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What is Monte Carlo?

Monte Carlo is any numerical algorithm that uses random numbers to
compute a deterministic (non-random) answer: stochastic or
randomized algorithm.

An important example is numerical integration in higher
dimensions:

J =

∫
Ω⊆Rn

f (x) dx

Recall that using a deterministic method is very accurate and fast
for low dimensions.

But for large dimensions we have to deal with the curse of
dimensionality:
The number of quadrature nodes scales like at least 2n

(exponentially). E.g., 220 = 106, but 240 = 1012!
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Background

Probability Theory

First define a set Ω of possible outcomes ω ∈ Ω of an “experiment”:

A coin toss can end in heads or tails, so two outcomes.
A sequence of four coin tosses can end in one of 42 = 16 outcomes,
e.g., HHTT or THTH.

The set Ω can be finite (heads or tails), countably infinite (the number
of atoms inside a box), or uncountable (the weight of a person).

An event A ⊆ Ω is a set of possible outcomes: e.g., more tails
then heads occur in a sequence of four coin tosses,

A = {HHHH,THHH,HTHH,HHTH,HHHT} .

Each event has an associated probability

0 ≤ P(A) ≤ 1,

with P(Ω) = 1 and P(∅) = 0.
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Background

Conditional Probability

A basic axiom is that probability is additive for disjoint events:

P (A ∪ B) = P (A or B) = P (A) + P (B) if A ∩ B = ∅

Bayes formula gives the conditional probability that an outcome
belongs to set B if it belongs to set C :

P (B|C ) =
P (B ∩ C )

P (C )
=

P (B and C )

P (C )

Two events are said to be independent if their probabilities are
multiplicative:

P (A ∩ B) = P (A and B) = P (A)P (B)
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Background

Probability Distribution

If Ω is uncountable, think of outcomes as random variables, that is,
variables whose value is determined by a random outcome:

X = X (ω) ∈ R.

The probability density function f (x) ≥ 0 determines the
probability for the outcome to be close to x , in one dimension

P (x ≤ X ≤ x + dx) = f (x)dx ,

P(A) = P(X ∈ A) =

∫
x∈A

f (x)dx

The concept of a measure and the Lebesque integral generalizes
the traditional Riemann integral in probability theory.
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Background

Mean and Variance

We call the probability density or the probability measure the law
or the distribution of a random variable X , and write:

X ∼ f .

The cummulative distribution function is

F (x) = P(X ≤ x) =

∫ x

−∞
f (x ′)dx ′,

and we will assume that this function is continuous.
The mean or expectation value of a random variable X is

µ = X̄ = E [X ] =

∫ ∞
−∞

xf (x)dx .

The variance σ2 and the standard deviation σ measure the
uncertainty in a random variable

σ2 = var(X ) = E [(X − µ)2] =

∫ ∞
−∞

(x − µ)2f (x)dx .
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Background

Multiple Random Variables

Consider a set of two random variables Z = (X ,Y ) and the joint
probability distribution Z ∼ f (x , y).

The marginal density for X is the distribution of just X , without
regard to Y :

g(x) =

∫
y
f (x , y)dy , similarly h(y) =

∫
x
f (x , y)dx

The conditional probability distribution is the distribution of X for
a known Y :

f (x |y) =
f (x , y)

h(y)

Two random variables X and Y are independent if

f (x , y) = g(x)h(y) ⇒ f (x |y) = g(x).
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Background

Covariance

The term i.i.d.≡independent identically-distributed random
variables is used to describe independent samples Xk ∼ f , k = 1, . . . .

The generalization of variance for two variables is the covariance:

CXY = cov(X ,Y ) = E
[(
X − X̄

) (
Y − Ȳ

)]
= E (XY )− E (X )E (Y ).

For independent variables

E (XY ) =

∫
xy f (x , y)dxdy =

∫
xg(x)dx

∫
yh(y)dy = E (X )E (Y )

and so CXY = 0.

Define the correlation coefficient between X and Y as a measure of
how correlated two variables are:

rXY =
cov(X ,Y )√
var(X )var(Y )

=
CXY

σXσY
.

A. Donev (Courant Institute) Lecture X 11/12/2015 9 / 31



Background

Law of Large Numbers

The average of N i.i.d. samples of a random variable X ∼ f is itself a
random variable:

A =
1

N

N∑
k=1

Xk .

A is an unbiased estimator of the mean of X , E (A) = X̄ .

Numerically we often use a biased estimate of the variance:

σ2
X = lim

N→∞

1

N

N∑
k=1

(
Xk − X̄

)2 ≈ 1

N

N∑
k=1

(Xk − A)2 =

(
1

N

N∑
k=1

X 2
k

)
−A2

The weak law of large numbers states that the estimator is also
consistent:

lim
N→∞

A = X̄ = E (X ) (almost surely).
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Background

Central Limit Theorem

Imprecisely (and not completely accurately), the central value
theorem says that if σX is finite, in the limit N →∞ the random
variable A is normally-distributed:

A ∼ f (a) =
(
2πσ2

A

)−1/2
exp

[
−(a− X̄ )2

2σ2
A

]
The error of the estimator A decreases as N−1, more specifically,

E
[(
A− X̄

)2
]

= E


[

1

N

N∑
k=1

(
Xk − X̄

)]2
 =

1

N2
E

[
N∑

k=1

(
Xk − X̄

)2

]

var(A) = σ2
A =

σ2
X

N
.

The slow convergence of the error, σ ∼ N−1/2, is a fundamental
characteristic of Monte Carlo.
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Pseudo-Random Numbers

Monte Carlo on a Computer

In order to compute integrals using Monte Carlo on a computer, we
need to be able to generate samples from a distribution, e.g.,
uniformly distributed inside an interval I = [a, b].

Almost all randomized software is based on having a pseudo-random
number generator (PRNG), which is a routine that returns a
pseudo-random number 0 ≤ u ≤ 1 from the standard uniform
distribution:

f (u) =

{
1 if 0 ≤ u ≤ 1

0 otherwise

Since computers (Turing machines) are deterministic, it is not
possible to generate truly random samples (outcomes):
Pseudo-random means as close to random as we can get it.

There are well-known good PRNGs that are also efficient: One should
use other-people’s PRNGs, e.g., the Marsenne Twister.
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Pseudo-Random Numbers

PRNGs

The PRNG is a procedure (function) that takes a collection of m
integers called the state of the generator s = {i1, . . . , im}, and
updates it:

s← Φ(s),

and produces (returns) a number u = Ψ(s) that is a pseudo-random
sample from the standard uniform distribution.

So in pseudo-MATLAB notation, [u, s] = rng(s), often called a
random stream.

Simple built-in generator such as the MATLAB/C function rand or
the Fortran function RANDOM NUMBER hide the state from the
user (but the state is stored somewhere in some global variable).

All PRNGs provide a routine to seed the generator, that is, to set
the seed s to some particular value.
This way one can generate the same sequence of “random” numbers
over and over again (e.g., when debugging a program).
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Pseudo-Random Numbers

Generating Non-Uniform Variates

Using a uniform (pseudo-)random number generator (URNG), it is
easy to generate an outcome drawn uniformly in I = [a, b]:

X = a + (b − a)U,

where U = rng() is a standard uniform variate.

We often need to generate (pseudo)random samples or variates
drawn from a distribution f (x) other than a uniform distribution,
where f (x) ≥ 0 and f (x) is normalized,

∫
f (x)dx = 1.

Almost all non-uniform samplers are based on a URNG.

Sometimes it may be more efficient to replace the URNG with a
random bitstream, that is, a sequence of random bits, if only a few
random bits are needed (e.g., for discrete variables).

We need a method to convert a uniform variate into a non-uniform
variate.
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Pseudo-Random Numbers

Generating Non-Uniform Variates

Task: We want to sample a random number with probability
distribution f (x). For now assume f (x) is a probability density:

P (x ≤ X ≤ x + dx) = f (x)dx ,

Tool: We can generate samples from some special distributions, e.g.,
a sample U from the standard uniform distribution.

Consider applying a non-linear differentiable one-to-one function
g(x) to U:

X ≡ X (U) = g(U) ⇒ dx = g ′(U)du

We can find the probability density of X by using the informal
differential notation

P (u ≤ U ≤ u + du) = du =
dx

g ′(u)
= P (x ≤ X ≤ x + dx) = f (x)dx

f [x(u)] =
[
g ′(u)

]−1
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Pseudo-Random Numbers

Inverting the CDF

f [x(u)] =
[
g ′(u)

]−1

Can we find g(u) given the target f (x)? It is simpler to see this if we
invert x(u):

u = g−1(x) = F (x).

Repeating the same calculation

P (u ≤ U ≤ u + dx) = du = F ′(x)dx = f (x)dx

F ′(x) = f (x)

This shows that F (x) = g−1(x) is the cummulative probability
distribution:

F (x) = P(X ≤ x) =

∫ x

−∞
f (x ′)dx ′.

Note that F (x) is monotonically non-decreasing because f (x) ≥ 0.
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Pseudo-Random Numbers

Sampling by Inversion

Inversion algorithm: Generate a standard uniform variate u and then
solve the non-linear equation F (x) = u to get x .

Note: If the equation F (x) = u cannot be solved analytically, x can be
computed using bisection+Newton, or using pretabulation + interpolation.
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Pseudo-Random Numbers

Exponentially-Distributed Number

As an example, consider generating a sample from the exponential
distribution with rate λ:

fλ(t) =

{
λe−λt if t ≥ 0

0 otherwise

Related to the Poisson process of events whose rate of occurence is
λ and whose occurence does not depend on the past (history):

P(t ≤ T ≤ t + dt | T ≥ t) = P(T < dt) = λdt.

Using the inversion technique we get

F (t) = P(T ≤ t) =

∫ t

t′=0
λe−λtdt = 1− e−λt = u′ ≡ 1− u

T = −λ−1 ln(U),

where numerical care must be taken to ensure the log does not
overflow or underflow.

A. Donev (Courant Institute) Lecture X 11/12/2015 18 / 31



Pseudo-Random Numbers

Normally-Distributed Numbers

The standard normal distribution is a Gaussian “bell-curve”:

f (x) =
(
2πσ2

)−1/2
exp

(
−(x − µ)2

2σ2

)
,

where µ is the mean and σ is the standard deviation.

The standard normal distribution has σ = 1 and µ = 0.

If we have a sample Xs from the standard distribution we can
generate a sample X from f (x) using:

X = µ+ σXs

There are many specialized and optimized samplers for
normally-distributed numbers, randn in MATLAB.
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Histogramming

Histogram Validation

We need some way to test that a sampler is correct, that is, that the
generated sequence of random numbers really comes from the
specified distribution f (x). One easy way to do that is by computing
the histogram of the samples.

Count how many Nx samples of the N samples are inside a bin of
width h centered at x :

f (x) ≈ Px =
1

h
P(x − h/2 ≤ X ≤ x + h/2) ≈ Nx

hN
.

If we make the bins smaller, the truncation error will be reduced:

Px − f (x) =
1

h

∫ x+h/2

x−h/2
f (x ′)dx ′ − f (x) = αh2 + O(h4)

But, this means there will be fewer points per bin, i.e., statistical
errors will grow. As usual, we want to find the optimal tradeoff
between the the two types of error.
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Histogramming

Statistical Error in Histogramming

For every sample point X , define the indicator random variable Y :

Y = Ix(X ) =

{
1 if x − h/2 ≤ X ≤ x + h/2

0 otherwise

The mean and variance of this Bernoulli random variable are:

E (Y ) = Ȳ = hPx ≈ hf (x)

σ2
Y =

∫
(y − Ȳ )2f (y)dy = Ȳ · (1− Ȳ ) ≈ Ȳ ≈ hf (x)

The number Nx out of N trials inside the bin is a sum of N random
Bernoulli variables Yi :

f (x) ≈ 1

h

Nx

N
= h−1

(
1

N

N∑
i=1

Yi

)
= P̂x
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Histogramming

Optimal Bin Width

The central limit theorem gives us the uncertainty in our estimate of
f (x)

σ
(
P̂x

)
≈ h−1 σY√

N
=

√
f (x)

hN
=

√
Nx

hN
.

This means that the empirical distribution f (x) should be reported
with a 95% confidence interval,

P

{
f (x) ∈

[
Nx − 2

√
Nx

hN
,
Nx + 2

√
Nx

hN

]}
≈ 95%.

The optimal bin width is when the truncation and statistical errors are
equal:

αh2 ≈
√

f (x)

hN
⇒ h ∼ N−1/5,

with total error ε ∼ (hN)−1/2 ∼ N−2/5.

Typically we choose h based on how well we want to resolve f (x), and
accept the fact that statistical errors dominate.
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Monte Carlo Integration

Integration via Monte Carlo

Define the random variable Y = f (X), and generate a sequence of N
independent uniform samples Xk ∈ Ω, i.e., N random variables
distributed uniformly inside Ω:

X ∼ g(x) =

{
|Ω|−1 for x ∈ Ω

0 otherwise

and calculate the mean

Ŷ =
1

N

N∑
k=1

Yk =
1

N

N∑
k=1

f (Xk)

According to the weak law of large numbers,

lim
N→∞

Ŷ = E (Y ) = Ȳ =

∫
f (x)g(x)dx = |Ω|−1

∫
Ω
f (x) dx
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Monte Carlo Integration

Accuracy of Monte Carlo Integration

This gives a Monte Carlo approximation to the integral:

J =

∫
Ω∈Rn

f (x) dx = |Ω| Ȳ ≈ |Ω| Ŷ = |Ω| 1

N

N∑
k=1

f (Xk) .

Recalling the central limit theorem, for large N we get an error
estimate by evaluating the standard deviation of the estimate Ŷ :

σ2
(
Ŷ
)
≈
σ2
Y

N
= N−1

∫
Ω

[
f (x)− |Ω|−1 J

]2
dx

σ
(
Ŷ
)
≈ 1√

N

[∫
Ω

[
f (x)− f (x)

]2
dx

]1/2

Note that this error goes like N−1/2, which is order of convergence
1/2: Worse than any deterministic quadrature.

But, the same number of points are needed to get a certain accuracy
independent of the dimension.
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Monte Carlo Integration

Monte Carlo Error Bars

Monte Carlo (MC) answers should always be reported with
error bars, or equivalently, with confidence intervals!

Since the answer is approximately normally-distributed, we have the
well-known confidence intervals:

P

(
J

|Ω|
∈
[
Ŷ − σ, Ŷ + σ

])
≈ 66%

P

(
J

|Ω|
∈
[
Ŷ − 2σ, Ŷ + 2σ

])
≈ 95%

In practice we estimate the uncertainty empirically as

σ2
(
Ŷ
)
≈ 1

N2

∑(
Yi − Y

)2
=

1

N

[(
1

N

∑
Y 2
i

)
−
(

1

N

∑
Yi

)2
]
.

This is done in a single MC loop: Average the Y ’s to get the answer
but also average the squares Y 2 to get the uncertainty in the answer.
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Monte Carlo Integration

Employing Rejection

Note how this becomes less
efficient as dimension grows
(most points are outside the
sphere).

Integration requires |Ω|, which is hard
to compute for complicated domains,∫

Ω∈Rn

f (x) dx ≈ |Ω| 1

N

N∑
k=1

f (Xk)

Consider Ω being the unit circle of
radius 1.

Rejection: Integrate by sampling
points inside an enclosing region,
e.g, a square of area |Ωencl | = 4, and
rejecting any points outside of Ω:∫

Ω∈Rn

f (x) dx ≈ |Ωencl |
1

N

∑
Xk∈Ω

f (Xk)
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Variance Reduction

(Importance) Sampling Function

In the basic MC algorithm described above, the samples X have a
uniform distribution over the integration domain.

Instead, we can sample our points from some probability distribution
function g(X) ≥ 0,

∫
g(x)dx = 1, and rewrite:∫

f (x) dx =

∫
f (x)

g(x)
g(x)dx = E

[
f (X)

g(X)

]
where X ∼ g .

This now corresponds to taking samples from the sampling
function g(x):∫

f (x) dx ≈ 1

N

N∑
k=1

f (Xk)

g (Xk)
where X ∼ g

Note that |Ω| does not appear since it is implicitly included in the
normalization of g(x). The previous uniform sampling algorithm
corresponds to g(x) = |Ω|−1 for x ∈ Ω.
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Variance Reduction

Variance Reduction

The order of convergence (accuracy) of Monte Carlo is always 1/2
and cannot be improved. Instead, all of the focus is on improving the
error constant, i.e., the variance for a constant number of samples N.

The most important thing in Monte Carlo is variance reduction, i.e.,
finding methods that give the same answers in the limit N →∞ but
have a much smaller σ.

There are several methods for variance reduction, the most general
and powerful of which is importance sampling.

Importance sampling simply means choosing the sampling function
g(x) to give more importance to those points that dominate the value
of the integral. We call g(x) an importance sampling function.
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Variance Reduction

Importance Sampling

Repeating the variance calculation for

Y (X) =
f (X)

g (X)
, with mean Y =

∫
f (x)dx

The variance of the empricial mean Ŷ = N−1
∑

Yi is

σ2
(
Ŷ
)
≈
σ2
Y

N
= N−1

∫ [
Y (x)− Y

]2
g(x)dx

σ
(
Ŷ
)
≈ 1√

N

[∫ [
f (x)

g(x)
− Y

]2

g(x)dx

]1/2

.
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Variance Reduction

The Importance Function

We therefore want f (x)/g(x) = Y to be as close as possible to a
constant, ideally

gideal(x) =
f (x)∫
f (x)dx

but this requires being able to create independent samples from f (x),
which is harder than the problem of integrating f (x)!

The importance sampling function g(x) must be a probability
distribution function that we know how to sample from, such that

h(x) =
f (x)

g(x)

is as close to constant as possible, and in particular, it must be
bounded from above (i.e., finite for all x in the relevant domain).

Choosing the right g given f is an art form; an example is in the
homework.
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Conclusions

Conclusions/Summary

Monte Carlo is an umbrella term for stochastic computation of
deterministic answers.

Monte Carlo answers are random, and their accuracy is measured by
the variance or uncertaintly of the estimate, which typically scales
like σ ∼ N−1/2, where N is the number of samples.

Implementing Monte Carlo algorithms on a computer requires a
PRNG, almost always a uniform pseudo-random number
generator (URNG).

One often needs to convert a sample from a URNG to a sample from
an arbitrary distribution f (x), including inverting the cummulative
distribution and rejection sampling.

Monte Carlo can be used to perform integration in high dimensions
by simply evaluating the function at random points.
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