MATH-UA 263 Partial Differential Equations Recitation Summary

Ildebrando Magnani
im975@nyu.edu

February 7th, 2020

Topics: verifying solution to a PDE, principle of continuum superposition and general solution to IVP for heat equation, general solution via integration, well-posedness.

1. Verify that the function

$$
\begin{equation*}
G(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}} \tag{1}
\end{equation*}
$$

satisfies the heat equation $u_{t}=k u_{x x}$, for $t>0$.
2. Verify that the general solution to the following IVP (Initial Value Problem)

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x}, \text { for }-\infty<x<+\infty, t>0 \\
u(x, t=0)=\phi(x)
\end{array}\right.
$$

is given by

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y \tag{2}
\end{equation*}
$$

(For $t>0$, use Problem (1); we also showed how this is an example of the principle of continuum superposition).
3. Solve the IVP in Problem (2) with initial condition $\phi(x)=e^{-x}$. In particular, use the general formula (2) to show that the solution is given by

$$
\begin{equation*}
u(x, t)=e^{k t-x} \tag{3}
\end{equation*}
$$

(In computing the integral, use the identity $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^{2}} d x=1$).
4. Find the general solution to the equation

$$
\begin{equation*}
u_{x t}+3 u_{x}=1 \tag{4}
\end{equation*}
$$

(we used the substitution $v=u_{x}$).
5. Consider the following Cauchy problems for Laplace's equation:

$$
\begin{aligned}
& \text { (i) }\left\{\begin{array}{l}
v_{x x}+v_{y y}=0, \text { for }-\infty<x<+\infty, y>0 \\
v(x, 0)=0 \\
v_{y}(x, 0)=0
\end{array}\right. \\
& \text { (ii) }\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \text { for }-\infty<x<+\infty, y>0 \\
u(x, 0)=0 \\
u_{y}(x, 0)=e^{-\sqrt{n}} \sin (n x)
\end{array}\right.
\end{aligned}
$$

Show that (ii) is an ill-posed problem; in particular, show that it is not stable with respect to boundary data. (use that $v(x, y)=0$ solves (i) and $u(x, y)=\frac{1}{n} e^{-\sqrt{n}} \sin (n x) \sinh (n y)$ is a solution to (ii); look at what happens for large n).

February 14th, 2020

Topics: ODEs review, d'Alembert's formula, differential operators in polar coordiates, method of characteristics, method of coordinates, ill-posedness of backwards heat equation.

1. ODEs Review:

- $1^{\text {st }}$ order equations, separable equations: $\frac{d y}{d x}=f(x) g(y)$. For example, solve IVP

$$
\left\{\begin{array}{l}
y^{\prime}=e^{-y}(2 x-4) \\
y(5)=0
\end{array}\right.
$$

- $1^{\text {st }}$ order linear equations, solvable by integrating factor method: $\frac{d y}{d x}+p(x) y=q(x)$. For example, solve IVP

$$
\left\{\begin{array}{l}
y^{\prime}=5 x-\frac{3 y}{x} \\
y(1)=2
\end{array}\right.
$$

- $2^{\text {nd }}$ order equations with constant coefficients: $a y^{\prime \prime}+b y^{\prime}+c y=d(x)$. For example, solve BVP

$$
\left\{\begin{array}{l}
u^{\prime \prime}-u=x, \text { for } 0<x<2 \pi \\
u(0)=u(2 \pi)=0
\end{array}\right.
$$

Also find the general solutions to two important examples: (i) $u^{\prime \prime}+a^{2} u=0$, and (ii) $u^{\prime \prime}-a^{2} u=0$ (a is constant).
2. (Homework 1, Problem 3) Verify that

$$
\begin{equation*}
u(x, t)=\frac{1}{2 v} \int_{x-v t}^{x+v t} f(s) d s \tag{5}
\end{equation*}
$$

is a solution to the wave equation $u_{t t}=v^{2} u_{x x}$, where $v>0$ is constant and f is an arbitrary differentiable function. Also show that $u_{t}(x, 0)=f(x)$.
3. Suppose the solution to the 2 dimensional heat equation $u_{t}=k \nabla^{2} u$ only depends on the distance from the origin $r=\sqrt{x^{2}+y^{2}}$, that is, suppose $u(x, y, t) \equiv v(r, t)$. Derive the PDE that $v(r, t)$ satisfies.
4. Use the method of characteristics to solve

$$
\left\{\begin{array}{l}
u_{x}+y u_{y}=0 \\
u(0, y)=y^{3}
\end{array}\right.
$$

5. Solve the following initial value problem by the method of coordinates

$$
\left\{\begin{array}{l}
u_{t}+u_{x}-3 u=t, \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

February 21st, 2020

Topics: Method of characteristics, classification of second order PDEs, method of coordinate transformation for hyperbolic PDEs.

1. Solve following problem by using the method of characteristics

$$
\left\{\begin{array}{l}
u_{t}+u_{x}-3 u=t, \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

2. Use the method of characteristics to solve

$$
\left\{\begin{array}{l}
\left(1+t^{2}\right) u_{t}+u_{x}=0 \\
u(x, 0)=\sin (x)
\end{array}\right.
$$

Sketch some of the characteristic curves for this PDE.
3. Solve following BVP

$$
\left\{\begin{array}{l}
u_{t}+2 u_{x}=0, \text { for } x>0, t>0 \\
u(x, 0)=e^{-x} \\
u(0, t)=\frac{1}{1+t^{2}}
\end{array}\right.
$$

Sketch some of the characteristic curves and determine whether the solution $u(x, t)$ continuous along the leading characteristic $x=2 t$. What about its derivatives?
4. Method of coordinate transformation for $2^{\text {nd }}$ order hyperbolic PDEs with constant coefficients.
5. Show that the PDE $2 u_{x x}+5 u_{x t}+3 u_{t t}=0$ is hyperbolic. Then use the method of coordinate transformation to solve

$$
\left\{\begin{array}{l}
2 u_{x x}+5 u_{x t}+3 u_{t t}=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=x e^{-x^{2}}
\end{array}\right.
$$

February 28th, 2020

Topics: Operator factorization, wave equation and diffusion equation on unbounded domains.

1. Find the general solution of

$$
\begin{equation*}
3 u_{t t}+10 u_{x t}+3 u_{x x}=\sin (x+t) \tag{6}
\end{equation*}
$$

Hint: Factor the operator $\mathcal{L}=3 \partial_{t}^{2}+10 \partial_{x} \partial_{t}+3 \partial_{x}^{2}$ and reduce (6) to a system of first order PDEs.
2. Verify that

$$
\begin{equation*}
u(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} f(s, \tau) d s d \tau \tag{7}
\end{equation*}
$$

solves the inhomogeneous wave equation on the real line:

$$
(i):\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=f(x, t), \text { for }-\infty<x<+\infty \\
u(x, 0)=u_{t}(x, 0)=0
\end{array}\right.
$$

3. Use Duhamel's principle to write a formula for the solution to the inhomogeneous heat equation

$$
(i):\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \text { for }-\infty<x<+\infty \\
u(x, 0)=0,
\end{array}\right.
$$

where $f(x, t)=\sin (x)$ for $|x|<l$ and $f(x, t)=0$ for $|x|>l .(l>0$ is a constant $)$.

March 6th, 2020

Topics: Midterm review.

1. Consider the following initial value problem

$$
\left\{\begin{array}{l}
u_{t}+u_{x}-3 u=t, \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0)=x^{2}
\end{array}\right.
$$

Introduce a new dependent variable $v(x, t)=u(x, t) e^{-3 t}$, write the PDE in the new variable and solve it, and then solve the original PDE using this transformation.
2. Show that the PDE $2 u_{x x}+5 u_{x t}+3 u_{t t}=0$ is hyperbolic. Then use the method of coordinate transformation to solve

$$
\left\{\begin{array}{l}
2 u_{x x}+5 u_{x t}+3 u_{t t}=0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=x e^{-x^{2}}
\end{array}\right.
$$

3. In class you used Duhamel's principle to show that the general solution to the inhomogeneous wave equation

$$
(i):\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=f(x, t), \text { for }-\infty<x<+\infty \\
u(x, 0)=u_{t}(x, 0)=0,
\end{array}\right.
$$

is given by

$$
\begin{equation*}
u(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} f(s, \tau) d s d \tau \tag{8}
\end{equation*}
$$

Derive the same formula by applying the method of coordinate transformation to problem (i).
4. Solve the heat equation $u_{t}-k u_{x x}=0$ on the real line with initial data $u(x, 0)=e^{3 x}$:

March 27th, 2020

Topics: Midterm Solutions.

April 3rd, 2020

Topics: Wave equation and Heat equation on bounded domain, Separation of Variables, Dirichlet Boundary, Neumann Boundary.

1. Consider the IBVP for the 1-D wave equation on the interval $(0, L)$ with Dirichlet boundary data

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0, \text { for } 0<x<+L \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=g(x) \\
u_{t}(x, 0)=h(x)
\end{array}\right.
$$

Solve this Problem by Separation of Variables.
2. Consider the heat equation in 1-D on the interval $(0, \pi)$ with homogeneous Neumann boundary conditions

$$
\left\{\begin{array}{l}
u_{t}-4 u_{x x}=0, \text { for } 0<x<+\pi \\
u_{x}(0, t)=u_{x}(\pi, t)=0 \\
u(x, 0)=x
\end{array}\right.
$$

Solve this problem by Separation of Variables.

April 10th, 2020

Topics: Separation of variables, Mixed Dirichlet-Neumann Boundary, Periodic Boundary, symmetries and heat equation on the half line.

1. Consider the heat equation in 1-D the interval $(0, L)$ with mixed Dirichlet-Neumann boundary conditions

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \text { for } 0<x<L \\
u(0, t)=u_{x}(L, t)=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

Solve this problem by Separation of Variables and express the solution by using Fourier Series.
2. Consider the heat equation on the interval $(0, L)$ with periodic boundary conditions:

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \text { for } 0<x<L \\
u(0, t)=u(L, t), \quad u_{x}(0, t)=u_{x}(L, t) \\
u(x, 0)=f(x)
\end{array}\right.
$$

Solve this by Separation of Variables and express the solution by using Fourier Series.
3. Consider the heat equation on the real line

$$
\begin{equation*}
u_{t}-k u_{x x}=0,-\infty<x<+\infty, t>0, \quad u(x, 0)=\phi(x) \tag{9}
\end{equation*}
$$

Show that if $\phi(x)$ is an odd function, then $u(-x, t)=-u(x, t)$ so that $u(0, t)=0$. In the same way, show that if $\phi(x)$ is an even function, then $u(-x, t)=u(x, t)$ so that $u_{x}(0, t)=0$. Use these facts to solve the heat equation on the half line with Dirichlet and Neumann Boundary Conditions, that is

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \text { for } 0<x<+\infty \\
u(0, t)=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \text { for } 0<x<+\infty \\
u_{x}(0, t)=0 \\
u(x, 0)=g(x)
\end{array}\right.
$$

4. Consider the eigenvalue problem $X^{\prime \prime}(x)+\lambda X(x)=0$ for $0<x<L$. For each of the following BC's, find the eigenvalues and eigenfunctions $\left\{\lambda_{n}, X_{n}\right\}$ for the above BVP.

- Dirichlet: $X(0)=X(L)=0$
- Neumann: $X^{\prime}(0)=X^{\prime}(L)=0$
- Mixed: $X(0)=X^{\prime}(L)=0$
- Periodic: $X(0)=X(L), X^{\prime}(0)=X^{\prime}(L)$

April 17th, 2020

Topics: Heat and Wave equation with inhomogeneous boundary conditions and sources.

1. Solve the heat equation with a source and nonzero IC

$$
\left\{\begin{array}{l}
w_{t}-k w_{x x}=2 e^{-t}(1-x), \quad 0<x<1, t>0 \\
w(0, t)=w(1, t)=0, t>0 \\
w(x, 0)=x^{2}+x,, \quad 0<x<1
\end{array}\right.
$$

2. Solve the heat equation with inhomogeneous BCs

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \quad 0<x<1, t>0 \\
u(0, t)=2 e^{-t}, \quad u(1, t)=1 \\
u(x, 0)=x^{2}, \quad 0<x<1
\end{array}\right.
$$

Note that for the diffusion equation we can always make a transformation of the dependent function to force zero boundary conditions at the expense of introducing a source term in the PDE. Use the superposition principle to reduce this problem to problem (1).
3. (Problem 4.7.9 in APDE) Solve the wave equation on $[0,1]$ with inhomogeneous boundary data and source term

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=q, \quad 0<x<1, t>0 \\
u(0, t)=0, \quad u(1, t)=\sin (t), \quad t>0 \\
u(x, 0)=x(1-x), u_{t}(x, 0)=0, \quad 0<x<1
\end{array}\right.
$$

April 24th, 2020

Topics: Laplace's equation on a disk, Poisson equation, advection-diffusion equation.

1. Laplace's equation on a disk (Page 165 in PDE). Consider the problem

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \text { for } x^{2}+y^{2}<a \\
u=h(\theta), \text { for } x^{2}+y^{2}=a
\end{array}\right.
$$

Solve this by separation of variables. Hint: Separate the variables in poolar coordinates as $u(r, \theta)=$ $R(r) \Theta(\theta)$. Remember that the Laplacian in poolar coordinates is given by (can you show this?)

$$
\begin{equation*}
u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} \tag{10}
\end{equation*}
$$

2. Solve the Poisson equation on a rectangle

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=1, \text { for } 0<x<a, 0<y<b \\
u_{x}(0, y)=u_{x}(a, y)=0 \\
u(x, 0)=u(x, b)=0
\end{array}\right.
$$

May 1st, 2020

Topics: Review 1.

1. Find the solution for the advection-diffusion equation on the real line

$$
\left\{\begin{array}{l}
u_{t}+c u_{x}=k u_{x x}, \quad-\infty<x<+\infty, t>0 \\
u(x, 0)=\phi(x) .
\end{array}\right.
$$

Hint: consider $v(x, t):=u(x+c t, t)$ (See APDE Pages 40-43).
2. Solve the heat equation on $(0,1)$ with source term and inhomogeneous BCs

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \quad 0<x<1, t>0 \\
u(0, t)=2 e^{-t}, \quad u(1, t)=1, \quad t>0 \\
u(x, 0)=x^{2}, \quad 0<x<1
\end{array}\right.
$$

Hint: First, use the superposition principle to split this problem into simpler subproblems; then, use separation of variables.
3. Using separation of variables, find the solution to the elliptic PDE $-\left(u_{x x}+u_{y y}\right)+2 u=0$ in the square domain $0<x, y<1$ with BCs $u(x, 0)=u(x, 1)=0$ and $u(0, y)=(1-y) y$ and $u_{x}(1, y)=0$.

May 8th, 2020

Topics: Review 2.

1. Solve the 2 D heat equation with source and inhomogeneous BCs on a square domain

$$
(P):\left\{\begin{array}{l}
u_{t}=u_{x x}+u_{y y}+f(x, y, t), \quad 0<x<1,0<y<1, t>0 \\
u(x, 0, t)=u(x, 1, t)=0 \\
u(0, y, t)=y e^{-t}, \quad u_{x}(1, y, t)=0 \\
u(x, y, 0)=\psi(x, y)
\end{array}\right.
$$

Hint: Split this problem into subproblems that can be handled by separation of variables / eigenfunction expansion methods. In particular, (Step 1) find eigenfunctions and eigenvalues of the Laplacian with homogeneous BCs, (Step 2) use superposition to split (P) into the following 2 subproblems:

- (P1): Steady state version of (P) with inhomogeneous BCs and no source term \rightarrow Solve by separation of variables
- (P2): Heat equation with (extra) source term and homogeneous BCs \rightarrow Use Step 1 to solve by eigenfunction expansion.

2. Use separation of variables to solve the PDE

$$
\begin{equation*}
u_{t t}+2 u_{t}=u_{x x} \tag{11}
\end{equation*}
$$

on the strip $0<x<1, t>0$ subject to $\operatorname{BCs} u_{x}(0, t)=u_{x}(1, t)=0$ and ICs $u(x, 0)=0$ and $u_{t}(x, 0)=1-\cos (2 \pi x)$.
3. Use the method of characteristics to solve the first order PDE $x u_{t}+t u_{x}=-x u$ where $u(x, 0)=1-x$ and $x \geq 0, t \geq 0$. Sketch some characteristic curves. Can the solution be determined everywhere in the first quadrant? If no, for which values of x and t is the solution valid?

