Numerical Methods 1, Fall 2014
Assignment V: Interpolation and Approximation

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

Nov 4th, 2014
Due: November 30th, 2014

For the purposes of computing grades this homework has a maximum of 125 points.
1 [50 points] Least Squares polynomial approximations

In this problem we will consider approximating a given non-linear function f(z) = exp(x) on the interval
z € [0, 1] with a polynomial of degree n,

1.1 [20pts| Least Squares “interpolation”

In class and the last homework we discussed least-squares fitting, where we evaluate the function f(z) on
a sequence of m + 1 > n equally-spaced nodes with z; = j/m, j =0,1,...,m, and then try to minimize
the Euclidean norm of the residual:

a™ = arg min e;,(@) = arg min STF(25) — pla))]?
j=0
This gives a least-squares fit polynomial p,,(z) = >, agm)xi which depends on how many nodes were used.
It is similar to interpolation, except that we do not try to force the polynomial to pass through all of the
nodes, but rather, to pass as close as possible to the interpolation nodes. We thus call this “least-squares
interpolation”; and it is implemented in MATLAB’s poly fit function.

[7.5 pts] Write down the linear system (normal equations) for finding the polynomial coefficients a},
explicitly, that is, write down a formula for the matrix of the linear system and the right hand side for a
general n, m and f(z).

Hint: To find the minimum of the error e, (a) you need to look for critical points, i.e., solutions of the
system of equations Oe,,/0a = 0.

Note: You may write this by hand and scan into the PDF or turn it in on paper during class.

[7.5pts] Now solve these equations numerically for f(z) = exp(z) for a given n and m, for example,
n =5 and m = 10, and compare to MATLAB’s function poly fit to check your solution.

[5pts] Fix n = 5 and see how the error f(x) — p,,(x) behaves as you increase m, that is, check whether
adding nodes changes the polynomial approximation significantly.

Hint: Make a plot of the error €, (x) = f(x) —pm(x) for several increasing m. The results for a fized-degree
least squares polynomial will be very different from the case of polynomial interpolation (see problem 2
below), where the degree of the polynomial grows with m also.

1.2 [30pts| Least Squares approximation

One may object to the least-squares fitting approach because only the error at the nodes is minimized,
and it may be that the error is large at other points in the inverval [0, 1]. Possibly a better approach to
approximating the function with a polynomial is a “least-square approximation” where we minimize the
functional Euclidean (Ly) norm of the error,

a* = arg min e(a) = arg min /1 [f(x) — p(z)) da.
1 x

The resulting approximation p(z) = 3", ajz' will presumably spread out the approximation error more
evenly over the whole interval instead of focusing on just the interpolation nodes.

[15pts] Write down a linear system for finding the polynomial coefficients a* explicitly, for a given function
f(z). Hint: You may encounter the ill-conditioned Hilbert matrixz from the second homework.
Note: You may write this by hand and scan into the PDF or turn it in on paper during class.

[10pts] Solve the above system numerically for n = 5 and f(x) = exp(z) and compare the solution p(z)
to the function f(x).

Hint: The following explicit formula may be useful:

1 , J 4l
j dr = (—1)"*" ! 1yl
| esplas = (e 3 (1
where i! denotes the factorial of i, obtained as factorial(i) in MATLAB, and e = exp(1).
[5pts] On the same plot, compare the error f(z) — p,(x) from the last part of question 1.1 (i.e., use a
“large” m) to the error f(z) — p(z), and comment on what you observe. Explain the result.

2 [120 points = 95pts + 25pts extra credit] Convergence of Interpolating Polynomials

In this problem we consider interpolating the following periodic function on the interval x € [—m, 7],

_exp (acosx)
1) == @)

where a is a given parameter that determines the smoothness of the function, and Iy(a) is a Bessel function
used for normalization purposes, available in MATLAB as besseli(0,a). For the majority of this assignment
fix a = 3.

The goal of this exercise is to see whether and how fast the interpolation error converges to zero as the
number of interpolation nodes increases, for several different types of interpolants:

1. Global polynomial pe,.(x) of degree n with n + 1 equi-spaced nodes, as obtained using MATLAB’s
poly fit. Note that due to periodicity the values of the function at the first and last nodes will be equal,
but that the polynomial itself does not recognize the periodicity.

2. The Gauss-Legendre polynomial pgy () of degree n, where the n+1 nodes are the Gauss points. The Gauss
points and weights on the interval [—1, 1] can be obtained using the function [z, w| = GLNodeWt(n + 1),
where the MATLAB script GLNodeWt.m is available on the course assignment webpage. You can use
MATLAB’s poly fit here as well, even though there are numerically much more stable ways based on
the orthogonality of the Legendre polynomials.

3. Piecewise linear p;(x) interpolant on n + 1 equi-spaced nodes, as obtained using MATLAB’s interpl
function.

4. Piecewise cubic periodic spline ps3(x) on n + 1 equi-spaced nodes, as obtained using MATLAB’s spline
toolbox function csape:

p=csape(x,y, periodic ’); % Find the periodic spline
y_tilde=fnval(p,x_tilde); % Evaluate on fine grid

If you do not have access to the spline toolbox, you can use MATLAB’s built-in function spline or,
equivalently, interpl, but you will not get a periodic interpolant.

5. The Fourier (trigonomentric) interpolant prpr(x) on n equi-spaced nodes. [Hint: Note that for Fourier
transforms periodicity is already assumed so you should include only one of the points x =0 and v = T,
not both.]

For a given interpolant ¢(z), we can evaluate the interpolant on a fine grid of points, for example,
T = linspace(—m,m, N + 1) for N = 1000, and then compare to the actual function f(x). We can also
compute an estimate for the Euclidean norm of the interpolation error by summing the error over the fine grid,

N 1/2 - 1/2
Balotol = 1 11@) - o]~ | [150 - o) ar]
i=0

—T

where h = 27/N.

2.1 [35pts + 5pts extra credit] Comparing different interpolants

[30pts=>5pts for each of pegui, Par, and pyss, and 10 pts for pppr]
For a given small n, say n = 8, plot the different interpolants together with the function and see how good
they are. Plot the error e(z) = |f(z) — ¢(x)| of the different interpolants for a larger n, say n = 32, and
visually compare the accuracy of the different interpolants in different regions of the interval. [Hint: For the
Fourier polynomial, MATLAB’s function interpft may be useful to interpolate the Fourier series on the fine
grid of nodes.|

[5 pts extra credit] Write your own code for evaluating it at the fine grid . With some ingenuity, you can
do it faster by doing an inverse FFT, as done in MATLAB’s function interpft. [Hint: Pay close attention
to the ordering of the frequencies and use an odd number of points n and also the built-in function f ftshift
to make it more manageable.]

~

[5pts| Plot the magnitude of the Fourier coefficients (i.e., the Fourier spectrum) ‘ f ’ versus frequency for a

large n (large here means that the high-frequency components become smaller than roundoff so that further
increasing n does not make a difference numerically).

2.2 [35pts] Interpolation Error

[10pts] For different numbers of nodes, n = 2%, k = 2,3, ..., compute the estimated interpolation error F,,
for p;(x) and p3(x) and then plot the error versus n using an appropriate scaling of the axes.
[10pts] For p;(z) and ps(z), the theoretical estimates from class suggest that (for either Ey or Ey)

Epi(z)] = Cin~? and FE [ps(x)] ~ Csn™*.

Verify this scaling from the plot of E., versus n.
Hint: Assume that the error scales as E =~ CnP, where p is some unknown power exponent. Then
log E =InC + plogn is a linear relation between the logs, with slope p.

[10pts] If we did not know how the error changes with n, we can assume that £ = C'n? and then extract
the constant C' and the exponent p by fitting the numerical data with a power law. The simplest way to do
this, based on the hint above, is to fit a linear line through the points (logn,log E,) by using the function
poly fit. Do this and extract the power exponents from the fit, and compare them to the theoretical power
exponents —2 and —4.

[5pts] For pgr(x) and pppr(x), theory suggests that for this sort of smooth function (specifically,
exponentially-decaying Fourier coefficients) convergence is spectral, i.e., faster than any power law, something
close to exponential,

Es [prrr(z)] ~ exp(—n).

Verify that your numerical results are consistent with this prediction [Hint: The spectral convergence is soo
fast that numerical roundoff will not permit really seeing the exponential decay well, but simply plotting an
exponentially-decaying curve on the same plot or plotting the error on a log-linear scale will do).

2.3 [25pts] Approximating derivatives

An approximation to the first derivative f’'(x) can be obtained by simply differentiating the interpolant,
f'(x) = ¢'(x).
[15pts = 5 points for each interpolant] For the piecewise linear and cubic interpolants as well as the Fourier
interpolant, compute ¢'(z) and compare to the correct derivative f’(z) on the same plot, for some n. [Hint:
For the spline, if you have access to the spline toolboz, you can use fnder(p,1) to obtain the derivative.
If you do not have the toolbox, you can replace the spline with the global polynomial, or use MATLAB’s
facilities for working with piecewise polynomials.

[10pts] Compute error estimates for the derivative and plot how they depend on n, and compare to
theoretical expectations. [Hint: One can use the same way of estimating errors as for the function itself.]

2.4 [20pts extra credit] Constants in error estimates

The most important thing about how the error converges as one takes more nodes is the power-law or expo-
nential dependence on n. It is however also useful to know how the constants C; and Cj (see part 2 above)

3

depend on the magnitude of the derivatives of the function, which for this functional form is encoded in the pa-
rameter a: The larger a the more peaked the function becomes and thus the more nodes we are likely to need.
[10pts] Calculate C and Cj for several parameters a (e.g, a = 1,3,5,7) and estimate how they grow with
a (e.g., linearly or quadratically).

[10pts extra extra credit] Compare the results to theoretical expectations [Hint: This requires obtaining

estimates of the norm of the second and fourth derivatives of f(x), which can be done numerically if you
cannot do it analytically).

