Partial Differential Equations, Spring 2020 Homework I: Introduction to PDEs

Aleksandar Donev

Courant Institute, NYU, donev@courant.nyu.edu
Due by 11am Tuesday Feb. 11th, 2020

Total number of points is 45 .

1. $(5 \mathrm{pts})$ Show that

$$
u(x, y)=h\left(y^{2}+2 x\right)+g\left(y^{2}-2 x\right)
$$

satisfies the PDE

$$
y^{2} u_{x x}+\frac{1}{y} u_{y}-u_{y y}=0
$$

for arbitrary sufficiently differentiable functions h and g.
2. (5pts) Show that $u(x, y)=f(x) g(t) h(y)$ is a solution of the PDE

$$
u u_{x y}=u_{x} u_{y}
$$

for arbitrary sufficiently differentiable functions f and h and an arbitrary function g.
3. (10pts) Verify that

$$
u(x, t)=\frac{1}{2 v} \int_{x-v t}^{x+v t} f(s) d s
$$

is a solution of the wave equation $u_{t t}=v^{2} u_{x x}$, where $v>0$ is a constant and f is an arbitrary differentiable function.
Hint: Lookup "Leibniz integral rule" on Wikipedia.
4. (5 pts) Find the general solution of the equation $u_{x t}(x, t)=0$ in terms of arbitrary functions.
5. (7.5) Find a function $u(x, y)$ that satisfies the PDE

$$
u_{x x}=0, \quad 0<x<1, t>0
$$

subject to the boundary conditions

$$
\begin{aligned}
& u(0, t)=t \\
& u(1, t)=1 .
\end{aligned}
$$

6. (5pts) For what values of α and β is $u(x, t)=u_{0} e^{-\alpha t} \cos (\beta x)$ a solution of the heat equation $u_{t}=D u_{x x}$. What units do α and β have if the unit of u is $[U]$, the units of x are $[m]$ and the units of t are [s]? From this, what is the unit of D [Hint: We answered this in class]?
7. (7.5pts, 2.5pts per equation) What is the dispersion relation $\omega(k)$ between the frequency ω and wavenumber k if the so-called plane wave

$$
u(x, t)=\exp (-i(k x+\omega t)+\phi)
$$

is a solution of:
(a) The wave equation $u_{t t}=v^{2} u_{x x}$.
(b) The advection equation $u_{t}+v u_{x}=0$.
(c) The diffusion equation $u_{t}=\kappa u_{x x}$.

