / 36

Numerical Methods for ODEs

A-stable Methods

For Euler’s method, the stability condition is

|1 + λ∆t| = |1 + z | = |z − (−1)| ≤ 1 ⇒

which means that z must be in a unit disk in the complex plane
centered at (−1, 0):

z ∈ C1(−1, 0).

An A-stable or unconditionally stable method is one that is stable
for any choice of time-step if Re(λ) < 0.

It is not trivial to come up with methods that are A-stable but also as
simple and efficient as the Euler method, but it is necessary in many
practical situations.

A. Donev (Courant Institute) Lecture XI 11/19/2015 15 / 36

Numerical Methods for ODEs

Stiff Equations

For a real “non-linear” problem, x ′(t) = f [x(t), t], the role of λ is
played by

λ←→ ∂f

∂x
.

Consider the following model equation:

x ′(t) = λ [x(t)− g(t)] + g ′(t),

where g(t) is a nice (regular) function evolving on a time scale of
order 1, and λ� −1 is a large negative number.

The exact solution consists of a fast-decaying “irrelevant” component
and a slowly-evolving “relevant” component:

x(t) = [x(0)− g(0)] eλt + g(t).

Using Euler’s method requires a time step ∆t < 2/ |λ| � 1, i.e., many
time steps in order to see the relevant component of the solution.

A. Donev (Courant Institute) Lecture XI 11/19/2015 16 / 36

Numerical Methods for ODEs

Stiff Systems

An ODE or a system of ODEs is called stiff if the solution evolves on
widely-separated timescales and the fast time scale decays (dies out)
quickly.

We can make this precise for linear systems of ODEs, x(t) ∈ Rn:

x′(t) = A [x(t)] .

Assume that A has an eigenvalue decomposition:

A = XΛX−1,

and express x(t) in the basis formed by the eigenvectors xi :

y(t) = X−1 [x(t)] .

A. Donev (Courant Institute) Lecture XI 11/19/2015 17 / 36

Numerical Methods for ODEs

contd.

x′(t) = A [x(t)] = XΛ
[
X−1x(t)

]
= XΛ [y(t)] ⇒

y′(t) = Λ [y(t)]

The different y variables are now uncoupled: each of the n ODEs is
independent of the others:

yi = yi (0)eλi t .

Assume now that all eigenvalues are negative, λ < 0, so each
component of the solution decays:

x(t) =
n∑

i=1

yi (0)eλi txi → 0 as t →∞.

A. Donev (Courant Institute) Lecture XI 11/19/2015 18 / 36

Numerical Methods for ODEs

Stiffness

If we solve the original system using Euler’s method,

x(k+1) = x(k) + Ax(k)∆t,

the time step must be smaller than the smallest stability limit,

∆t <
2

maxi |Re(λi)|
.

A system is stiff if there is a strong separation of time scales in the
eigenvalues:

r =
maxi |Re(λi)|
mini |Re(λi)|

� 1.

For non-linear problems A is replaced by the Jacobian ∇xf(x, t).

A. Donev (Courant Institute) Lecture XI 11/19/2015 19 / 36

Numerical Methods for ODEs

Backward Euler

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds.

How about we use a piecewise constant-approximation, but based on
the end-point:

f [x(s), s] ≈ f (x (k+1)) = f (k+1),

which gives the backward Euler method

x (k+1) = x (k) + f (x (k+1))∆t.

This method requires solving a non-linear equation at every time
step.

A. Donev (Courant Institute) Lecture XI 11/19/2015 20 / 36

Numerical Methods for ODEs

Unconditional Stability

Backward Euler is an implicit method, as opposed to an explicit
method like the forward Euler method.

The local and global truncation errors are basically the same as in the
forward Euler method.

But, let us examine the stability for the model equation x ′(t) = λx(t):

x (k+1) = x (k) + λx (k+1)∆t ⇒ x (k+1) = x (k)/ (1− λ∆t)

x (k) = x (0)/ (1− λ∆t)k

This implicit method is thus unconditionally stable, since for any
time step

|1− λ∆t| > 1.

A. Donev (Courant Institute) Lecture XI 11/19/2015 21 / 36

Numerical Methods for ODEs

Implicit Methods

This is a somewhat generic conclusion:
Implicit methods are generally more stable than explicit methods,
and solving stiff problems generally requires using an implicit method.

The price to pay is solving a system of non-linear equations at every
time step (linear if the ODE is linear):
This is best done using Newton-Raphson’s method, where the
solution at the previous time step is used as an initial guess.

Trying to by-pass Newton’s method and using a technique that looks
like an explicit method (e.g., fixed-point iteration) will not work:
One most solve linear systems in order to avoid stability restrictions.

For PDEs, the linear systems become large and implicit methods can
become very expensive...

A. Donev (Courant Institute) Lecture XI 11/19/2015 22 / 36

Higher-Order Methods

Multistep Methods

x (k+1) ≈ x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds.

Euler’s method was based on a piecewise constant approximation
(extrapolation) of f (s) ≡ f [x(s), s].

If we instead integrate the linear extrapolation

f (s) ≈ f
(
x (k), t(k)

)
+

f
(
x (k), t(k)

)
− f

(
x (k−1), t(k−1)

)
∆t

(s − tk),

we get the second-order two-step Adams-Bashforth method

x (k+1) = x (k) +
∆t

2

[
3f
(
x (k), t(k)

)
− f

(
x (k−1), t(k−1)

)]
.

This is an example of a multi-step method, which requires keeping
previous values of f .

A. Donev (Courant Institute) Lecture XI 11/19/2015 24 / 36

Higher-Order Methods

Runge-Kutta Methods

Runge-Kutta methods are a powerful class of one-step methods
similar to Euler’s method, but more accurate.

As an example, consider using a trapezoidal rule to approximate the
integral

x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds ≈ x (k) +

∆t

2
[f (k∆t) + f ((k + 1) ∆t)] ,

x (k+1) = x (k) +
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1), t(k+1)

)]
which requires solving a nonlinear equation for x (k+1).

This is the simplest implicit Runge-Kutta method, usually called
the trapezoidal method or the Crank-Nicolson method.

The local truncation error is O(∆t3), so the global error is
second-order accurate O(∆t2), and the method is unconditionally
stable.

A. Donev (Courant Institute) Lecture XI 11/19/2015 25 / 36

Higher-Order Methods

Explicit Runge-Kutta Methods

x (k+1) = x (k) +
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x (k+1), t(k+1)

)]
In an explicit method, we would approximate x? ≈ x (k+1) first using
Euler’s method, to get the simplest explicit Runge-Kutta method,
usually called Heun’s method

x? =x (k) + f
(
x (k), t(k)

)
∆t

x (k+1) =x (k) +
∆t

2

[
f
(
x (k), t(k)

)
+ f

(
x?, t(k+1)

)]
.

This is still second-order accurate, but, being explicit, is
conditionally-stable, with the same time step restriction as Euler’s
method.
This is a representative of a powerful class of second-order methods
called predictor-corrector methods:
Euler’s method is the predictor, and then trapezoidal method is the
corrector.

A. Donev (Courant Institute) Lecture XI 11/19/2015 26 / 36

Higher-Order Methods

Higher-Order Runge Kutta Methods

The idea is to evaluate the function f (x , t) several times and then
take a time-step based on an average of the values.

In practice, this is done by performing the calculation in stages:
Calculate an intermediate approximation x?, evaluate f (x?), and go
to the next stage.

The most celebrated Runge-Kutta methods is a four-stage
fourth-order accurate RK4 method based on Simpson’s approximation
to the integral:

x (k) +

∫ (k+1)∆t

k∆t
f [x(s), s] ds ≈

x (k)+
∆t

6

[
f (x (k)) + 4f (x (k+1/2)) + f (x (k+1))

]
=

x (k)+
∆t

6

[
f (k) + 4f (k+1/2) + f (k+1)

]
,

and we approximate 4f (k+1/2) = 2f (k+1/2;1) + 2f (k+1/2;2).

A. Donev (Courant Institute) Lecture XI 11/19/2015 27 / 36

Higher-Order Methods

RK4 Method

f (k) = f
(
x (k)

)
, x (k+1/2;1),= x (k) +

∆t

2
f (k)

f (k+1/2;1) = f
(
x (k+1/2;1), t(k) + ∆t/2

)
x (k+1/2;2) = x (k) +

∆t

2
f (k+1/2;1)

f (k+1/2;2) = f
(
x (k+1/2;2), t(k) + ∆t/2

)
x (k+1;1) = x (k) + ∆t f (k+1/2;2)

f (k+1) = f
(
x (k+1;1), t(k) + ∆t

)
x (k+1) =x (k) +

∆t

6

[
f (k) + 2f (k+1/2;1) + 2f (k+1/2;2) + f (k+1)

]
A. Donev (Courant Institute) Lecture XI 11/19/2015 28 / 36

Higher-Order Methods

Adaptive Methods

For many problems of interest the character of the problem changes
with time, and it is not appropriate to use the same time step
throughout.

An adaptive method would adjust the time step to satisfy the
stability criterion, for example

∆tn < 2α

(
∂f

∂x

)
n

, where α < 1,

but it would also need to ensure some accuracy.

Robust adaptive methods are usually based on Runge-Kutta methods:
They increase or decrease ∆tk from step to step as deemed best
based on error estimates.

For example, a famous RK45 method cleverly combines a fifth stage
with the prior four stages in order to estimate the error, similarly to
what we did for adaptive integration (see notes by Goodman, for
example).

A. Donev (Courant Institute) Lecture XI 11/19/2015 29 / 36

Conclusions

Which Method is Best?

As expected, there is no universally “best” method for integrating
ordinary differential equations: It depends on the problem:

How stiff is your problem (may demand implicit method), and does this
change with time?
How many variables are there, and how long do you need to integrate
for?
How accurately do you need the solution, and how sensitive is the
solution to perturbations (chaos).
How well-behaved or not is the function f (x , t) (e.g., sharp jumps or
discontinuities, large derivatives, etc.).
How costly is the function f (x , t) and its derivatives (Jacobian) to
evaluate.
Is this really ODEs or a something coming from a PDE integration
(next lecture)?

A. Donev (Courant Institute) Lecture XI 11/19/2015 31 / 36

Conclusions

In MATLAB

In MATLAB, there are several functions whose names begin with

[t, x] = ode(f , [t0, te], x0, odeset(. . .)).

ode23 is a second-order adaptive explicit Runge-Kutta method, while
ode45 is a fourth-order version (try it first).

ode23tb is a second-order implicit RK method.

ode113 is a variable-order explicit multi-step method that can provide
very high accuracy.

ode15s is a variable-order implicit multi-step method.

For implicit methods the Jacobian can be provided using the odeset
routine.

A. Donev (Courant Institute) Lecture XI 11/19/2015 32 / 36

Conclusions

Non-Stiff example

funct ion dy = r i g i d (t , y) % F i l e r i g i d .m
dy = zeros (3 , 1) ; % a column v e c t o r
dy (1) = y (2) ∗ y (3) ;
dy (2) = −y (1) ∗ y (3) ;
dy (3) = −0.51 ∗ y (1) ∗ y (2) ;
%−−−−−−−−−−−

o p t i o n s = o d e s e t (’ R e l T o l ’ ,1 e−3, ’ AbsTol ’ , [1 e−4 1e−4 1e−5]) ;
[T, Y] = ode45 (@ r i g i d , [0 1 2] , [0 1 1] , o p t i o n s) ;

p lot (T, Y (: , 1) , ’ o−−r ’ , T, Y (: , 2) , ’ s−−b ’ , T, Y (: , 3) , ’ d−−g ’) ;
x l a b e l (’ t ’) ; y l a b e l (’ y ’) ; t i t l e (’ R e l T o l=1e−3 ’) ;

A. Donev (Courant Institute) Lecture XI 11/19/2015 33 / 36

Conclusions

Stiff example

r =10; % Try r=100
f = @(t , y) [y (2) ; r ∗(1 − y (1) ˆ 2)∗ y (2) − y (1)] ;

f i g u r e (2) ; c l f
[T, Y] = ode45 (f , [0 3∗ r] , [2 1]) ;
p lot (T, Y (: , 1) , ’ o−−r ’ , T, Y (: , 2) / r , ’ o−−b ’)
t i t l e ([’ ode45 (e x p l i c i t) n s t e p s= ’ , i n t 2 s t r (s i z e (T , 1))]) ;

f i g u r e (3) ; c l f
[T, Y] = ode15s (f , [0 3∗ r] , [2 0]) ;
p lot (T, Y (: , 1) , ’ o−−b ’ , T, Y (: , 2) / r , ’ o−−r ’)
t i t l e ([’ ode15s (i m p l i c i t) n s t e p s= ’ , i n t 2 s t r (s i z e (T , 1))]) ;

A. Donev (Courant Institute) Lecture XI 11/19/2015 34 / 36

Conclusions

Stiff van der Pol system (r = 10)

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
ode45 (explicit) nsteps=877

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
ode15s (implicit) nsteps=326

A. Donev (Courant Institute) Lecture XI 11/19/2015 35 / 36

Conclusions

Conclusions/Summary

Time stepping methods for ODEs are convergent if and only if they
are consistent and stable.
We distinguish methods based on their order of accuracy and on
whether they are explicit (forward Euler, Heun, RK4,
Adams-Bashforth), or implicit (backward Euler, Crank-Nicolson), and
whether they are adaptive.
Runge-Kutta methods require more evaluations of f but are more
robust, especially if adaptive (e.g., they can deal with sharp changes
in f). Generally the recommended first-try (ode45 or ode23 in
MATLAB).
Multi-step methods offer high-order accuracy and require few
evaluations of f per time step. They are not very robust however.
Recommended for well-behaved non-stiff problems (ode113).
For stiff problems an implicit method is necessary, and it requires
solving (linear or nonlinear) systems of equations, which may be
complicated (evaluating Jacobian matrices) or costly (ode15s).

A. Donev (Courant Institute) Lecture XI 11/19/2015 36 / 36

	Initial Value Problems
	Numerical Methods for ODEs
	Higher-Order Methods
	Conclusions

