
Scientific Computing, Fall 2015
Assignment II: Linear Systems

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

September 16th, 2015
Due by Sunday October 4th

A total of 100 points is possible. Make sure to follow good programming practices in your MATLAB
codes. For example, make sure that parameters, such as the number of variables n, are not hard-wired into
the code and are thus easy to change. Use fprintf to format your output nicely for inclusion in your report.

1 [35 pts] Ill-Conditioned Systems: The Hilbert Matrix

Consider solving linear systems with the matrix of coefficients A defined by

aij =
1

i+ j − 1
,

which is a well-known example of an ill-conditioned symmetric positive-definite matrix, see for example
this Wikipedia article
http://en.wikipedia.org/wiki/Hilbert_matrix

1.1 [10 pts] Conditioning numbers

[10pts] Form the Hilbert matrix in MATLAB and compute the conditioning number for increasing size of
the matrix n for the L1, L2 and L∞ (the column sum, row sum, and spectral matrix) norms based on the

definition κ(A) = ‖A‖
∥∥∥A−1∥∥∥ and using MATLAB’s norm function. Note that the inverse of the Hilbert

matrix can be computed analytically, and is available in MATLAB as invhilb. Compare to the answer
with that returned by the built-in exact calculation cond and the estimate returned by the function rcond
(check the help pages for details).

1.2 [25 pts] Solving ill-conditioned systems

[5pts] Compute the right-hand side (rhs) vector b = Ax so that the exact solution is x = 1 (all unit
entries). Solve the linear system using MATLAB’s built-in solver (explain what method was used to solve
the system in your report) and see how many digits of accuracy you get in the solution for several n, using,
for example, the infinity norm. Also compute the relative norm of the residual ‖Ax− b‖ / ‖b‖ and explain
how it changes with the conditioning number of the matrix.
Note: A method is called backward stable if it computes the exact solution to a nearby problem, i.e., if the
residual is small.

[5pts] Do your results conform to the theoretical expectation discussed in class? After what n does it no
longer make sense to even try solving the system due to severe ill-conditioning?

[5pts] Now do the same but solve the system using the Cholesky factorization of A, and compare the
results and report if anything has changed.

[5pts] Now try computing the solution by using the numerically-computed matrix inverse, x = inv(A) ∗ b,
and compute the relative errors in the solution and in the residual and see how they behave. What difference
do you see between using the LU or Cholesky factorization versus using matrix inverse? Which one is better
and why?

[5pts] Finally, try x = invhilb(A) ∗ b and compare with using a numerical inverse. Report what you see
and try to explain your observations.

1



2 [35 points] Least-Squares Fitting

Consider fitting a data series (xi, yi), i = 1, . . . , n, consisting of n = 100 data points that approximately
follow a polynomial relation,

y = f(x) =
d∑

k=0

ckx
k,

where ck are some unknown coefficients that we need to estimate from the data points, and d is the degree
of the polynomial. Observe that we can rewrite the problem of least-squares fitting of the data in the form
of an overdetermined linear system

[A(x)] c = y,

where the matrix A will depend on the x-coordinates of the data points, and the right hand side is formed
from the y-coordinates.

Let the correct solution for the unknown coefficients c be given by ck = k, and the degree be d = 9.
Using the built-in function rand generate synthetic (artificial) data points by choosing n points 0 ≤ xi ≤ 1
randomly, uniformly distributed from 0 to 1. Then calculate

y = f(x) + εδ,

where δ is a random vector of normally-distributed perturbations (e.g., experimental measurement errors),
generated using the function randn. Here ε is a parameter that measures the magnitude of the uncertainty in
the data points. [Hint: Plot your data for ε = 1 to make sure the data points approximately follow y = f(x).]

2.1 [20pts] Different Methods

For several logarithmically-spaced perturbations (for example, ε = 10−i for i = 0, 1, . . . , 16), estimate the
coefficients c̃ from the least-squares fit to the synthetic data and report the error ‖c− c̃‖. Do this using
three different methods available in MATLAB to do the fitting:

a) [5pts] The built-in function polyfit, which fits a polynomial of a given degree to data points [Hint: Note
that in MATLAB vectors are indexed from 1 and thus the order of the coefficients that polyfit returns is
the opposite of the one we use here, namely, c1 is the coefficient of xd.]

b) [5pts] Using the backslash operator to solve the overdetermined linear system Ac̃ = y.

c) [5pts] Forming the system of normal equations discussed in class,(
ATA

)
c = ATy,

and solving that system using the backslash operator.

[5pts] Report the results for different ε from all three methods in one printout or plot, and explain what
you observe.

2.2 [15pts] The Best Method

[10pts] If ε = 0 we should get the exact result from the fitting. What is the highest accuracy you can
achieve with each of the three methods? Is one of the three methods clearly inferior to the others? Can you
explain your results? Hint: Theory suggests that the conditioning number of solving overdetermined linear
systems is the square root of the conditioning number of the matrix in the normal system of equations,

κ (A) =

√
κ
(
ATA

)
.

[5pts] Test empirically whether the conditioning of the problem get better or worse as the polynomial
degree d is increased.

2



3 [30 points] Rank-1 Matrix Updates

In a range of applications, such as for example machine learning, the linear system Ax = b needs to be
re-solved after a rank-1 update of the matrix,

A→ Ã = A+ uvT ,

for some given vectors v and u. More generally, problems of updating a matrix factorization (linear solver)
after small updates to the matrix appear very frequently and many algorithms have been developed for
special forms of the updates. The rank-1 update is perhaps the simplest and best known, and we explore it
in this problem. From now on, assume that A is invertible and its inverse or LU factorizations are known,
and that we want to update the solution after a rank-1 update of the matrix. We will work with random
dense matrices for simplicity.

3.1 [7.5pts] Direct update

[2.5pts] In MATLAB, generate a random (use the built-in function randn) n× n matrix A for some given
input n and compute its LU factorization (you will need it for later parts of this problem). Also generate a
right-hand-side (rhs) vector b and solve Ax = b.

[5pts] Now generate random vectors v and u and obtain the updated solution x̃ of the system Ãx̃ = b.

Verify the new solution x̃ by directly verifying that the residual r = b− Ãx̃ is small.

3.2 [10pts] SMW Formula

It is not hard to show that Ã is invertible if and only if vTA−1u 6= −1, and in that case

Ã
−1

= A−1 − A
−1uvTA−1

1 + vTA−1u
. (1)

This is the so-called Sherman-Morrison formula, a generalization of which is the Woodbury formula, as
discussed on Wikipedia:
http://en.wikipedia.org/wiki/Sherman-Morrison-Woodbury_formula.

[10pts] The SMW formula (1) can be used to compute a new solution x̃ = Ã
−1
b. Be careful to do this as

robustly and efficiently as you can, that, is, not actually calculating matrix inverses but rather (re)using the
LU factorization of A [Hint: You only need to solve two triangular systems to update the solution once you
have the factorization of A]. For some n (say n = 100), compare the result from using the formula (1)

versus solving the updated system Ãx̃ = b directly as in part 3.1.

3.3 [12.5pts] Cholesky factorization updates

Modify your code to make the matrix and the update symmetric, i.e., A = AT and u = v, and to use
the Cholesky instead of the LU factorization. A quick way to generate a symmetric positive-definite n× n
matrix in MATLAB is:

A = gallery(′randcorr′, n).

As a new alternative to computing x̃, consider computing the Cholesky factor L̃ by updating the previous
factor L instead of recomputing the whole factorization anew, as implemented in the MATLAB function
cholupdate.

[2.5pts] Implement the Sherman-Morrison-Woodbury (SMW) formula but now use the Cholesky factoriza-
tion.

[2.5pts] Confirm that both your implementation of (1) and MATLAB’s routine cholupdate return the
correct solution of the updated linear system and explain how you did this test (Note: of course MATLAB’s
code is correct in this case but what you are testing is that you called this routine correctly).

[7.5pts] Compare the speed of using cholupdate to your own implementation of the SMW formula for
large matrices. How does the cost of doing the update compare to doing a factorization from scratch? [Hint:
The MATLAB functions tic and toc might be useful in timing sections of code]

3


