
Scientific Computing:
Solving Nonlinear Equations

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015

October 8th, 2015

A. Donev (Courant Institute) Lecture VI 10/8/2015 1 / 24

Outline

1 Basics of Nonlinear Solvers

2 One Dimensional Root Finding

3 Systems of Non-Linear Equations

A. Donev (Courant Institute) Lecture VI 10/8/2015 2 / 24

Basics of Nonlinear Solvers

Fundamentals

Simplest problem: Root finding in one dimension:

f (x) = 0 with x ∈ [a, b]

Or more generally, solving a square system of nonlinear equations

f(x) = 0 ⇒ fi (x1, x2, . . . , xn) = 0 for i = 1, . . . , n.

There can be no closed-form answer, so just as for eigenvalues, we
need iterative methods.

Most generally, starting from m ≥ 1 initial guesses x0, x1, . . . , xm,
iterate:

xk+1 = φ(xk , xk−1, . . . , xk−m).

A. Donev (Courant Institute) Lecture VI 10/8/2015 3 / 24

Basics of Nonlinear Solvers

Order of convergence

Consider one dimensional root finding and let the actual root be α,
f (α) = 0.

A sequence of iterates xk that converges to α has order of
convergence p ≥ 1 if as k →∞∣∣xk+1 − α

∣∣
|xk − α|p

=

∣∣ek+1
∣∣

|ek |p
→ C = const,

where the constant C is a convergence factor, C < 1 for p = 1.

A method should at least converge linearly (p = 1), that is, the error
should at least be reduced by a constant factor every iteration, for
example, the number of accurate digits increases by 1 every iteration.

A good method for root finding coverges quadratically (p = 2), that
is, the number of accurate digits doubles every iteration!

A. Donev (Courant Institute) Lecture VI 10/8/2015 4 / 24

Basics of Nonlinear Solvers

Local vs. global convergence

A good initial guess is extremely important in nonlinear solvers!

Assume we are looking for a unique root a ≤ α ≤ b starting with an
initial guess a ≤ x0 ≤ b.

A method has local convergence if it converges to a given root α for
any initial guess that is sufficiently close to α (in the neighborhood
of a root).

A method has global convergence if it converges to the root for any
initial guess.

General rule: Global convergence requires a slower (careful) method
but is safer.

It is best to combine a global method to first find a good initial guess
close to α and then use a faster local method.

A. Donev (Courant Institute) Lecture VI 10/8/2015 5 / 24

Basics of Nonlinear Solvers

Conditioning of root finding

f (α + δα) ≈ f (α) + f ′(α)δα = δf

|δα| ≈ |δf |
|f ′(α)|

⇒ κabs =
∣∣f ′(α)

∣∣−1 .
The problem of finding a simple root is well-conditioned when |f ′(α)|
is far from zero.

Finding roots with multiplicity m > 1 is ill-conditioned:

∣∣f ′(α)
∣∣ = · · · =

∣∣∣f (m−1)(α)
∣∣∣ = 0 ⇒ |δα| ≈

[
|δf |
|f m(α)|

]1/m
Note that finding roots of algebraic equations (polynomials) is a
separate subject of its own that we skip.

A. Donev (Courant Institute) Lecture VI 10/8/2015 6 / 24

One Dimensional Root Finding

The bisection and Newton algorithms

A. Donev (Courant Institute) Lecture VI 10/8/2015 7 / 24

One Dimensional Root Finding

Bisection

First step is to locate a root by searching for a sign change, i.e.,
finding a0 and b0 such that

f (a0)f (b0) < 0.

The simply bisect the interval, for k = 0, 1, . . .

xk =
ak + bk

2

and choose the half in which the function changes sign, i.e.,
either ak+1 = xk , bk+1 = bk or bk+1 = xk , ak+1 = ak so that
f (ak+1)f (bk+1) < 0.

Observe that each step we need one function evaluation, f (xk), but
only the sign matters.

The convergence is essentially linear because∣∣xk − α∣∣ ≤ bk

2k+1
⇒
∣∣xk+1 − α

∣∣
|xk − α|

≤ 2.

A. Donev (Courant Institute) Lecture VI 10/8/2015 8 / 24

One Dimensional Root Finding

Newton’s Method

Bisection is a slow but sure method. It uses no information about the
value of the function or its derivatives.

Better convergence, of order p = (1 +
√

5)/2 ≈ 1.63 (the golden
ratio), can be achieved by using the value of the function at two
points, as in the secant method.

Achieving second-order convergence requires also evaluating the
function derivative.

Linearize the function around the current guess using Taylor series:

f (xk+1) ≈ f (xk) + (xk+1 − xk)f ′(xk) = 0

xk+1 = xk − f (xk)

f ′(xk)

A. Donev (Courant Institute) Lecture VI 10/8/2015 9 / 24

One Dimensional Root Finding

Convergence of Newton’s method

Use Taylor series with remainder and divide by f ′(xk) 6= 0:

∃ξ ∈ [xn, α] : f (α) = 0 = f (xk) + (α−xk)f ′(xk) +
1

2
(α−xk)2f ′′(ξ) = 0,

[
xk − f (xk)

f ′(xk)

]
− α = −1

2
(α− xk)2

f ′′(ξ)

f ′(xk)

xk+1 − α = ek+1 = −1

2

(
ek
)2 f ′′(ξ)

f ′(xk)

which shows second-order convergence∣∣xk+1 − α
∣∣

|xk − α|2
=

∣∣ek+1
∣∣

|ek |2
=

∣∣∣∣ f ′′(ξ)

2f ′(xk)

∣∣∣∣→ ∣∣∣∣ f ′′(α)

2f ′(α)

∣∣∣∣
Newton’s method converges quadratically if we start sufficiently close
to a simple root, more precisely, if∣∣x0 − α∣∣ =

∣∣e0∣∣ . ∣∣∣∣2f ′(α)

f ′′(α)

∣∣∣∣
A. Donev (Courant Institute) Lecture VI 10/8/2015 10 / 24

One Dimensional Root Finding

Fixed-Point Iteration

Another way to devise iterative root finding is to rewrite f (x) = 0 in
an equivalent form

x = φ(x)

Then we can use fixed-point iteration

xk+1 = φ(xk)

whose fixed point (limit), if it converges, is x → α.

It can be proven that the fixed-point iteration xk+1 = φ(xk)
converges if φ(x) is a contraction mapping:∣∣φ′(x)

∣∣ ≤ K < 1 ∀x ∈ [a, b]

A. Donev (Courant Institute) Lecture VI 10/8/2015 11 / 24

One Dimensional Root Finding

Stopping Criteria

A good library function for root finding has to implement careful
termination criteria.

An obvious option is to terminate when the residual becomes small∣∣f (xk)
∣∣ < ε,

which is only good for very well-conditioned problems, |f ′(α)| ∼ 1.

Another option is to terminate when the increment becomes small∣∣xk+1 − xk
∣∣ < ε.

For fixed-point iteration

xk+1 − xk = ek+1 − ek ≈
[
1− φ′(α)

]
ek ⇒

∣∣ek ∣∣ ≈ ε

[1− φ′(α)]
,

so we see that the increment test works for rapidly converging
iterations (φ′(α)� 1).

A. Donev (Courant Institute) Lecture VI 10/8/2015 12 / 24

One Dimensional Root Finding

In practice

A robust but fast algorithm for root finding would combine bisection
with Newton’s method.

Specifically, a method like Newton’s that can easily take huge steps in
the wrong direction and lead far from the current point must be
safeguarded by a method that ensures one does not leave the search
interval and that the zero is not missed.

Once xk is close to α, the safeguard will not be used and quadratic or
faster convergence will be achieved.

Newton’s method requires first-order derivatives so often other
methods are preferred that require function evaluation only.

Matlab’s function fzero combines bisection, secant and inverse
quadratic interpolation and is “fail-safe”.

A. Donev (Courant Institute) Lecture VI 10/8/2015 13 / 24

One Dimensional Root Finding

Find zeros of a sin(x) + b exp(−x2/2) in MATLAB

% f=@mf i l e u s e s a f u n c t i o n i n an m− f i l e

% Paramete r i z ed f u n c t i o n s a r e c r e a t e d wi th :
a = 1 ; b = 2 ;
f = @(x) a∗ s i n (x) + b∗exp(−x ˆ2/2) ; % Handle

f i g u r e (1)
e z p l o t (f , [− 5 , 5]) ; g r i d

x1=f ze ro (f , [−2 ,0])
[x2 , f 2]= f ze ro (f , 2 . 0)

x1 = −1.227430849357917
x2 = 3.155366415494801
f 2 = −2.116362640691705 e−16

A. Donev (Courant Institute) Lecture VI 10/8/2015 14 / 24

One Dimensional Root Finding

Figure of f (x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

a sin(x)+b exp(−x
2
/2)

A. Donev (Courant Institute) Lecture VI 10/8/2015 15 / 24

Systems of Non-Linear Equations

Multi-Variable Taylor Expansion

It is convenient to focus on one of the equations, i.e., consider a
scalar function f (x).

The usual Taylor series is replaced by

f (x + ∆x) = f (x) + gT (∆x) +
1

2
(∆x)T H (∆x)

where the gradient vector is

g = ∇xf =

[
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

]T
and the Hessian matrix is

H = ∇2
xf =

{
∂2f

∂xi∂xj

}
ij

A. Donev (Courant Institute) Lecture VI 10/8/2015 16 / 24

Systems of Non-Linear Equations

Vector Functions of Vectors

We are after solving a square system of nonlinear equations for
some variables x:

f(x) = 0 ⇒ fi (x1, x2, . . . , xn) = 0 for i = 1, . . . , n.

The first-order Taylor series is

f
(
xk + ∆x

)
≈ f

(
xk
)

+
[
J
(
xk
)]

∆x = 0

where the Jacobian J has the gradients of fi (x) as rows:

[J (x)]ij =
∂fi
∂xj

A. Donev (Courant Institute) Lecture VI 10/8/2015 17 / 24

Systems of Non-Linear Equations

Newton’s Method for Systems of Equations

It is much harder if not impossible to do globally convergent methods
like bisection in higher dimensions!
A good initial guess is therefore a must when solving systems, and
Newton’s method can be used to refine the guess.
The basic idea behind Newton’s method is to linearize the equation
around the current guess:

f
(
xk + ∆x

)
≈ f

(
xk
)

+
[
J
(
xk
)]

∆x = 0

[
J
(
xk
)]

∆x = −f
(
xk
)

but denote J ≡ J
(
xk
)

xk+1 = xk + ∆x = xk − J−1f
(
xk
)
.

Newton’s method converges quadratically if started sufficiently close
to a root x?at which the Jacobian is not singular.∥∥ek+1

∥∥ ≤ ∥∥J−1
∥∥ ‖H‖
2

∥∥ek
∥∥2

A. Donev (Courant Institute) Lecture VI 10/8/2015 18 / 24

Systems of Non-Linear Equations

Problems with Newton’s method

Newton’s method requires solving many linear systems, which can
become complicated when there are many variables.

It also requires computing a whole matrix of derivatives, which can
be expensive or hard to do (differentiation by hand?)

Newton’s method converges fast if the Jacobian J (x?) is
well-conditioned, otherwise it can “blow up”.

For large systems one can use so called quasi-Newton methods:

Approximate the Jacobian with another matrix J̃ and solve
J̃∆x = f(xk).
Damp the step by a step length αk . 1,

xk+1 = xk + αk∆x.

Update J̃ by a simple update, e.g., a rank-1 update (recall homework
2).

A. Donev (Courant Institute) Lecture VI 10/8/2015 19 / 24

Systems of Non-Linear Equations

Continuation methods

To get a good initial guess for Newton’s method and ensure that it
converges fast we can use continuation methods (also called
homotopy methods).
The basic idea is to solve

f̃λ (x) = λf (x) + (1− λ) fa (x) = 0

instead of the original equations, where 0 ≤ λ ≤ 1 is a parameter.
If λ = 1, we are solving the original equation f (x) = 0, which is hard
because we do not have a good guess for the initial solution.
If λ = 0, we are solving fa (x) = 0, and we will assume that this is
easy to solve. For example, consider making this a linear function,

fa (x) = x− a,

where a is a vector of parameters that need to be chosen somehow.
One can also take a more general fa (x) = Ax− a where A is a matrix
of parameters, so that solving fa (x) = 0 amounts to a linear solve
which we know how to do already.

A. Donev (Courant Institute) Lecture VI 10/8/2015 20 / 24

Systems of Non-Linear Equations

Path Following

The basic idea of continuation methods is to start with λ = 0, and
solve f̃λ (x) = 0. This gives us a solution x0.

Then increment λ by a little bit, say λ = 0.05, and solve f̃λ (x) using
Newton’s method starting with x0 as an initial guess.
Observe that this is a good initial guess under the assumption that
the solution has not changed much because λ has not changed much.

We can repeat this process until we reach λ = 1, when we get the
actual solution we are after:

Choose a sequence λ0 = 0 < λ1 < λ2 < · · · < λn−1 < λn = 1.
For k = 0 solve fa (x0) = 0 to get x0.
For k = 1, . . . , n, solve a nonlinear system to get xk ,

f̃λk (xk) = 0

using Newton’s method starting from xk−1 as an initial guess.

A. Donev (Courant Institute) Lecture VI 10/8/2015 21 / 24

Systems of Non-Linear Equations

Path Following

Observe that if we change λ very slowly we have hope that the
solution will trace a continuous path of solutions.

That is, we can think of x (λ) as a continuous function defined on
[0, 1], defined implicitly via

λf (x (λ)) + (1− λ) fa (x (λ)) = 0.

This rests on the assumption that this path will not have turning
points, bifurcate or wonder to infinity, and that there is a solution
for every λ.

It turns out that by a judicious choice of fa one can insure this is the
case. For example, choosing a random a and taking fa (x) = x− a
works.

The trick now becomes how to choose the sequence λk to make sure
λ changes not too much but also not too little (i.e., not too slowly),
see HOMPACK library for an example.

A. Donev (Courant Institute) Lecture VI 10/8/2015 22 / 24

Systems of Non-Linear Equations

In practice

It is much harder to construct general robust solvers in higher
dimensions and some problem-specific knowledge is required.

There is no built-in function for solving nonlinear systems in
MATLAB, but the Optimization Toolbox has fsolve.

In many practical situations there is some continuity of the problem
so that a previous solution can be used as an initial guess.

For example, implicit methods for differential equations have a
time-dependent Jacobian J(t) and in many cases the solution x(t)
evolves smootly in time.

For large problems specialized sparse-matrix solvers need to be used.

In many cases derivatives are not provided but there are some
techniques for automatic differentiation.

A. Donev (Courant Institute) Lecture VI 10/8/2015 23 / 24

Systems of Non-Linear Equations

Conclusions/Summary

Root finding is well-conditioned for simple roots (unit multiplicity),
ill-conditioned otherwise.

Methods for solving nonlinear equations are always iterative and the
order of convergence matters: second order is usually good enough.

A good method uses a higher-order unsafe method such as Newton
method near the root, but safeguards it with something like the
bisection method.

Newton’s method is second-order but requires derivative/Jacobian
evaluation. In higher dimensions having a good initial guess for
Newton’s method becomes very important.

Quasi-Newton methods can aleviate the complexity of solving the
Jacobian linear system.

A. Donev (Courant Institute) Lecture VI 10/8/2015 24 / 24

	Basics of Nonlinear Solvers
	One Dimensional Root Finding
	Systems of Non-Linear Equations

