Scientific Computing: The Fast Fourier Transform

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course MATH-GA. 2043 or CSCI-GA.2112, Fall 2015

October 29th, 2015

Outline

(1) Fourier Series
(2) Discrete Fourier Transform
(3) Fast Fourier Transform
(4) Applications of FFT
(5) Wavelets
(6) Conclusions

Fourier Composition

Fourier Decomposition

Periodic Functions

- Consider now interpolating / approximating periodic functions defined on the interval $I=[0,2 \pi]$:

$$
\forall x \quad f(x+2 \pi)=f(x)
$$

as appear in practice when analyzing signals (e.g., sound/image processing).

- We will consider functions that are square-integrable functions (function space $L_{2 \pi}^{2}$), $\int_{0}^{2 \pi}|f(x)|^{2} d x<\infty$.
- Polynomial functions are not periodic and thus basis sets based on orthogonal polynomials are not appropriate.
- Instead, consider sines and cosines as a basis function, combined together into complex exponential functions

$$
\phi_{k}(x)=e^{i k x}=\cos (k x)+i \sin (k x), \quad k=0, \pm 1, \pm 2, \ldots
$$

Here k is the frequency or wavenumber.

Fourier Basis

$$
\phi_{k}(x)=e^{i k x}, \quad k=0, \pm 1, \pm 2, \ldots
$$

- The complex exponentials can be shown to form a complete trigonometric polynomial basis for the space $L_{2 \pi}^{2}$, i.e., any square-integrable function can represented in an infinite Fourier series:

$$
\forall f \in L_{2 \pi}^{2}: \quad f(x)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{i k x}
$$

where the Fourier coefficients can be computed for any frequency or wavenumber k using:

$$
\hat{f}_{k}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} f(x) e^{-i k x} d x
$$

This is the continuous Fourier Transform: mapping a function from real (time) to Fourier (frequency) space.

Fourier Decomposition

Discrete Fourier Basis

- Let us discretize a given function on a set of N equi-spaced nodes as a vector

$$
\mathbf{f}_{j}=f\left(x_{j}\right) \quad \text { where } \quad x_{j}=j h \text { and } h=\frac{2 \pi}{N}
$$

Observe that $j=N$ is the same node as $j=0$ due to periodicity so we only consider N instead of $N+1$ nodes.

- Now consider a discrete Fourier basis that only includes the first N basis functions, i.e.,

$$
\begin{cases}k=-(N-1) / 2, \ldots, 0, \ldots,(N-1) / 2 & \text { if } N \text { is odd } \\ k=-N / 2, \ldots, 0, \ldots, N / 2-1 & \text { if } N \text { is even }\end{cases}
$$

and for simplicity we focus on N odd and denote the largest frequency with

$$
K=(N-1) / 2
$$

Fourier Interpolant

$$
\forall f \in L_{2 \pi}^{2}: \quad f(x)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{i k x}
$$

- We will try to approximate periodic functions with a truncated Fourier series:

$$
f(x) \approx \phi(x)=\sum_{k=-K}^{K} \phi_{k}(x)=\sum_{k=-K}^{K} \hat{f}_{k} e^{i k x}
$$

- The discrete Fourier basis is $\left\{\phi_{-K}, \ldots, \phi_{K}\right\}$,

$$
\left(\phi_{k}\right)_{j}=\frac{1}{\sqrt{N}} \exp \left(i k x_{j}\right)
$$

and it is an orthonormal basis in which we can represent periodic functions,

$$
\phi_{k} \cdot \phi_{k^{\prime}}=\delta_{k, k^{\prime}}
$$

Proof of Discrete Orthogonality

The case $k=k^{\prime}$ is trivial, so focus on

$$
\phi_{k} \cdot \phi_{k^{\prime}}=0 \text { for } k \neq k^{\prime}
$$

$$
\sum_{j} \exp \left(i k x_{j}\right) \exp \left(-i k^{\prime} x_{j}\right)=\sum_{j} \exp \left[i(\Delta k) x_{j}\right]=\sum_{j=0}^{N-1}[\exp (i h(\Delta k))]^{j}
$$

where $\Delta k=k-k^{\prime}$. This is a geometric series sum:

$$
\phi_{k} \cdot \phi_{k^{\prime}}=\frac{1-z^{N}}{1-z}=0 \text { if } k \neq k^{\prime}
$$

since $z=\exp (i h(\Delta k)) \neq 1$ and
$z^{N}=\exp (i h N(\Delta k))=\exp (2 \pi i(\Delta k))=1$.

Fourier Matrix

- Let us collect the discrete Fourier basis functions as columns in a unitary $N \times N$ matrix $(f f t(\operatorname{eye}(N))$ in MATLAB)

$$
\boldsymbol{\Phi}_{N}=\left[\phi_{-K}\left|\ldots \phi_{0} \ldots\right| \phi_{K}\right] \quad \Rightarrow \quad \Phi_{j k}^{(N)}=\exp (2 \pi i j k / N)
$$

- The truncated Fourier series is

$$
\mathbf{f}=\boldsymbol{\Phi}_{N} \hat{\mathbf{f}}
$$

- Since the matrix $\boldsymbol{\Phi}_{N}$ is unitary, we know that $\boldsymbol{\Phi}_{N}^{-1}=\boldsymbol{\Phi}_{N}^{\star}$ and therefore

$$
\hat{\mathbf{f}}=\boldsymbol{\Phi}_{N}^{\star} \mathbf{f}
$$

which is nothing more than a change of basis!

Discrete Fourier Transform

- We can make the expressions more symmetric if we shift the frequencies to $k=0, \ldots, N$, but one should still think of half of the frequencies as "negative" and half as "positive".
See MATLAB's functions fftshift and ifftshift
- The Discrete Fourier Transform (DFT) is a change of basis taking us from real/time to Fourier/frequency domain:

Forward $\mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right), \quad k=0, \ldots, N-1$
Inverse $\hat{\mathbf{f}} \rightarrow \mathbf{f}: \quad f_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \quad j=0, \ldots, N-1$

- A direct matrix-vector multiplication algorithm therefore takes $O\left(N^{2}\right)$ multiplications and additions. Can we do it faster?

Discrete spectrum

- The set of discrete Fourier coefficients $\hat{\mathbf{f}}$ is called the discrete spectrum, and in particular,

$$
S_{k}=\left|\hat{f}_{k}\right|^{2}=\hat{f}_{k} \hat{f}_{k}^{\star}
$$

is the power spectrum which measures the frequency content of a signal.

- If f is real, then \hat{f} satisfies the conjugacy property

$$
\hat{f}_{-k}=\hat{f}_{k}^{\star},
$$

so that half of the spectrum is redundant and \hat{f}_{0} is real.

- For an even number of points N the largest frequency $k=-N / 2$ does not have a conjugate partner.

Spectral Accuracy (or not)

- The Fourier interpolating polynomial $\phi(x)$ has spectral accuracy, i.e., exponential in the number of nodes N

$$
\|f(x)-\phi(x)\| \sim e^{-N}
$$

for sufficiently smooth functions.

- Specifically, what is needed is sufficiently rapid decay of the Fourier coefficients with k, e.g., exponential decay $\left|\hat{f}_{k}\right| \sim e^{-|k|}$.
- Discontinuities cause slowly-decaying Fourier coefficients, e.g., power law decay $\left|\hat{f}_{k}\right| \sim k^{-1}$ for jump discontinuities.
- Jump discontinuities lead to slow convergence of the Fourier series for non-singular points (and no convergence at all near the singularity), so-called Gibbs phenomenon (ringing):

$$
\|f(x)-\phi(x)\| \sim \begin{cases}N^{-1} & \text { at points away from jumps } \\ \text { const. } & \text { at the jumps themselves }\end{cases}
$$

Gibbs Phenomenon

Gibbs Phenomenon

Approximation of a square wave timing signal ($f_{o}=20 \mathrm{MHz}$)

Aliasing

If we sample a signal at too few points the Fourier interpolant may be wildly wrong: aliasing of frequencies k and $2 k, 3 k, \ldots$

Standard anti-aliasing rule is the Nyquist-Shannon criterion (theorem): Need at least 2 samples per period.

Fast Fourier Transform

- For now assume that N is even and in fact a power of two, $N=2^{n}$. Denote the root of unity

$$
\omega_{N}=e^{-2 \pi i / N}
$$

- The idea is to split the transform into two pieces, even and odd points:

$$
\sum_{j=2 j^{\prime}} f_{j} \omega_{N}^{j k}+\sum_{j=2 j^{\prime}+1} f_{j} \omega_{N}^{j k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}}\left(\omega_{N}^{2}\right)^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1}\left(\omega_{N}^{2}\right)^{j^{\prime} k}
$$

- Now notice that

$$
\omega_{N}^{2}=e^{-4 \pi i / N}=e^{-2 \pi i /(N / 2)}=\omega_{N / 2}
$$

- This leads to a divide-and-conquer algorithm:

$$
\begin{aligned}
& \hat{f}_{k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}} \omega_{N / 2}^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1} \omega_{N / 2}^{j^{\prime} k} \\
& \hat{f}_{k}=\boldsymbol{\Phi}_{N}^{\star} \mathbf{f}=\left(\boldsymbol{\Phi}_{N / 2}^{\star} \mathbf{f}_{\text {even }}+\omega_{N}^{k} \boldsymbol{\Phi}_{N / 2}^{\star} \mathbf{f}_{\text {odd }}\right)
\end{aligned}
$$

which is called the Fast Fourier Transform.

- The Fast Fourier Transform algorithm is recursive:

$$
F F T_{N}(\mathbf{f})=F F T_{\frac{N}{2}}\left(\mathbf{f}_{\text {even }}\right)+\mathbf{w} \boxtimes F F T_{\frac{N}{2}}\left(\mathbf{f}_{\text {odd }}\right)
$$

where $w_{k}=\omega_{N}^{k}$ and \square denotes element-wise product. When $N=1$ the FFT is trivial (identity).

- To compute the whole transform we need $\log _{2}(N)$ steps, and at each step we only need N multiplications and $N / 2$ additions at each step.
- The total cost of FFT is thus much better than the direct method's $O\left(N^{2}\right)$: Log-linear

$$
O(N \log N)
$$

- Even when N is not a power of two there are ways to do a similar splitting transformation of the large FFT into many smaller FFTs.
- Note that there are different normalization conventions used in different software (we used $1 / \sqrt{N}$ in both forward and inverse FFT to make them symmetric).

In MATLAB

- The forward transform is performed by the function $\hat{f}=f f t(f)$ and the inverse by $f=f f t(\hat{f})$. Note that $\operatorname{ifft}(f f t(f))=f$ and f and \hat{f} may be complex.
- In MATLAB, and other software, the frequencies are not ordered in the "normal" way $-(N-1) / 2$ to $+(N-1) / 2$, but rather, the nonnegative frequencies come first, then the positive ones, so the "funny" ordering is

$$
0,1, \ldots,(N-1) / 2, \quad-\frac{N-1}{2},-\frac{N-1}{2}+1, \ldots,-1
$$

This is because such ordering (shift) makes the forward and inverse transforms symmetric.

- The function fftshift can be used to order the frequencies in the "normal" way, and ifftshift does the reverse:

$$
\hat{f}=f f t s h i f t(f f t(f)) \text { (normal ordering). }
$$

FFT-based noise filtering (1)

```
\(\mathrm{Fs}=1000\);
\(\mathrm{dt}=1 / \mathrm{Fs}\);
\(\mathrm{L}=1000\);
\(\mathrm{t}=(0: \mathrm{L}-1) * \mathrm{dt}\);
\(\mathrm{T}=\mathrm{L} * \mathrm{dt}\);
```

\% Sampling frequency
\% Sampling interval
\% Length of signal
\% Time vector
\% Total time interval
\% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
$x=0.7 * \boldsymbol{\operatorname { s i n }}(2 * \mathbf{p i} * 50 * \mathrm{t})+\boldsymbol{\operatorname { s i n }}(2 * \mathbf{p i} * 120 * \mathrm{t})$;
$\mathrm{y}=\mathrm{x}+2 *$ randn(size(t)); \quad \% Sinusoids plus noise
figure (1); clf; plot(t(1:100),y(1:100),'b—'); hold on title ('Signal Corrupted with $_{\sqcup}$ Zero-Mean $_{\sqcup}$ Random $_{\sqcup}$ Noise') xlabel('time')

FFT-based noise filtering (2)

```
if (0)
    N=(L/2)*2; % Even N
    y_hat = fft(y(1:N));
    % Frequencies ordered in a funny way:
    f_funny = 2*pi/T* [0:N/2-1, -N/2:-1];
    % Normal ordering:
    f_normal = 2*pi/T* [-N/2 : N/2-1];
else
    N=(L/2)*2-1; % Odd N
    y_hat = fft(y(1:N));
    % Frequencies ordered in a funny way:
    f_funny = 2*pi/T* [0:(N-1)/2, -(N-1)/2:-1];
    % Normal ordering:
    f_normal = 2*pi/T* [-(N-1)/2 : (N-1)/2];
end
```


FFT-based noise filtering (3)

figure (2); clf; plot(f_funny, abs(y_hat), 'ro'); hold on; y_hat=fftshift(y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b-');
title ('Single-Sided Amplitude Spectrum $_{\sqcup}$ of $y(t)$ ') xlabel ('Frequency $(H z)^{\prime}$ ') ylabel('Power')
y_hat (abs $\left.\left(y _h a t\right)<250\right)=0$; Filter out noise y_filtered = ifft(ifftshift(y_hat));
figure (1); plot(t(1:100), y_filtered (1:100), 'r-')

FFT results

Signal Corrupted with Zero-Mean Random Noise

Single-Sided Amplitude Spectrum of $y(t)$

Applications of FFTs

- Because FFT is a very fast, almost linear algorithm, it is used often to accomplish things that are not seemingly related to function approximation.
- Denote the Discrete Fourier transform, computed using FFTs in practice, with

$$
\hat{\mathbf{f}}=\mathcal{F}(\mathbf{f}) \text { and } \mathbf{f}=\mathcal{F}^{-1}(\hat{\mathbf{f}})
$$

- Plain FFT is used in signal processing for digital filtering: Multiply the spectrum by a filter $\hat{S}(k)$ discretized as $\hat{\mathbf{s}}=\{\hat{S}(k)\}_{k}$:

$$
\mathbf{f}_{f i l t}=\mathcal{F}^{-1}(\hat{\mathbf{s}} \boxtimes \hat{\mathbf{f}})
$$

- Examples include low-pass, high-pass, or band-pass filters. Note that aliasing can be a problem for digital filters.

Spectral Derivative

- Consider approximating the derivative of a periodic function $f(x)$, computed at a set of N equally-spaced nodes, \mathbf{f}.
- One way to do it is to use the finite difference approximations:

$$
f^{\prime}\left(x_{j}\right) \approx \frac{f\left(x_{j}+h\right)-f\left(x_{j}-h\right)}{2 h}=\frac{f_{j+1}-f_{j-1}}{2 h} .
$$

- In order to achieve spectral accuracy of the derivative, we can differentiate the spectral approximation:
Spectrally-accurate finite-difference derivative

$$
\begin{aligned}
f^{\prime}(x) \approx \phi^{\prime}(x) & =\frac{d}{d x} \phi(x)=\frac{d}{d x}\left(\sum_{k=0}^{N-1} \hat{f}_{k} e^{i k x}\right)=\sum_{k=0}^{N-1} \hat{f}_{k} \frac{d}{d x} e^{i k x} \\
\phi^{\prime} & =\sum_{k=0}^{N-1}\left(i k \hat{f}_{k}\right) e^{i k x}=\mathcal{F}^{-1}(i \hat{\mathbf{f}} \bullet \mathbf{k})
\end{aligned}
$$

- Differentiation becomes multiplication in Fourier space.

The need for wavelets

- Fourier basis is great for analyzing periodic signals, but is not good for functions that are localized in space, e.g., brief bursts of speach.
- Fourier transforms are not good with handling discontinuities in functions because of the Gibbs phenomenon.
- Fourier polynomails assume periodicity and are not as useful for non-periodic functions.
- Because Fourier basis is not localized, the highest frequency present in the signal must be used everywhere: One cannot use different resolutions in different regions of space.

An example wavelet

Wavelet basis

- A mother wavelet function $W(x)$ is a localized function in space. For simplicity assume that $W(x)$ has compact support on $[0,1]$.
- A wavelet basis is a collection of wavelets $W_{s, \tau}(x)$ obtained from $W(x)$ by dilation with a scaling factor s and shifting by a translation factor τ :

$$
W_{s, \tau}(x)=W(s x-\tau)
$$

- Here the scale plays the role of frequency in the FT, but the shift is novel and localized the basis functions in space.
- We focus on discrete wavelet basis, where the scaling factors are chosen to be powers of 2 and the shifts are integers:

$$
W_{j, k}=W\left(2^{j} x-k\right), \quad k \in \mathbb{Z}, j \in \mathbb{Z}, j \geq 0
$$

Haar Wavelet Basis

Wavelet Transform

- Any function can now be represented in the wavelet basis:

$$
f(x)=c_{0}+\sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} c_{j k} W_{j, k}(x)
$$

This representation picks out frequency components in different spatial regions.

- As usual, we truncate the basis at $j<J$, which leads to a total number of coefficients $c_{j k}$:

$$
\sum_{j=0}^{J-1} 2^{j}=2^{J}
$$

Discrete Wavelet Basis

- Similarly, we discretize the function on a set of $N=2^{J}$ equally-spaced nodes $x_{j, k}$ or intervals, to get the vector \mathbf{f} :

$$
\mathbf{f}=c_{0}+\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} c_{j k} W_{j, k}\left(x_{j, k}\right)=\mathbf{W}_{j} \mathbf{c}
$$

- In order to be able to quickly and stably compute the coefficients c we need an orthogonal wavelet basis:

$$
\int W_{j, k}(x) W_{l, m}(x) d x=\delta_{j, l} \delta_{l, m}
$$

- The Haar basis is discretely orthogonal and computing the transform and its inverse can be done using a fast wavelet transform, in linear time $O(N)$ time.

Discrete Wavelet Transform

Scaleogram

Signal

Another scaleogram

Conclusions/Summary

- Periodic functions can be approximated using basis of orthogonal trigonometric polynomials.
- The Fourier basis is discretely orthogonal and gives spectral accuracy for smooth functions.
- Functions with discontinuities are not approximated well: Gibbs phenomenon.
- The Discrete Fourier Transform can be computed very efficiently using the Fast Fourier Transform algorithm: $O(N \log N)$.
- FFTs can be used to filter signals, to do convolutions, and to provide spectrally-accurate derivatives, all in $O(N \log N)$ time.
- For signals that have different properties in different parts of the domain a wavelet basis may be more appropriate.
- Using specially-constructed orthogonal discrete wavelet basis one can compute fast discrete wavelet transforms in time $O(N)$.

