PDE Spring 2016

Lecture 7

The Wave Equation

We consider the wave equation in 1D in an \textit{unbounded} domain, i.e., the whole \textit{real} line.

Treating bounded domains is \textit{harder} and will be done later.

\[u_{tt} = c^2 u_{xx}, \quad x \in \mathbb{R}, \quad c \neq 0 \]

\(c \) = speed of wave (sound, etc.)

Statement

The general solution is of form:

\[u(x,t) = f(x+ct) + g(x-ct) \]

for arbitrary functions \(f \) and \(g \) (continuously differentiable)

\[= \text{LEFT WAVE} + \text{RIGHT WAVE} \]

\[\leftarrow f(x+ct) \quad \text{and} \quad \rightarrow f(x-ct) \]
Let's check this is a solution:

\[x = \partial^2_t - \partial^2_x = (\partial^2_t + c \partial^2_x)(\partial^2_t - c \partial^2_x) \]

\[x = x^+ x^- \]

Observe

\[x^+ g(x-ct) = \]

\[(\partial^2_t + c \partial^2_x) g(x-ct) = 0 \]

since we know \(g(x-ct) \) solves the advection equation

\[u_t + cu_x = 0 \]

Similarly,

\[x^-(x+ct) = 0 \]

So

\[x[t+g] = x^+ x^- [t+g] \]

\[= x^+ x^- g(x-ct) = \]

\[= x^+ (-cg(y) + g'(y)) = \]

\[= x^+ \left(-h(x-c(t)) \right) = 0 \]
Now let us derive this solution and therefore show that it is general, i.e., every solution is of form

\[u = f(x + ct) + g(x - ct) \]

Denote \(\mathcal{L}^+ u = \varphi = u_t + cu_x \)

\[\Rightarrow \mathcal{L} u = \mathcal{L}^- \varphi = 0 \]

\[\mathcal{L} u \iff \begin{cases} \mathcal{L}^+ u = \varphi \\ \mathcal{L}^- \varphi = 0 \end{cases} \]

i.e. we have converted the second-order PDE into a system of first-order advection equations, which we know how to solve.

This is the same as for ODEs

\[u''(t) = f(u, t) \iff \begin{cases} u' = \varphi \\ \varphi' = f(u, t) \end{cases} \]
\[\nabla^2 u = u_t - cu_x = 0 \Rightarrow \]
\[u = h(x + ct) \Rightarrow \]
\[u_t + cu_x = h(x + ct) \]

Try to show that this implies
\[u = f(x + ct) + g(x - ct) \]

But in fact there is a simpler and more general way here:

\[\begin{align*}
\text{Use characteristic coordinates} \\
\text{to transform PDE into the canonical form of hyperbolic PDEs} \\
U_{\xi \eta} = 0 \\
\end{align*} \]

\[\xi, \eta \] eta
\[
\begin{align*}
 \xi &= x + ct \\
 \eta &= x - ct \\
 \partial_x &= \partial_\xi + \partial_\eta \\
 \partial_t &= c \partial_\xi + c \partial_\eta \\
 \Rightarrow & \quad \begin{cases}
 \partial_x = -2c \partial_\eta \\
 \partial_t = 2c \partial_\xi
 \end{cases} \\
 \partial_\eta u = -4c^2 \partial_\xi \partial_\eta u = 0
\end{align*}
\]

\[\Rightarrow \quad \partial_\eta \xi u = 0 = \partial_\xi (\partial_\eta u)\]

This is the first sort of equation we considered in this class, and we know this:

\[\partial_\eta u = v \Rightarrow \partial_\xi v = 0 \Rightarrow \]

\[v = f(\eta) = 2\eta u \Rightarrow \]

\[u = F(\eta) + G(\xi), \quad F' = f\]
\[u = f(\eta) + g(\xi) \]
is the general solution, as we claimed.

\[\eta = \text{const} \]
\[x + ct = x_0 \]
\[x - ct = x_0 \]

Information propagates at a maximum speed of \(c \)
(key property of hyperbolic PDEs)
We know $u = f(x+ct) + g(x-ct)$ but what are f and g?

Since we have two unknown functions we need two ICs (since there are no boundaries we cannot specify a BC here)

\[
\begin{align*}
\begin{cases}
 u(x,0) &= \phi(x) \\
 u_t(x,0) &= \psi(x)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 u(x,0) &= f(x) + g(x) = \phi(x) \\
 u_t(x,0) &= c f'(x) - c g'(x) = \psi(x)
\end{cases}
\end{align*}
\]

Differentiate first equation to get the system

\[
\begin{align*}
\begin{cases}
 f' + g' &= \phi' \\
 f' - g' &= \psi / c
\end{cases}
\end{align*}
\]

\[
\Rightarrow \quad \begin{cases}
 f' = \frac{1}{2} (\phi' + \psi / c) \\
 g' = \frac{1}{2} (\phi' - \psi / c)
\end{cases}
\]
\[f = \frac{1}{2} \int - (y' + \frac{y}{c}) \, dx \]

\[= \frac{1}{2} y(x) + \frac{1}{2c} \int_{0}^{x} y(s) \, ds + A \]

Similarly

\[g = \frac{1}{2} y(x) - \frac{1}{2c} \int_{0}^{x} y(s) \, ds + B \]

\[\Rightarrow f + g = y + (A + B) \Rightarrow A + B = 0 \]

(we got an extra degree of freedom here because we differentiated \(f + g = y \) first)

\[u = f(x + ct) + g(x - ct) \]

\[u = \frac{1}{2} \left[y(x + ct) + y(x - ct) \right] + \frac{1}{2c} \int_{x - ct}^{x + ct} y(s) \, ds \]

d'Alambert's formula
We have now shown existence and uniqueness of the IVP (Cauchy problem for the wave equation).

Observe that d'Alambert's formula conforms to the picture about the domain of dependence:

\[u \text{ or } \overline{u} \text{ outside the domain do not affect the solution} \]

Example: If \(\overline{u} = 0 \) then the initial profile \(u = \overline{u}(x,0) \) splits in half into two pieces.
How about stability?
Is the Cauchy problem well-posed?

Yes

Let \(u_1 \) and \(u_2 \) be two solutions for different ICs.

\[u = u_1 - u_2 \] also a solution.

\[
|u(x,t)| \leq \max |\Psi| + \frac{1}{2c} \cdot \max |\Psi| \cdot \frac{2c t}{\text{width of interval}}
\]

\[\Rightarrow \]

\[\max |u_1 - u_2| < \max |\Psi_1 - \Psi_2| + T \max |\Psi_1 - \Psi_2| \]

where \(0 < t < T \)

This means that for finite time small perturbations of the ICs induce small perturbations in solution.