In this lecture we will fill in a few missing pieces for the heat equation.

Inhomogeneous BCs

\[
\begin{cases}
 u_t = \nabla^2 u & \text{in } \Omega \\
 u(\partial \Omega) = \psi(\partial \Omega) \neq 0 & \text{inhomogeneous Dirichlet} \\
 u(\vec{x}, t=0) = u_0(\vec{x}) &
\end{cases}
\]

Assume we could solve the Laplace equation with the same BCs for \(\psi(\vec{x}) \):
\[
\nabla^2 \psi = 0, \quad \psi(\partial \Omega) = \psi(\partial \Omega)
\]
New, writing

\[u = \varphi + w(x,t) \]

\[\Delta^2 u = \Delta^2 \varphi + \Delta^2 w = \Delta^2 w = 0 \]

\[u_t = w_t \Rightarrow w_t = \Delta^2 w \]

BCs
\[u(\partial \Omega) = \varphi(\partial \Omega) + w(\partial \Omega) = 0 \]

ICs
\[w(\partial \Omega) = 0 \]
\[w(0) = 0 \]

we get

\[w_t = \Delta^2 w \]

the PDE

\[\begin{cases}
 w_t = \Delta^2 w \\
 w(\partial \Omega) = 0 - \text{Homogeneous!} \\
 w(0) = u_0 - \varphi
\end{cases} \]

which we know how to solve by using the eigenvalues and eigenfunctions of the Laplacian on \(\mathbb{R}^2 \).
\[\begin{align*}
\sum A_n^2 u_n &= \lambda_n u_n \\
\sum u_n(\infty) &= 0
\end{align*} \]

(normalized) [orthonormal]

gives a complete basis

\[u = \sum_{n=1}^{\infty} A_n(t) u_n(x) + \Phi(x) \]

\[u_t = \frac{\partial^2}{\partial x^2} u \quad \text{becomes} \]

\[\sum A_n' u_n = \sum \lambda_n A_n u_n \]

\[A_n' = \lambda_n A_n \Rightarrow A_n = A_n(0)e^{\lambda_n t} \]

\[u(x^2, t) = c\Phi(x) + \sum_{n=1}^{\infty} A_n(0)e^{\lambda_n t} u_n(x^2) \]

Initial condition gives

\[u_0(x^2) = \sum_{n=1}^{\infty} A_n(0) u_n(x^2) + \Phi(x) \]
\[\sum_{n} A_n(0) u_n(x^2) = u_0(x) - u(x) = u(x) \]

Because the \(u_n \)'s are orthonormal

\[A_n(0) = (u_n, u_n) = \int_{-1}^{1} u_n(x) \overline{u_n(x)} dx \]

which completes the solution.

Note that this method would not quite work if the BCs were time-dependent!

\[u(x, t) = \varphi(x, t) \]

because now \(\varphi = \varphi(x, t) \)

and so \(u = \varphi + w \)

\[u_t = w_t + \varphi_t \neq w_t \]

\[\Rightarrow \left\{ \begin{array}{l}
 w_t = \nabla^2 w - i n t \quad \text{source term} \\
 \varphi(\Omega) = 0 \\
 \varphi(x, 0) = u_0(x) - u(x, 0)
\end{array} \right. \]

which is diffusion with a source term \(\to \) harder
Sources

Let us now consider the heat equation with sources

\[\begin{align*}
 u_t &= ku_{xx} + f(x, t) \\
 u(0, t) &= u(\pi, t) = 0, \quad t > 0 \\
 u(x, 0) &= 0, \quad 0 < x < \pi
\end{align*} \]

We will first solve this using eigenfunctions.

Expand both the solution and the forcing into an infinite series in the eigenfunctions of the Laplacian with homogeneous Dirichlet BCs:

\[\begin{align*}
 u(x, t) &= \sum_{n=1}^{\infty} g_n(t) \sin(nx) \\
 f(x, t) &= \sum_{n=1}^{\infty} f_n(t) \sin(nx)
\end{align*} \]

Fourier sine series
We know
\[f_n(t) = \frac{2}{\pi} \int_0^\pi f(x, t) \sin(nx) \, dx \]
so all we need is to find the coefficients \(g_n(t) \)

\[u_t = \sum_n g_n \sin(nx) \]

\[u_{xx} = \sum_n \lambda_n g_n \sin(nx) \]

where \(\lambda_n = n^2 \)

\[\text{(PDE)} \quad u_t - u_{xx} = f \]

\[\sum_{n=1}^{\infty} (g_n + kn^2g_n) \sin(nx) = \sum_{n=1}^{\infty} f_n(t) \sin(nx) \]

\[\Rightarrow \text{ (by orthogonality & linear independence of \(\sin(nx) \))} \]

\[g_n(t) + kn^2g_n(t) = f_n(t) \]

which is now an ODE, one ODE per eigenvector, and easy to solve.
\[g_n(t) = g_n(0) e^{-n^2 k t} + \int_0^t f_n(\tau) e^{-n^2 k (t-\tau)} \, d\tau \]

Recall Duhamel's principle.

Initial condition gives

\[u(x, t=0) = \sum g_n(0) \sin(nx) = 0 \]

\[\Rightarrow g_n(0) = 0 \]

And finally we get the solution

\[
\left\{
\begin{align*}
 u(x, t) &= \sum_{n=1}^{\infty} \left(\int_0^t f_n(\tau) e^{-n^2 k (t-\tau)} \, d\tau \right) \sin(nx) \\
 f_n(\tau) &= \frac{2}{\pi} \int_0^\pi f(x, \tau) \sin(nx) \, dx
\end{align*}
\right.
\]

This is nothing other than Duhamel's principle for the PDE itself \(\text{Example 4.25} \) in APDE.