Partial Differential Equations, Spring 2020
 Homework V: Separation of Variables

Aleksandar Donev

Courant Institute, NYU, donev@courant.nyu.edu
Due by Tuesday April 14th 11am EST, 2020

Total number of points is 75 .

1. (5 pts) Prove by direct integration that the complex exponential functions

$$
u_{m}(x)=\frac{1}{\sqrt{2 \pi}} \exp (i m x)
$$

are orthonormal in L_{2} on the interval $x \in[-\pi, \pi]$ for any integer $m \in \mathbb{Z}$. [Hint: Remember that for complex valued functions the L_{2} inner product involves a complex conjugate of one of the functions.]
2. (10 pts) Find the complex (or periodic) exponential Fourier series of the function $\exp (-x)$ on the interval $[-1,1]$, and then also express in terms of sines and cosines (this is called the "full Fourier" series). Hint: See last page of Lecture 14 notes and next question.
3. (7.5 pts) Show that a complex-valued function $f(x)$ on an interval $-L<x<L$ is real-valued if and only if the Fourier coefficients c_{n} in its exponential Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(i n \pi \frac{x}{L}\right)
$$

satisfy the conjugacy condition $\overline{c_{-n}}=c_{n}$. It is OK to take $L=1$ if you wish. [Hint: Prove both directions of iff. For one of the two directions, try grouping terms with n and $-n$ together.]
4. (12.5 pts) Solve the heat equation for a thin rod that is insulated at the ends:

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<L, \quad t>0 \\
u_{x}(0, t) & =u_{x}(L, t)=0 \\
u(x, 0) & =2+\cos \left(\frac{5 \pi x}{L}\right)
\end{aligned}
$$

5. (27.5 pts) In this problem we consider the heat equation with several combinations of boundary conditions. [Hint: Solving this does not require doing any integrals.]
(a) (15pts) Solve the diffusion equation with mixed Neumann-Dirichlet BCs:

$$
\begin{aligned}
u_{t} & =2 u_{x x}, \quad 0<x<\frac{1}{2}, \quad t>0 \\
u(0, t) & =0 \\
u_{x}\left(\frac{1}{2}, t\right) & =0 \\
u(x, 0) & = \begin{cases}-1 & \text { for } 0<x<\frac{1}{4} \\
1 & \text { for } \frac{1}{4}<x<\frac{1}{2}\end{cases}
\end{aligned}
$$

(b) (5 pts) Explain (i.e., show that), without redoing any computations, why the same function $u(x, t)$ found in part 5a also solves this equation with Dirichlet BCs only:

$$
\begin{aligned}
u_{t} & =2 u_{x x}, \quad 0<x<1, \quad t>0 \\
u(0, t) & =u(1, t)=0 \\
u(x, 0) & = \begin{cases}1 & \text { for } \frac{1}{4}<x<\frac{3}{4} \\
-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

[Hint: See section 3.1 in Strauss on using reflections to solve equations on a half line and apply to this problem.]
(c) (7.5pts) Now solve the same equation as in part 5 b with the same initial condition but this time with an inhomogeneous Dirichlet BC:

$$
\begin{aligned}
u(0, t) & =0 \\
u(1, t) & =1
\end{aligned}
$$

6. (12.5 pts) Find the eigenvalues of the first-derivative operator $\mathcal{L}=-\partial_{x}$ on the interval $(-1,1)$ with the boundary condition $X(-1)=X(1)$ (this is called periodic boundary conditions). Are the eigenfunctions orthogonal to each other? [Note: This will be useful to us when we solve advection-diffusion type equations using computers. As a prelude, consider an operator that is a combination of a first and second or even third derivative, like $\mathcal{L}=a \partial_{x}+b \partial_{x x}+c \partial_{x x x}$ with periodic conditions - can you guess what the eigenfunctions are based on this problem and what we did for the Laplacian in class? Compute the eigenvalue also.]
