MATH-UA 263 Partial Differential Equations Recitation Summary

[ldebrando Magnani
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February 7th, 2020

Topics: verifying solution to a PDE, principle of continuum superposition and general solution to IVP for
heat equation, general solution via integration, well-posedness.

1. Verify that the function
1 22
G(zx,t) = e 1kt 1
0= ®

satisfies the heat equation u; = kg, for t > 0.
2. Verify that the general solution to the following IVP (Initial Value Problem)

Uy = Klgy, for —oco <z < +oo, t>0

is given by

1 ToO iy
) = —— / ST 3(y)dy. (@)

(For ¢ > 0, use Problem (1); we also showed how this is an example of the principle of continuum
superposition).

3. Solve the IVP in Problem (2) with initial condition ¢(x) = e~?. In particular, use the general formula
(2) to show that the solution is given by

u(z,t) = k=", (3)
(In computing the integral, use the identity # fjoc: e dx = 1).
4. Find the general solution to the equation
Ugt + Buy =1 (4)
(we used the substitution v = u,).
5. Consider the following Cauchy problems for Laplace’s equation:
Vg +Vyy =0, for —oo <z < +o0, y>0

(1) v(z,0)=0

vy(x,0) =0

Ugy + Uyy =0, for —oo <z < +o00, y >0

(17) ¢ u(z,0) =0

uy,(z,0) = e~ V" sin(nx)

Show that (i) is an ill-posed problem; in particular, show that it is not stable with respect to boundary
data. (use that v(z,y) = 0 solves (i) and u(z,y) = Le~V"sin(nx)sinh(ny) is a solution to (ii); look
at what happens for large n).



February 14th, 2020

Topics: ODEs review, d’Alembert’s formula, differential operators in polar coordiates, method of character-
istics, method of coordinates, ill-posedness of backwards heat equation.

1. ODEs Review:

e 1% order equations, separable equations: Z—Z = f(x)g(y). For example, solve IVP

y, = eiy(Qx - 4)7
y(5) =0

e 1% order linear equations, solvable by integrating factor method: % +p(x)y = q(z). For example,
solve IVP

y =bx— 3

y(1) =2
e 27?4 order equations with constant coefficients: ay” + by’ + cy = d(x). For example, solve BVP
' —u=z for 0<z<2m
u(0) = u(2r) = 0.

Also find the general solutions to two important examples: (i) u” 4+ a?u = 0, and (ii) u” — a?u = 0
(a is constant).

2. (Homework 1, Problem 3) Verify that

z+ut
u(z,t) = 1/ f(s)ds (5)

2v x—vt

is a solution to the wave equation wu; = v?ug,, where v > 0 is constant and f is an arbitrary differen-
tiable function. Also show that u:(z,0) = f(z).

3. Suppose the solution to the 2 dimensional heat equation 1u; = kV2u only depends on the distance from
the origin r = /a2 + y?2, that is, suppose u(x,y,t) = v(r,t). Derive the PDE that v(r,t) satisfies.

4. Use the method of characteristics to solve
Uy + YUy = 0,
u(0,y) = y*
5. Solve the following initial value problem by the method of coordinates
ur+u, —3u=t, for xR, t>0

u(x,0) = 22



February 21st, 2020

Topics: Method of characteristics, classification of second order PDEs, method of coordinate transformation
for hyperbolic PDEs.

1. Solve following problem by using the method of characteristics

U+ u, —3u=t, for xeR, t>0
u(z,0) = z?

2. Use the method of characteristics to solve
(14 t*)us + uy =0,
u(z,0) = sin(z)

Sketch some of the characteristic curves for this PDE.

3. Solve following BVP
ug +2u, =0, for £ >0,t>0

u(z,0) =e™*

U(O, t) - 1_}%

Sketch some of the characteristic curves and determine whether the solution u(x,t) continuous along
the leading characteristic x = 2¢. What about its derivatives?

4. Method of coordinate transformation for 2"¢ order hyperbolic PDEs with constant coefficients.

5. Show that the PDE 2u,,, + 5uzs + 3ug = 0 is hyperbolic. Then use the method of coordinate transfor-

mation to solve
QUII + 5169315 + 3utt =0

u(z,0) =0

wg(z,0) = e

February 28th, 2020

Topics: Operator factorization, wave equation and diffusion equation on unbounded domains.

1. Find the general solution of
ugs + 10Uzt + gy, = sin(z + t) (6)

Hint: Factor the operator £ = 307 + 100,,0; + 302 and reduce (6) to a system of first order PDEs.

t pztc(t—r)
u(z,t) = %/0 / f(s,7)dsdr (7)

—c(t—T)

2. Verify that

solves the inhomogeneous wave equation on the real line:

Ut — gy = f(x,t), for —0o <z < +00
(i) :
U(I’,O) = ut(x,(]) =0,



3. Use Duhamel’s principle to write a formula for the solution to the inhomogeneous heat equation
up — ktgy = f(z,t), for —oco < & < 400

(1) :
u(z,0) =0,

where f(z,t) =sin(z) for |z| <l and f(x,t) =0 for |x| > . (I > 0 is a constant).

March 6th, 2020

Topics: Midterm review.
1. Consider the following initial value problem
U +u, —3u=t, for xeR, t>0
u(z,0) = 22

Introduce a new dependent variable v(x,t) = u(z,t)e~3¢, write the PDE in the new variable and solve
it, and then solve the original PDE using this transformation.

2. Show that the PDE 2u,, + 5u,¢ + 3uy = 0 is hyperbolic. Then use the method of coordinate transfor-

mation to solve
QUII + 5uact + 3utt =0

u(z,0) =0

w(z,0) = ze®
3. In class you used Duhamel’s principle to show that the general solution to the inhomogeneous wave
equation
U — gy = f(2,t), for —o0 <z < 400
(2) :
U(JC,O) = Ut(l',()) = Oa

t pztc(t—r)
u(z,t) = %/0 / f(s,7)dsdr (8)

—c(t—T)

is given by

Derive the same formula by applying the method of coordinate transformation to problem (i).

4. Solve the heat equation u; — kug, = 0 on the real line with initial data u(z,0) = €3

March 27th, 2020

Topics: Midterm Solutions.



April 3rd, 2020

Topics: Wave equation and Heat equation on bounded domain, Separation of Variables, Dirichlet Boundary,
Neumann Boundary.

1. Consider the IBVP for the 1-D wave equation on the interval (0, L) with Dirichlet boundary data
U — gy =0, for 0 < < +L
w(0,t) =u(L,t) =0,

u(z,0) = g(),

ut(z,0) = h(z)
Solve this Problem by Separation of Variables.

2. Consider the heat equation in 1-D on the interval (0, 7) with homogeneous Neumann boundary condi-
tions
up — 4z, =0, for 0 << +7
u(0,1) = ug(m,t) =0,
u(z,0) =z,

Solve this problem by Separation of Variables.

April 10th, 2020

Topics: Separation of variables, Mixed Dirichlet-Neumann Boundary, Periodic Boundary, symmetries and
heat equation on the half line.

1. Consider the heat equation in 1-D the interval (0, L) with mixed Dirichlet-Neumann boundary condi-
tions
U — kg, =0, for 0 <ax < L
u(0,t) = ux (L, t) =0,

U(JZ,O) = f(a:)a

Solve this problem by Separation of Variables and express the solution by using Fourier Series.

2. Consider the heat equation on the interval (0, L) with periodic boundary conditions:

up — kg, =0, for 0 <z <L
w(0,t) = u(L,t), uy(0,t) =uz(L,t),
’LL(.T,O) = f(l')7

Solve this by Separation of Variables and express the solution by using Fourier Series.



3. Consider the heat equation on the real line
ur — kg, =0, —oo <x <400, t >0, wu(z,0)=¢(x) (9)

Show that if ¢(x) is an odd function, then u(—=x,t) = —u(z,t) so that w(0,¢) = 0. In the same way,
show that if ¢(z) is an even function, then u(—=z,t) = u(z,t) so that u,(0,t) = 0. Use these facts to
solve the heat equation on the half line with Dirichlet and Neumann Boundary Conditions, that is

Uy — kg, =0, for 0 < x < 400
u(0,t) =0,

U(J),O) = f(x)a

and
Uy — kg, =0, for 0 < < 400

uz(0,) =0,

u(z,0) = g().

4. Consider the eigenvalue problem X" (z) + AX(z) = 0 for 0 < < L. For each of the following BC’s,
find the eigenvalues and eigenfunctions {\,, X,,} for the above BVP.

e Dirichlet: X(0) =X (L) =0

e Neumann: X'(0) = X'(L) =0

e Mixed: X(0)=X'(L)=0

e Periodic: X(0) = X (L), X'(0) = X'(L)

April 17th, 2020

Topics: Heat and Wave equation with inhomogeneous boundary conditions and sources.
1. Solve the heat equation with a source and nonzero IC
wy — kwgy =271 —1x), 0<z<1,t>0
w(0,t) =w(1,t) =0, t >0
w(r,0)=22+2z,, 0<z<l1.
2. Solve the heat equation with inhomogeneous BCs
U — kg, =0, 0<ax<l1,t>0
u(0,t) =2e7t, wu(l,t) =1,
uw(x,0)=2% 0<z<l.

Note that for the diffusion equation we can always make a transformation of the dependent function
to force zero boundary conditions at the expense of introducing a source term in the PDE. Use the
superposition principle to reduce this problem to problem (1).



3. (Problem 4.7.9 in APDE) Solve the wave equation on [0, 1] with inhomogeneous boundary data and

source term
utt—CQum:q, O<zx<l, t>0

u(0,t) =0, wu(l,t) =sin(t), t>0

u(z,0) =z(1 — ), w(z,0)=0, 0<z<l.

April 24th, 2020

Topics: Laplace’s equation on a disk, Poisson equation, advection-diffusion equation.
1. Laplace’s equation on a disk (Page 165 in PDE). Counsider the problem
Ugy + Uyy =0, for 22 +9y? <a,
u=h(f), for 2?>+y*®=a.

Solve this by separation of variables. Hint: Separate the variables in poolar coordinates as u(r, ) =
R(r)O(0). Remember that the Laplacian in poolar coordinates is given by (can you show this?)

1 1
Usg + Uy = Urr + Uy + 5 Ugp- (10)
2. Solve the Poisson equation on a rectangle
Upy +Uyy = 1, for 0<z<a, 0<y<b
uz(0,y) = ug(a,y) =0

u(z,0) = u(z,b) =0



May 1st, 2020

Topics: Review 1.
1. Find the solution for the advection-diffusion equation on the real line

Up + Cuy = kgy, —00<x <400, t>0
u(z,0) = p().
Hint: consider v(x,t) := u(zx + ct,t) (See APDE Pages 40-43).
2. Solve the heat equation on (0, 1) with source term and inhomogeneous BCs
up — kg = f(z,t), 0<ax<1l, t>0

uw(0,t) =2e7t, w(l,t)=1, t>0

w(x,0) =22 0<xz<l1.

Hint: First, use the superposition principle to split this problem into simpler subproblems; then, use
separation of variables.

3. Using separation of variables, find the solution to the elliptic PDE — (g + tyy) + 2u = 0 in the square
domain 0 < z,y < 1 with BCs u(z,0) = u(x,1) =0 and u(0,y) = (1 — y)y and u,(1,y) = 0.

May 8th, 2020

Topics: Review 2.
1. Solve the 2D heat equation with source and inhomogeneous BCs on a square domain

Up = Upg + Uyy + fz,9,t), 0<z<1, 0<y<l t>0
u(z,0,t) = u(z,1,t) = 0,

U(07yat) = ye_tv uw(la y7t) =0,

u(z,y,0) = Y(z,y).

Hint: Split this problem into subproblems that can be handled by separation of variables / eigenfunction
expansion methods. In particular, (Step 1) find eigenfunctions and eigenvalues of the Laplacian with
homogeneous BCs, (Step 2) use superposition to split (P) into the following 2 subproblems:

e (P1): Steady state version of (P) with inhomogeneous BCs and no source term — Solve by
separation of variables
e (P2): Heat equation with (extra) source term and homogeneous BCs — Use Step 1 to solve by
eigenfunction expansion.
2. Use separation of variables to solve the PDE

Ugp + 2Up = Ugy (11)

on the strip 0 < = < 1, ¢ > 0 subject to BCs u,(0,t) = u,(1,¢) = 0 and ICs u(z,0) = 0 and
ut(x,0) = 1 — cos(2mz).

3. Use the method of characteristics to solve the first order PDE zu; + tu, = —zu where u(z,0) =1 —x
and x > 0, ¢ > 0. Sketch some characteristic curves. Can the solution be determined everywhere in
the first quadrant? If no, for which values of x and ¢ is the solution valid?



