February 7th, 2020

Topics: verifying solution to a PDE, principle of continuum superposition and general solution to IVP for heat equation, general solution via integration, well-posedness.

1. Verify that the function
\[G(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{-\frac{x^2}{4kt}} \]
satisfies the heat equation \(u_t = ku_{xx} \), for \(t > 0 \).

2. Verify that the general solution to the following IVP (Initial Value Problem)
\[
\begin{aligned}
&\quad \begin{cases}
 u_t = ku_{xx}, & \text{for } -\infty < x < +\infty, \ t > 0 \\
 u(x, t = 0) = \phi(x)
\end{cases} \\
&\quad \begin{cases}
 u(x, t = 0) = \phi(x)
\end{cases}
\end{aligned}
\]
is given by
\[u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{4kt}} \phi(y)dy. \]
(For \(t > 0 \), use Problem (1); we also showed how this is an example of the principle of continuum superposition).

3. Solve the IVP in Problem (2) with initial condition \(\phi(x) = e^{-x} \). In particular, use the general formula (2) to show that the solution is given by
\[u(x,t) = e^{kt-x}. \]
(In computing the integral, use the identity \(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^2} dx = 1 \)).

4. Find the general solution to the equation
\[u_{xt} + 3u_x = 1 \]
(we used the substitution \(v = u_x \)).

5. Consider the following Cauchy problems for Laplace’s equation:
\[
\begin{cases}
 v_{xx} + v_{yy} = 0, & \text{for } -\infty < x < +\infty, \ y > 0 \\
 v(x, 0) = 0 \\
 v_y(x, 0) = 0 \\
 u_{xx} + u_{yy} = 0, & \text{for } -\infty < x < +\infty, \ y > 0 \\
 u(x, 0) = 0 \\
 u_y(x, 0) = e^{-\sqrt{\pi}} \sin(nx)
\end{cases}
\]
(i) \(v(x, 0) = 0 \)
(ii) \(u(x, 0) = 0 \)

Show that (ii) is an ill-posed problem; in particular, show that it is not stable with respect to boundary data. (use that \(v(x, y) = 0 \) solves (i) and \(u(x, y) = \frac{1}{n} e^{-\sqrt{\pi}} \sin(nx) \sinh(ny) \) is a solution to (ii); look at what happens for large \(n \)).
February 14th, 2020

Topics: ODEs review, d’Alembert’s formula, differential operators in polar coordinates, method of characteristics, method of coordinates, ill-posedness of backwards heat equation.

1. ODEs Review:
 - 1st order equations, separable equations: \(\frac{dy}{dx} = f(x)g(y) \). For example, solve IVP
 \[
 \begin{cases}
 y' = e^{-y}(2x - 4), \\
 y(5) = 0
 \end{cases}
 \]
 - 1st order linear equations, solvable by integrating factor method: \(\frac{du}{dx} + p(x)y = q(x) \). For example, solve IVP
 \[
 \begin{cases}
 y' = 5x - \frac{3y}{x}, \\
 y(1) = 2
 \end{cases}
 \]
 - 2nd order equations with constant coefficients: \(ay'' + by' + cy = d(x) \). For example, solve BVP
 \[
 \begin{cases}
 u'' - u = x, \text{ for } 0 < x < 2\pi \\
 u(0) = u(2\pi) = 0.
 \end{cases}
 \]
 Also find the general solutions to two important examples: (i) \(u'' + a^2u = 0 \), and (ii) \(u'' - a^2u = 0 \) \((a \text{ is constant})\).

2. (Homework 1, Problem 3) Verify that
 \[
 u(x,t) = \frac{1}{2v} \int_{x-\sqrt{vt}}^{x+\sqrt{vt}} f(s)ds
 \]
 is a solution to the wave equation \(u_{tt} = v^2 u_{xx} \), where \(v > 0 \) is constant and \(f \) is an arbitrary differentiable function. Also show that \(u_t(x,0) = f(x) \).

3. Suppose the solution to the 2 dimensional heat equation \(u_t = k\nabla^2 u \) only depends on the distance from the origin \(r = \sqrt{x^2 + y^2} \), that is, suppose \(u(x,y,t) \equiv v(r,t) \). Derive the PDE that \(v(r,t) \) satisfies.

4. Use the method of characteristics to solve
 \[
 \begin{cases}
 u_x + yu_y = 0, \\
 u(0, y) = y^3
 \end{cases}
 \]

5. Solve the following initial value problem by the method of coordinates
 \[
 \begin{cases}
 u_t + u_x - 3u = t, \text{ for } x \in \mathbb{R}, t > 0 \\
 u(x,0) = x^2
 \end{cases}
 \]
February 21th, 2020

Topics: Method of characteristics, classification of second order PDEs, method of coordinate transformation for hyperbolic PDEs.

1. Solve following problem by using the method of characteristics

\[
\begin{cases}
 u_t + u_x - 3u = t, & \text{for } x \in \mathbb{R}, \ t > 0 \\
 u(x, 0) = x^2
\end{cases}
\]

2. Use the method of characteristics to solve

\[
\begin{cases}
 (1 + t^2)u_t + u_x = 0, \\
 u(x, 0) = \sin(x)
\end{cases}
\]
Sketch some of the characteristic curves for this PDE.

3. Solve following BVP

\[
\begin{cases}
 u_t + 2u_x = 0, & \text{for } x > 0, t > 0 \\
 u(x, 0) = e^{-x} \\
 u(0, t) = \frac{1}{1+t^2}
\end{cases}
\]
Sketch some of the characteristic curves and determine whether the solution \(u(x, t)\) continuous along the leading characteristic \(x = 2t\). What about its derivatives?

4. Method of coordinate transformation for 2nd order hyperbolic PDEs with constant coefficients.

5. Show that the PDE \(2u_{xx} + 5u_{xt} + 3u_{tt} = 0\) is hyperbolic. Then use the method of coordinate transformation to solve

\[
\begin{cases}
 2u_{xx} + 5u_{xt} + 3u_{tt} = 0 \\
 u(x, 0) = 0 \\
 u_t(x, 0) = xe^{-x^2}
\end{cases}
\]