Numerical Methods I Singular Value Decomposition

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010

October 7th, 2010

Outline

(1) Review of Linear Algebra: SVD
(2) Computing the SVD
(3) Principal Component Analysis (PCA)

4 Conclusions

Formal definition of the SVD

Every matrix has a singular value decomposition

$$
\begin{aligned}
\mathbf{A} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\star}=\sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\star} \\
{[m \times n] } & =[m \times m][m \times n][n \times n],
\end{aligned}
$$

where \mathbf{U} and \mathbf{V} are unitary matrices whose columns are the left, \mathbf{u}_{i}, and the right, \mathbf{v}_{i}, singular vectors, and

$$
\boldsymbol{\Sigma}=\operatorname{Diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}\right\}
$$

is a diagonal matrix with real positive diagonal entries called singular values of the matrix

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0
$$

and $p=\min (m, n)$ is the maximum possible rank of the matrix.

Comparison to eigenvalue decomposition

- Recall the eigenvector decomposition for diagonalizable matrices

$$
\mathbf{A X}=\mathbf{X} \mathbf{\Lambda}
$$

- The singular value decomposition can be written similarly to the eigenvector one

$$
\begin{aligned}
\mathbf{A V} & =\mathbf{U} \mathbf{\Sigma} \\
\mathbf{A}^{\star} \mathbf{U} & =\mathbf{V} \mathbf{\Sigma}
\end{aligned}
$$

and they both diagonalize \mathbf{A}, but there are some important differences:
(1) The SVD exists for any matrix, not just diagonalizable ones.
(2) The SVD uses different vectors on the left and the right (different basis for the domain and image of the linear mapping represented by A).
(3) The SVD always uses orthonormal basis (unitary matrices), not just for unitarily diagonalizable matrices.

Relation to Hermitian Matrices

- For Hermitian (symmetric) matrices,

$$
\mathbf{X}= \pm \mathbf{U}= \pm \mathbf{V}
$$

and

$$
\boldsymbol{\Sigma}=|\Lambda|
$$

so there is no fundamental difference between the SVD and eigenvalue decompositions.

- The squared singular values are eigenvalues of the normal matrix:

$$
\sigma_{i}(\mathbf{A})=\sqrt{\lambda_{i}\left(\mathbf{A A}^{\star}\right)}=\sqrt{\lambda_{i}\left(\mathbf{A}^{\star} \mathbf{A}\right)}
$$

since

$$
\mathbf{A}^{\star} \mathbf{A}=\left(\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\star}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\star}\right)=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\star}
$$

is a similarity transformation.
Similarly, the singular vectors are the corresponding eigenvectors up to a sign.

Rank-Revealing Properties

- Assume the rank of the matrix is r, that is, the dimension of the range of \mathbf{A} is r and the dimension of the null-space of \mathbf{A} is $n-r$ (recall the fundamental theorem of linear algebra).
- The SVD is a rank-revealing matrix factorization because only r of the singular values are nonzero,

$$
\sigma_{r+1}=\cdots=\sigma_{p}=0
$$

- The left singular vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ form an orthonormal basis for the range (column space, or image) of \mathbf{A}.
- The right singular vectors $\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ form an orthonormal basis for the null-space (kernel) of \mathbf{A}.

The matrix pseudo-inverse

- For square non-singular systems, $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

Can we generalize the matrix inverse to non-square or rank-deficient matrices?

- Yes: matrix pseudo-inverse (Moore-Penrose inverse):

$$
\mathbf{A}^{\dagger}=\mathbf{V}^{\dagger} \mathbf{U}^{\star}
$$

where

$$
\boldsymbol{\Sigma}^{\dagger}=\operatorname{Diag}\left\{\sigma_{1}^{-1}, \sigma_{2}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right\}
$$

- In numerical computations very small singular values should be considered to be zero (see homework).
- Theorem: The least-squares solution to over- or under-determined linear systems $\mathbf{A x}=\mathbf{b}$ is

$$
\mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}
$$

$$
\min _{x}\|A x-b\|_{2} \leftarrow \underset{\text { LEAST }}{\text { SQuARES }}
$$

$$
\text { such that }\|x\|_{2} \text { is minimal }
$$

$$
\begin{aligned}
& (A x-b)^{*}(A x-b)=x^{*}\left(A^{*} A\right) x \\
& -2 x^{*} A^{*} b+\ldots \\
& \hline \text { USING SUD: } x^{*} A^{*} A x=x^{*} V \Sigma^{2} \underline{V^{*} x} \\
& \text { AND } x^{*} A^{*} b=b^{*}(A x)=\left(U^{*} b\right) \underline{\underline{\left(V^{*} x\right)}} \\
& \text { DENOTING }\left\{\begin{aligned}
& V^{*} x=W \text { NEW VARIABLE } \\
& U^{*} b=c \leftarrow \text { CONSTANT }
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \|A x-b\|_{2}^{2}=w^{*} \Sigma^{2} w-2 c^{*} \sum w+\ldots \\
& =\sum_{i=1}^{r} \sigma_{i}^{2} \mid w_{i}^{2}-2 \sum_{i=1}^{r}\left(\sigma_{i} w_{i}\right) c_{i}^{*} \\
& =\sum_{i=1}^{r}\left|\sigma_{i} w_{i}-c_{i}\right|^{2}+\text { constants }
\end{aligned}
$$

which is Minimized if

$$
\sigma_{i} \omega_{i}=c_{i} \Rightarrow \omega_{i}=\frac{c_{i}}{\sigma_{i}}
$$

or $\quad\left(v^{*} x\right)_{i}=\frac{\left(u^{*} b\right)_{i}}{\sigma_{i}}, i \leqslant r$

How about $\omega_{r+1}, \ldots, w_{m}$?

$$
\begin{aligned}
\|x \cdot\|_{2}^{2}=\|V w\|_{2}^{2} & =w^{*}\left(V^{*} V\right) w^{*} \\
& =\|w\|_{2}^{2}=\sum_{i \text { wizen }}\left|w_{i}\right|^{2}
\end{aligned}
$$

So the norm of x is minimized if the norm of w is minimizer.

$$
\begin{aligned}
\Rightarrow & \quad w_{r+1}=\ldots=0 \\
& x=V w=V \Sigma^{+} c= \\
& =\left(V \Sigma^{+} u^{*}\right) b=A+b
\end{aligned}
$$

Sensitivity (conditioning) of the SVD

- Since unitary transformations preserve the 2-norm,

$$
\|\delta \Sigma\|_{2} \approx\|\delta A\|_{2}
$$

- The SVD computation is always perfectly well-conditioned!
- However, this refers to absolute errors: The relative error of small singular values will be large.
- The power of the SVD lies in the fact that it always exists and can be computed stably...but it is expensive to compute.

Computing the SVD

- The SVD can be computed by performing an eigenvalue computation for the normal matrix $\mathbf{A}^{\star} \mathbf{A}$ (a positive-semidefinite matrix).
- This squares the condition number for small singular values and is not numerically-stable.
- Instead, one can compute the eigenvalue decomposition of the symmetric indefinite $2 m \times 2 m$ block matrix

$$
\mathbf{H}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{A}^{\star} \\
\mathbf{A} & \mathbf{0}
\end{array}\right] .
$$

- The cost of the calculation is $\sim O\left(m n^{2}\right)$, of the same order as eigenvalue calculation, but in practice SVD is more expensive, at least for well-conditioned cases.

Reduced SVD

The full (standard) SVD

$$
\begin{aligned}
\mathbf{A} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\star}=\sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{i} \boldsymbol{v}_{i}^{\star} \\
{[m \times n] } & =[m \times m][m \times n][n \times n],
\end{aligned}
$$

is in practice often computed in reduced (economy) SVD form, where $\boldsymbol{\Sigma}$ is $[p \times p]$:

$$
\begin{aligned}
& {[m \times n]=[m \times n][n \times n][n \times n] \quad \text { for } \quad m>n} \\
& {[m \times n]=[m \times m][m \times m][m \times n] \quad \text { for } \quad n>m}
\end{aligned}
$$

This contains all the information as the full SVD but can be cheaper to compute if $m \gg n$ or $m \ll n$.

In MATLAB

- $[U, S, V]=\operatorname{svd}(A)$ for full SVD, computed using a QR-like method.
- $[U, S, V]=\operatorname{svd}\left(A,{ }^{\prime}\right.$ econ') for economy SVD.
- For rank-defficient or under-determined systems the backslash operator (mldivide) gives a basic solution.
Basic means \mathbf{x} has at most r non-zeros (not unique).
- The least-squares solution can be computed using svd or pinv (pseudo-inverse, see homework).
- A rank-q approximation can be computed efficiently for sparse matrices using

$$
[U, S, V]=\operatorname{svds}(A, q)
$$

Low-rank approximations

- The SVD is a decomposition into rank-1 outer product matrices:

$$
\mathbf{A}=\sum_{i=1}^{r} \mathbf{A}_{i}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\star}
$$

- The rank- 1 components \mathbf{A}_{i} are called principal components, the most important ones corresponding to the larger σ_{i}.
- Truncating the sum gives us a low-rank approximation:

$$
\hat{\mathbf{A}}_{q}=\sum_{i=1}^{q} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\star}
$$

- Theorem: This is the best approximation of rank- q in the Euclidian and Frobenius norm:

$$
\left\|\mathbf{A}-\hat{\mathbf{A}}_{q}\right\|_{2}=\sigma_{q+1}
$$

Applications of SVD/PCA

- Statistical analysis (e.g., DNA microarray analysis, clustering).
- Data compression (e.g., image compression, explained next).
- Feature extraction, e.g., face or character recognition (see Eigenfaces on Wikipedia).
- Latent semantic indexing for context-sensitive searching (see Wikipedia).
- Noise reduction (e.g., weather prediction).
- One example concerning language analysis given in homework.

Image Compression

$\gg A=r g b 2 g r a y(i m r e a d(' b a s k e t . j p g ')) ;$
\gg imshow (A);
$\gg[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}($ double (A)) ;
$\gg r=25 ; \%$ Rank $-r$ approximation
\gg Acomp $=\mathrm{U}(:, 1: r) * S(1: r, 1: r) *(\mathrm{~V}(:, 1: r))^{\prime}$;
\gg imshow (uint8 (Acomp)) ;

Compressing an image of a basket

We used only 25 out of the ~ 400 singular values to construct a rank 25 approximation:

Conclusions/Summary

- The singular value decomposition (SVD) is an alternative to the eigenvalue decomposition that is better for rank-defficient and ill-conditioned matrices in general.
- Computing the SVD is always numerically stable for any matrix, but is typically more expensive than other decompositions.
- The SVD can be used to compute low-rank approximations to a matrix via the principal component analysis (PCA).
- PCA has many practical applications and usually large sparse matrices appear.

