Partial Differential Equations, Spring 2020 Homework III: First-Order PDEs and Classification

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

Posted Wednesday Feb. 19nd, 2020
Due by Tuesday March 3rd, 2020

Total number of points is 60 .

1. (7.5pts) Solve the PDE for $u(x, y)$

$$
u_{y}+e^{x+2 y} u_{x}=0
$$

over the whole (x, y) plane, with the boundary condition $u(x, y=0)=e^{x}$.
2. (7.5pts) Solve the PDE for $u(x, t)$

$$
u_{t}+2 u_{x}-2 u=e^{t+2 x}
$$

over the whole (x, t) plane, with the initial condition $u(x, 0)=0$.
3. (5 pts) Consider the advection-reaction (advection-decay) equation for $u(x, t)$

$$
\begin{equation*}
u_{t}+u_{x}=r u \tag{1}
\end{equation*}
$$

where r (reaction rate) is a constant. Introduce a new dependent variable $v(x, t)=u(x, t) e^{-r t}$, write the PDE in the new variable and solve it, and then solve the original PDE using this transformation. [Hint: You can also solve it using the method of characteristics and compare.]
4. (10pts) Consider the equation (1) in the positive quadrant of the space-time domain, $x>0$ and $t>0$, with the initial condition (IC)

$$
u(x, t=0)=g(x) \quad \text { for } \quad x>0
$$

and the boundary condition (BC)

$$
u(x=0, t)=h(t) \quad \text { for } \quad t>0
$$

Draw the characteristics and use this with the IC and BC to write down the solution of the PDE.
5. (10pts) Among all second-order homogeneous PDEs in two dimensions with constant coefficients, show that the only ones that do not change under a rotation of the coordinate system (i.e., are rotationally invariant), have the form

$$
\nabla^{2} u=k u
$$

where k is some constant. What is the type (hyperbolic, parabolic, elliptic) of this PDE?
6. (10pts) Consider the PDE

$$
u_{x x}-2 k u_{x y}+k^{2} u_{y y}=0
$$

where $k \neq 0$. What type is this PDE? Find a linear coordinate transformation $(x, y) \leftrightarrow(\eta, \theta)$ such that in the new coordinates the PDE is $u_{\eta \eta}=0$. Use this to write the general solution of the PDE in the original coordinates.
7. (10pts) Consider the second-order PDE

$$
u_{t}+\frac{1}{3} u_{x t}=0 .
$$

(a) [2pts] What is the type of this PDE?
(b) $[4 \mathrm{pts}]$ Solve it by introducing the variable $w=u_{t}$.
(c) [4pts] Does a solution exist with the initial conditions $u(x, 0)=e^{-3 x}$ and $u_{t}(x, 0)=0$? If it does, is it unique?

