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Problem 1 (Problem 9 in §4.7 on page 215 of APDE, with q = 0). Solve

utt = uxx, x ∈ (0, 1), t > 0,

u(0, t) = 0, u(1, t) = sin t, t > 0,

u(x, 0) = x(1− x), ut(x, 0) = 0, x ∈ (0, 1).

(1)

Solution. The basic idea is to first apply a similar strategy as in the separation of variables to find
out eigenfunctions in space. The eigenfunctions automatically form a basis (for L2([0, 1])) and thus
every (L2-)function on [0, 1] can be written as a series in terms of these eigenfunctions. Then it
suffices to find out and solve the ODE’s satisfied by the coefficients.

Before we solve for the eigenfunctions, however, we need to deal with the inhomogeneous bound-
ary condition, since the separation of variables can only be applied to equations with homoge-
neous boundary conditions. (This argument may remind you of the Laplace equation in a rectangle
discussed in Lecture 17, http://cims.nyu.edu/~donev/Teaching/PDE-Spring2016/Lecture_17.
pdf, where the boundary condition on Y (y) at y = 1 is not homogeneous. However in that case, it
is only for the X-equation that we solve an eigenvalue problem; and the X-equation does enjoy ho-
mogeneous boundary conditions. It is essentially the same here — we need homogeneous boundary
condition to solve for eigenvalue problems in space.)

Step 1 (Eliminate inhomogeneous boundary condition). Let v(x, t) satisfies the following
equation

vxx(x, t) = 0, x ∈ (0, 1), t > 0,

v(0, t) = 0, v(1, t) = sin t, t > 0.
(2)

In fact, it is easy to find v(x, t) = x sin t. Define w = u− v. Then w satisfies the following equation

(∂tt − ∂xx)w = (∂tt − ∂xx)u− (∂tt − ∂xx)v = 0− ∂ttv(x, t) = x sin t, (3)

together with initial and boundary conditions as follows

w(0, t) = u(0, t)− v(0, t) = 0, w(1, t) = u(1, t)− v(1, t) = 0, (4)

w(x, 0) = u(x, 0)− v(x, 0) = x(1− x), wt(x, 0) = ut(x, 0)− vt(x, 0) = −x. (5)

(4) gives the reason why we took such boundary condition in (2) for v, while what equation v satisfies
in [0, 1] is not really important.

Step 2 (Find out eigenfunctions and eigenvalues in space — similar to separation of variables).
Now we obtain that w satisfies a wave equation with homogeneous boundary condition and also
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with a source term. What comes next is to apply a separation-of-variable-type approach to find out
eigenfunctions in space, so that we can write everything (source term and initial data) as series of
these eigenfunctions (as they form a basis).

We study the following eigenvalue problem for the differential operator in space

X ′′(x) = −λX(x), X(0) = X(1) = 0. (6)

You can also start from assuming an ansatz w∗(x, t) = X(x)T (t) for w∗(x, t) satisfying a homoge-
neous wave equation without source term, ∂ttw∗ = ∂xxw∗, and follow the steps in the separation of
variables. It turns out there is no need to take care of the T -equation; so we will just focus on the
eigenvalue problem (6) in space. The solution to (6) is given by

Xk(x) = sin(kπx), λk = k2π2, k ∈ Z+. (7)

They form a basis for (L2-)function space on [0, 1] due to theories on Sturm-Liouville problem.
Hence we can write the solution, the source terms and initial datum to be series of Xk’s.

Step 3 (Expand everything as series of eigenfunctions). Now we assume the solution to (3)
is in the form of

w(x, t) =
∞∑
k=1

Tk(t)Xk(x). (8)

Also

x =
∞∑
k=1

akXk(x), ak = 2
∫ 1

0

x · sin(kπx) dx =
(−1)k+1 · 2

kπ
, (9)

x(1− x) =
∞∑
k=1

bkXk(x), bk = 2
∫ 1

0

x(1− x) · sin(kπx) dx =
4(1− (−1)k)

(kπ)3
. (10)

It is a good exercise to calculate ak’s and bk’s by yourselves. Note that under this expansion, the
boundary conditions (4) are naturally satisfied. By (3) and (5), we know that

(∂tt − ∂xx)w(x, t) =
∞∑
k=1

[T ′′k (t) + λkTk(t)]Xk(x) =
∞∑
k=1

ak sin t ·Xk(x), (11)

w(x, 0) =
∞∑
k=1

Tk(0)Xk(x) =
∞∑
k=1

bkXk(x), (12)

wt(x, 0) =
∞∑
k=1

T ′k(0)Xk(x) =
∞∑
k=1

−akXk(x). (13)

Since Xk(x)’s form a basis, we obtain second-order ODE’s for Tk(t), ∀ k ∈ Z+,

T ′′k (t) + λkTk(t) = ak sin t, (14)

Tk(0) = bk, T ′k(0) = −ak, (15)

where λk = (kπ)2.

Step 4 (Solve ODE for Tk(t)). It is also a good exercise to solve the above ODE. If you are very
familiar with this type of equations, the solution should have the following general form

Tk(t) = ck cos(kπt) + dk sin(kπt) + pk sin t. (16)

2



We plug (16) into (14) and (15) to find

(π2k2 − 1)pk sin t = ak sin t, (17)

ck = bk, (kπ)dk + pk = −ak. (18)

Since π2k2 6= 1,

pk =
ak

π2k2 − 1
, ck = bk, dk = − πkak

π2k2 − 1
. (19)

If you are not so familiar with this type of ODE, let us solve it step by step. First one has to
factorize the differential operator in (14), i.e.[

d

dt
+ ikπ

] [
d

dt
− ikπ

]
Tk(t) = ak sin t. (20)

Then we solve these two first-order ODE one by one as follows.

eikπt
[
d

dt
+ ikπ

] [
d

dt
− ikπ

]
Tk(t) = ak sin t · eikπt,

d

dt

(
eikπt

[
d

dt
− ikπ

]
Tk(t)

)
=
ak
2i

(eit − e−it) · eikπt,

d

dt

(
eikπt

[
d

dt
− ikπ

]
Tk(t)

)
=
ak
2i

(
eit(kπ+1) − eit(kπ−1)

)
. (21)

Integrate in t to reduce it to a first-order ODE

eikπt
[
d

dt
− ikπ

]
Tk(t) =

ak
2i

(
eit(kπ+1)

i(kπ + 1)
− eit(kπ−1)

i(kπ − 1)

)
+ C0,

e−ikπt
[
d

dt
− ikπ

]
Tk(t) =

ak
2i

(
eit(−kπ+1)

i(kπ + 1)
− eit(−kπ−1)

i(kπ − 1)

)
+ C0e

−2ikπt,

d

dt

[
e−ikπtTk(t)

]
=
ak
2i

(
eit(−kπ+1)

i(kπ + 1)
− eit(−kπ−1)

i(kπ − 1)

)
+ C0e

−2ikπt,

d

dt

[
e−ikπtTk(t)

]
= −ak

2

(
eit(−kπ+1)

kπ + 1
− eit(−kπ−1)

kπ − 1

)
+ C0e

−2ikπt,

e−ikπtTk(t) = −ak
2

(
eit(−kπ+1)

i(kπ + 1)(−kπ + 1)
− eit(−kπ−1)

i(kπ − 1)(−kπ − 1)

)
+

C0

−2ikπ
e−2ikπt +D,

Tk(t) = −ak
2

(
eit

i(kπ + 1)(−kπ + 1)
− e−it

i(kπ − 1)(−kπ − 1)

)
+ Ce−ikπt +Deikπt,

Tk(t) =
ak
2i

(
eit

k2π2 − 1
− e−it

k2π2 − 1

)
+ Ce−ikπt +Deikπt,

Tk(t) =
ak sin t
k2π2 − 1

+ C̃ cos(kπt) + D̃ sin(kπt).

Here C̃ and D̃ need to be determined by initial conditions (15),

C̃ = Tk(0) = bk,
ak

k2π2 − 1
+ kπD̃ = T ′k(0) = −ak. (22)

That gives

Tk(t) =
ak sin t
k2π2 − 1

+ bk cos(kπt)− πkak
π2k2 − 1

sin(kπt). (23)

Note that this agree with (19).

3



As a final remark to this part, if the right-hand side of (14) happens to be e.g. ak sinπt, the
general solution (16) for k = 1 has to include a new term characterizing resonance

T1(t) = c1 cos(πt) + d1 sin(πt) + p1t sin(πt). (24)

Note the last term has a linear growth. For the other k’s, the general solutions are not affected.
This is also clear in (21); indeed, in this new case, we will have

d

dt

(
eikπt

[
d

dt
− ikπ

]
Tk(t)

)
=
ak
2i
(
e2itkπ − 1

)
. (25)

in the place of (21). Taking integral will not only give us the usual exponential term, but also a
term linear in t.

We are lucky that there is no resonance in this problem since 1 6= kπ; I mention this just in case
you would come across such situation somewhere in future.

Step 5 (Put everything together). By (8), (23) and u = w + v, we can write down the solution
to u(x, t)

u(x, t) = x sin t+
∞∑
k=1

[
ak sin t
k2π2 − 1

+ bk cos(kπt)− πkak
k2π2 − 1

sin(kπt)
]

sin(kπx), (26)

where

ak =
(−1)k+1 · 2

kπ
, bk =

4(1− (−1)k)
(kπ)3

. (27)

The final remark for this problem is that if you really want to simplify the solution a little bit,
we observe that

x =
∞∑
k=1

akXk(x).

So we can write the first term in (26) into a sine series and simplify the formula. We will have

u(x, t) =
∞∑
k=1

ak sin t · sin(kπx) +
∞∑
k=1

[
ak sin t
k2π2 − 1

+ bk cos(kπt)− πkak
k2π2 − 1

sin(kπt)
]

sin(kπx)

=
∞∑
k=1

[
k2π2ak sin t
k2π2 − 1

+ bk cos(kπt)− πkak
k2π2 − 1

sin(kπt)
]

sin(kπx).
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