Convergence of Fourier Series

Over the past few lectures we set up a rather general separation of variables procedure for solving BVPs of the form:

\[ u_t = \lambda u \quad \text{on } (0, L) \]

Namely, we first solve the eigenvalue problem

\[ \lambda u = \lambda u + \text{boundary conditions} \]

and find all of the eigenvectors (eigenfunctions) and eigenvalues \( \lambda_1, \lambda_2, \ldots \)

\( u_1, u_2, \ldots \) (e.g. \( \sin \left( \frac{n\pi x}{L} \right) \))

If we can expand the initial condition in the eigenbasis of \( u \),
\[ y(x) = u(x,0) = \sum_{k=0}^{\infty} A_k \psi_k(x) \]

then we know how to find the \( A_k \)'s since we know \( u \)'s belonging to distinct eigenvalues are orthogonal and those belonging to the same eigenvalue can be made orthogonal.

\[ A_k = \frac{(\psi_k, \psi)}{(\psi_k, \psi_k)} \]

Furthermore, if we start with initial condition

\[ y = u_k \]

then we know it decays exponentially

\[ u(x,t) = a_k(t) u_k(x) \]

\[ u_t = a_k'(t) u_k = \frac{d}{dt}[a_k u_k] \]

\[ = a_k(t) \lambda_k u_k \]

\[ \Rightarrow u_k = \frac{a_k(t)}{\lambda_k} u_k \]

\[ a_k(t=0) = A \]

\[ 2u_k = \lambda_k u_k \]
\[ a_k(t) = \lambda_k a_k \Rightarrow A_k \]
\[ a_k(t) = e^{\lambda_k t} a_k(0) \]

Therefore, by the superposition principle, the solution of
\[
\begin{cases}
    u_t = \lambda u \\
    u(t=0) = \Phi(x)
\end{cases}
\] is

\[ u(t) = \sum_{k}^{A_k} a_k(0) e^{\lambda_k t} u_k(x) \]

This gives us the solution as an infinite series but it all rested on an assumption that \( \Phi \) could be expanded as an (infinite) sum of eigenfunctions.

For what \( \Phi(x) \) is this possible?
If this were a finite-dimensional system of ODEs:

\[
\frac{d\vec{x}(t)}{dt} = A \vec{x}(t)
\]

and \( A \) were symmetric/Hermitian, it would be unitarily diagonalizable and the same procedure would work:

\[
\vec{x}(t) = \sum_{k=1}^{n} \frac{(\vec{x}_k \cdot \vec{x}(0))}{(\vec{x}_k \cdot \vec{x}_k)} e^{\lambda_k t} \vec{x}_k(0)
\]

where \( \vec{x}_k \) are the eigenvectors and \( \lambda_k \) are the eigenvalues.

In \( \mathbb{R}^n \), every basis of \( n \) vectors is complete, i.e., every vector in \( \mathbb{R}^n \) can be expanded into a linear combination.

Therefore, the above procedure always works in finite-dimensional systems.
But PDEs are something closes to an infinite dimensional system of ODEs.

Since we cannot count infinitely many eigenvectors and compare them to the dimension of the vector space, it is much more complicated and subtle to understand the concept of completeness of eigenfunctions.

So we will try to understand when Fourier series methods work

$$\hat{y}(x) = \sum_{k=0}^{\infty} a_n U_k$$

Questions:

1. When does the Fourier series of a function converge?

2. If it does converge, in what sense does it converge and how fast?
Let's take a specific and very instructive sample to illustrate the Gibbs Phenomenon.

Let's take the function \( f(x) \)

\[
f(x) = \begin{cases} 
-\frac{1}{2} & \text{if } -\pi < x < 0 \\
\frac{1}{2} & \text{if } 0 < x < \pi \\
0 & \text{if } x = 0
\end{cases}
\]

Fourier series

\[
f(x) \approx \sum_{n \text{ odd}} \frac{2}{\pi n} \sin(nx)
\]
If we truncate the series to a finite number of terms
\[ S_N(x) = \sum_{n=1}^{N} \frac{2}{n\pi} \sin(nx) \]
where \( n \) is odd, \( n \leq N \)
and plot the result, we get:

\[ S_N(x) \]

Overshoot \( \xi \)
by \( \approx 9\% \)

Location of peak is \( \frac{\pi}{N} \)

If larger \( N \), Gibb's phenomenon

\[ \text{undershoot} \]

It can be shown that the series always differs from the function near the discontinuity.

\[ \lim_{M \to \infty} S_M \left( \frac{\pi}{M} \right) = \int_{-\pi}^{\pi} \sin \theta \, d\theta \approx 0.59 \]
Funny facts:

1. There exists an integrable function whose Fourier series diverges at every point.

2. There exists a continuous function whose series diverges at many points.

These show us that we need to be careful and restrict ourselves to certain classes of functions (function spaces) in order to make any statements.

We won't prove the following theorems in class. Rather, we will try to understand the different types of convergence: uniform, pointwise, and in norm.
Pointwise convergence

Let the truncated series be

\[ S_N(x) = \sum_{k=1}^{N} a_k u_k \]

and denote the remainder (error, residual)

\[ R_N = \mathcal{F}(x) - S_N(x) \]

The Fourier series converges pointwise if

\[ \lim_{N \to \infty} R_N(x) = 0 \quad \forall x \in I \]

That is, the series converges at every point.

But note that each \( x \) may require a different \( N \) to get a good approximation, that is, for some \( x \) the series may converge (much) slower/faster.
To make the Fourier series solution useful in practice, however, we would like to be able to truncate it to a finite number of terms and get a good approximation of the solution everywhere!

This requires **Uniform Convergence**

\[
\lim_{N \to \infty} \| R_N(x) \| = 0
\]

\[
\lim_{N \to \infty} \left\{ \max_{a \leq x \leq b} |R_N(x)| \right\} = 0
\]
The Gibbs phenomenon means that for the Heaviside (step) function (and all discontinuous functions) we get pointwise but not uniformly convergence.

\[ \text{Uniform } \Rightarrow \text{ pointwise} \]
\[ \text{but not vice versa} \]

We now state some classical theorems without proofs:

**Uniform convergence of Fourier Series**

If \( f(x) \in C^2 \) and satisfies the BCs, that is, if \( f(x), f'(x) \) and \( f''(x) \) exist and are continuous on \([a, b]\) and \( f(a) = f(b) = 0 \) (for Dirichlet) then the Fourier series of \( f(x) \) converges uniformly on \([a, b]\).

\[ \text{twice continuously differentiable} \]
Pointwise convergence of FS

If \( f(x) \) is a piecewise continuous on \([a, b]\) and \( f'(x) \) is also piecewise continuous, then the Fourier series converges pointwise on \((a, b)\),

\[
\lim_{N \to \infty} S_N(x) = \frac{1}{2} \left[ f(x^+) + f(x^-) \right]
\]

Is it really important that the Fourier series converge for every point?

What if

\[
\tilde{f}(x) = \lim_{N \to \infty} \sum C_n \sin(x)
\]

differs from \( f(x) \) at only a countable number of points?

Would that be good enough in practice? Probably...
So let's also consider:

**Convergence in norm $L^2$**

$$\lim_{N \to \infty} \| R_N(x) \|_2^2 = 0$$

i.e.

$$\lim_{N \to \infty} \int |R_N(x)|^2 \, dx = 0$$

Observe that the integral does not see the value of $R_N(x)$ at a non-dense subset of $\mathbb{R}$ so this is definitely different than either pointwise or uniform convergence.

$$\| u_t - 2uu \|_2 = 0$$

There is no relationship between pointwise and $L^2$ convergence.

$L^2$ convergence is also called **mean-square convergence**.
Hilbert space of square-integrable functions

**Theorem:** \( L^2 \) convergence of FS

\[ f \in L^2, \text{ which means } \int_a^b |f(x)|^2 \, dx \text{ is finite} \]

then the Fourier series of \( f(x) \) converges in \( L^2 \) norm

**Theorem** \( \text{Parseval's equality} \)

\[ f \in L^2 \quad \text{iff} \quad \| f \|^2 = \sum_{n=1}^{\infty} \| A_n \|^2 \]

This means the norm ("power") of the function is contained in its Fourier series (no "power" is missed)
Completeness

An infinite set of orthogonal functions
\{ u_1(x), u_2(x), \ldots \}

is complete if

1. Parseval's equality is true for all \( f \in L_2 \)
or, equivalently
2. There is no "nontrivial" \( f \in L_2 \)
that is orthogonal to all \( u_k \)'

Here, "trivial" means
that \( f(x) \) is zero almost everywhere, i.e., it is non-zero
on a set of "measure zero."

Any function \( f(x) \in L^2 \) can be expanded in a complete basis and the orthogonal series converges in the mean-square sense and Parseval's equality holds.

So this applies more generally than Fourier series.