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1. (10pts) Show that the composition of divergence and gradient operators gives the Laplacian operator,
∇ ·∇ = ∇2, meaning that for any smooth scalar field we have ∇ · (∇u) = ∇2u in two (u(x, y)) and
three (u(x, y, z)) dimensions (5pts, 2.5pts each), and for any dimension d (5pts).

2. (7.5pts) Let us assume that the solution of the three-dimensional heat equation vt = k∇2v only depends

on the distance from the origin r =
√
x2 + y2 + z2, i.e., u(x, y, z, t) ≡ v (r, t). Perform the change of

dependent variables to derive the PDE that v (r, t) satisfies.
3. (7.5pts) Consider the two-point ODE boundary value problem (BVP) with one independent variable

(i.e., really an ODE)
u′′(x) + 2u = 0.

Find all solutions of this BVP with boundary conditions u(0) = u(2) = 0 (2.5pts) and also with BCs
u(0) = u(2π) = 0 (5pts).

4. (5pts) What is the flux in the following conservation laws (2.5 per equation):

(a) The viscous Burgers equation ut + 2uux = κuxx.
(b) The KdV equation ut + uux + εuxxx = 0.

5. (5 pts) Traffic can be modeled using the conservation law ut + φx = 0 for the density of cars u, where
φ (u) is the flux function. The flux defines the average velocity of traffic c (u) via φ = uc. A reasonable
model may be

c(u) = cmax

(
1−

(
u

umax

)2
)
.

Derive the strong form of the conservation law (i.e., the PDE).
6. (10pts) Consider air flowing without any leaks/inflow through a straight pipe with variable thickness. If
x denotes the position along the pipe, let ρ(x, t) be the density (kilograms per volume, i.e., kilograms per
meter cubed) of the air, and let S(x) be the area of a cross-section of the pipe at position x. Let f (ρ, x)
denote the flow rate measured in mass per unit area per unit time (say kilograms per meter squared per
second). Write down the flux function in terms of f and then show that ρ obeys the conservation law

ρt + fx = −S
′

S
f.

List all steps. Check if the units make sense (this will help you get it right!).
7. (Challenge problem, won’t be given points but recommended if you want to continue to PhD in math)

Consider the Laplace equation ∇2u = 0 in a two-dimensional half space y > 0 (half plane above the
x axes), with boundary conditions for both the value of the function and its y derivative:

u(x, y = 0) = f(x)

uy(x, y = 0) = g(x).

Show that this is not a well-posed problem.
Hint: Consider solutions of the form (sinh denotes hyperbolic sine; confirm this satisfies PDE)

u (x, y) =
1

n
e−
√
n sin (nx) sinh (ny)

for very large n.
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