
MODELING RARE TRANSITION EVENTS

WEINAN E AND ERIC VANDEN-EIJNDEN

ABSTRACT. Dynamics in nature often proceed in the form of rare transition events: The
system under study spends very long periods of time at various metastable states; only
very rarely it hops from one metastable state to another. Understanding the dynamics of
such systems requires us to study the ensemble of transition paths between the different
metastable states. Transition path theory is a general mathematical framework developed
for this purpose. It is also the foundation for developing modern numerical algorithms such
as the string method for finding the transition pathways. We review the basic ingredients of
the transition path theory and discuss connections with the more classical transition state
theory. We also discuss how the string method arises in order to find approximate solutions
in the framework of the transition path theory.

CONTENTS

1. Introduction 3
1.1. The setup 5
2. Metastable states 7
3. Transition state theory 7
4. Large deviation theory 8
5. Transition Path Theory (TPT) 10
5.1. The main objects in transition path theory 10
5.2. The committor functions 12
5.3. Probability density of reactive trajectories 15
5.4. The current of A-B reactive trajectories 16
5.5. The transition rates 18
5.6. Definition of the sets and reduced dynamics 19
5.7. Generalization: discrete TPT 20
5.8. Connection with transition state theory 20
6. Asymptotic solutions based on TPT 22
6.1. Transition tubes 22
6.2. The minimum energy path 24
6.3. Working with collective variables: the minimum free energy path 27
6.4. What is a good set of collective variables? 29
6.5. The case of the Langevin equation 30
6.6. Going beyond the thin tube assumption via principal curves 30
7. Numerical algorithms for computing the minimum energy path 31
7.1. The zero temperature string method 33
7.2. Broyden accelerated string method 35
7.3. Action based methods to calculate the MEP 35
7.4. Chain-of-states methods 36
8. Finding minimum free energy paths 38
8.1. The zero temperature string method in collective variable space 38

1



2 WEINAN E AND ERIC VANDEN-EIJNDEN

8.2. On-the-fly string method 38
8.3. String method with swarms 39
9. Finding the transition tubes 40
9.1. The finite temperature string method 40
9.2. Generalization to collective variable space 42
9.3. Free energy calculations 42
9.4. Rate calculations: milestoning, etc. 43
10. Conclusions 44
References 44



MODELING RARE TRANSITION EVENTS 3

1. INTRODUCTION

A fundamental fact is that dynamics in nature works on very disparate time scales.
Atomic vibration occurs on femto- to pico-second time scales (10−15 to 10−12 sec.),
whereas our daily lives are organized on the time scale of hours or days. Although many
physical or biological processes occur on intermediate time scales, there are still huge gaps
between the different time scales. Consequently, most dynamic processes proceed in the
form of rare events. The system under consideration spends most of its time in local-
ized regions in configuration space. Only very rarely, it hops from one localized region
to another. These localized regions are called metastable states. Chemical reactions, con-
formation changes of molecules, nucleation events in a first order phase transition are all
examples of rare events, and so are many other dynamic processes in material science,
biology and chemistry.

Intuitively, one can think of the dynamics of a system as the process of navigation over
its potential or free energy landscape, under the action of small amplitude noise. The
metastable states are the local minima of the energy, or the basins of attraction of the local
minima, all called potential wells. Without the noise, the system will simply be stuck at the
local minima. Noise makes it possible to move between different local minima. However,
transition events are rare because the system has to overcome some barriers. These barriers
can either be of an energetic nature or an entropic nature. An entropic barrier will arise for
example when a diffusing particle tries to find a narrow exit over a flat but vast landscape.

Broadly speaking, there are three classes of problems we are interested in:

(1) The A → B problem. Here A and B refer to the initial and final states (also
called the reactant and product states, respectively) during a transition. Knowing
them, we would like to find out the mechanism of the transition and the transition
rates. For this purpose, we need to find the most probable transition paths from A
toB or the bottleneck of the transition. From an application viewpoint, this means
understanding the mechanism of chemical reactions, nucleations, subcritical in-
stabilities and conformation changes, etc.

(2) The exploration problem. This does not require knowing the final states. In-
stead, we are interested in finding out the possible outcomes of a transition and the
relative likelihood of each outcome.

(3) Accelerating dynamic simulations. The effectiveness of molecular dynamics
or kinetic Monte Carlo simulation methods is often hindered by the occurence
of rare events. It is of great practical interest to be able to develop tools that
can accelerate these dynamic simulation algorithms without compromising their
statistical accuracy.

Note that our objective is not to keep track of the detailed dynamics of the system, but rather
to capture statistically the sequence of hops or transitions between different local minima
or metastable states. This means that effectively, the dynamics of the system is modeled by
a Markov chain: the metastable states are the states of the chain and the hopping rates are
the transition rates between different states. When designing algorithms for accelerating
molecular dynamics, our purpose is not to reproduce the detailed dynamics, but rather to
capture the effective dynamics of the Markov chain.

In this review, we will focus on the first class of problems.
From a theoretical viewpoint, the well-known transition state theory (TST) [26, 75, 34],

a cornerstone of chemical physics, has been very successful in providing the language, the
intuition as well as the foundation for developing computational tools for studying barrier
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crossing events. TST states basically that to go from the reactant state to the product
state, the system has to navigate itself to the transition state which is a saddle point on the
potential energy surface. In addition, the transition rate can be obtained by computing the
probability flux of particles that cross the dividing surface which contains the transition
state and separates the basins of attraction of the reactant and product states.

The same problem has been studied in the mathematics literature within the framework
of the powerful large deviation theory (LDT) [?, ?]. LDT allows us to compute the prob-
ability that a diffusion process stays in a small neighborhood of a particular path. This
allows to define the most probable transition path from one local minimum to another. For
overdamped systems, the most probable path is simply the minimum energy path (MEP),
to be defined below.

Numerical algorithms have also been developed to look for saddle points or to find the
MEP. Saddle point search algorithms include the eigenvector following method [?, ?, ?],
the dimer method [?], the climbing image nudged elastic band method [?] and the gentlest
ascent dynamics (GAD) [?]. Algorithms for finding the MEP include the string method
[?] and the nudged elastic band method [?]. These algorithms have been extended and
improved in many different ways, and they are generally quite effective for situations when
the energy landscape is relatively smooth.

It has also been realized for a long time that TST is limited to situations when the cross-
ing through the transition state region is ballistic, since it assumes that every crossing gives
rise to a successful reaction. If the crossing is diffusive, then TST overestimates the reac-
tion rate. The situation is actually a bit worse. For a system with a rugged energy landscape
with many small barriers, or when entropic (e.g. volume) effects matter as they typically
do in high dimensions, the saddle points do not necessarily play the role of transition states.
In fact, in complex situations, the very notion of the transition state becomes questionable.
Essentially the same kind of difficulties arise in LDT. The notion of most probable paths
becomes irrelevant. Instead, an ensemble of paths contribute to the transition process. Intu-
itively, for systems with rugged energy landscapes, what one would like to do is to replace
the notion of transition state by the notion of transition state ensemble, and to replace the
notion of most probable transition paths by that of the transition tubes (inside which most
of the flux of the transition paths are concentrated).

A popular approach in chemistry is to reduce the problem to a free energy landscape
corresponding to some “reaction coordinates”. Intuitively, reaction coordinates should be
something that can be used to parametrize the transition paths. This is certainly a very
useful notion (and one that we will discuss in detail below), but is also one that has been
greatly abused: Oftentimes one has to guess what the reaction coordinates are based on
intuition, and there are plenty of examples showing that our intuition does not always
serve us in the right way. In particular, as has been pointed out in [?], the slow variables
may not have anything to do with the reaction coordinates.

Therefore to study he transition processes in complex systems with rugged energy land-
scape, it is necessary to examine the ensemble of all the transition paths as a probability
space. This viewpoint has been developed in two directions. As a numerical algorithm,
the “transition path sampling” (TST) technique has been developed by Bolhuis, Chandler,
Dellago and Geissler [6, 5] as a way of Monte Carlo sampling of the ensemble of transition
paths. As a theoretical framework, the “transition path theory” (TPT) has been developed
by E, Vanden-Eijnden and co-workers to characterize the ensemble of transition paths [23]
(see also [65, ?, 44]. TPT addresses questions like:

(1) What is the probability distribution of the particles in the transition path ensemble?
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(2) What is the transition rate?
(3) What is the probability current associated with the transition paths?

TPT is exact no matter how complicated the transition is. Being exact, TPT provides
the foundation for making approximations and developing efficient numerical algorithms.
For example, as we will see later, the finite temperature string method [19, 20, 20, 54,
21, 41, 43, 70], which is a rather powerful tool for analyzing transition in systems with
rough energy landscapes, can be derived from TPT under the approximation that with high
probability, the flux of the transition paths is concentrated inside one or a few localized
thin tubes. One can envision other approximations, which will lead to other numerical
algorithms.

In this paper we begin with a short review of the classical transition state theory and
large deviation theory. We then focus on the recently developed transition path theory and
the numerical algorithms for finding the most probable paths.

1.1. The setup. Let us first introduce the kind of dynamics that we will consider. For the
most part we will focus on systems governed by the Langevin equation{

ẋ = m−1p

ṗ = −∇U − γp+
√

2γkBTm
1/2ẇ

(1)

Here m is the mass matrix and U denotes the potential energy of the system. The last two
terms in the second equation are thermostat terms which represents the effects of the heat
bath: γ is the friction coefficient, which can also be a tensor although we will only consider
the case when it is a scalar, T is the temperature, kB is Boltzmann’s constant and ẇ is the
standard Gaussian white noise, i.e. the Gaussian process with mean 0 and covariance

〈ẇi(t)ẇj(s)〉 = δijδ(t− s) (2)

Formally, one may also consider the special case when γ = 0, corresponding to the NVE
ensemble, when (1) reduces to the Hamiltonian dynamics, with no explicit noise{

ẋ = m−1p

ṗ = −∇U
(3)

In this case, the chaotic nature of the dynamics plays the role of the noise, and indeed one
typically uses the Langevin equation (1) with a friction coefficient small enough in order
that the solutions of (1) do not look very different from the ones of (3). Yet the presence
of the stochastic noise in (1) is important to justify the analysis below – in contrast making
rigorous statements with (3) is much more difficult.

Another limit of (1) which is probably less relevant in applications but is useful for
discussing concepts is the overdamped dynamics obtained when γ � 1:

γmẋ = −∇U +
√

2γkBTm
1/2ẇ (4)

Note that both (1) and (4) can be cast into the same form:

ż = −K∇V (z) +
√

2kBTσẇ(t) (5)

For the Langevin dynamics, we have z = (x,p)T , V (z) = H(x,p) = 1
2p

Tm−1p+U(x)
and

K =

(
0 −I
I γm

)
σ =

(
0 0
0 (γm)1/2

)
, (6)
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For the overdamped dynamics, we have z = x, V (z) = U(x), K = γ−1m−1 , and
σ = γ−1/2m−1/2. Note that we also have in both cases

1
2 (K +KT ) = σσT (7)

More generally, we will consider the stochastic process z ∈ Ω ⊂ Rd described by the
Itō stochastic differential equation (SDE):

ż = b(z) +
√

2σ(z)ẇ (8)

The generator of this process is the operator given by [18]

L = b(z) · ∇+ a(z) : ∇∇ =

d∑
i=1

bi(z)
∂

∂zi
+

d∑
i,j=1

ai,j(z)
∂2

∂zi∂zj
(9)

where

a(z) = σσT (z) i.e. ai,j(z) =

d∑
k=1

σi,k(z)σj,k(z) (10)

The operator L is such that

lim
t→0+

1

t
(EzΦ(z(t))− Φ(z)) = (LΦ)(z) (11)

where Ez denotes expectation conditional on z(0) = z and Φ(z) is any suitable test
function. Associated with L is its adjoint operator L∗ whose action on the test function
Φ(z) is defined as:

(L∗Φ)(z) = −∇ · (b(z)Φ(z)) +∇∇ : (a(z)Φ(z))

= −
d∑
i=1

∂

∂zi
(bi(z)Φ(z)) +

d∑
i,j=1

∂2

∂zi∂zj
(ai,j(z)Φ(z))

(12)

The operator L and its adjoint L∗ enter respectively in the backward and forward Kol-
mogorov equations associated with the process (8), and these equations will play impor-
tant roles in the sequel. For instance, we will assume that the system has a unique invariant
distribution (albeit not necessarily an equilibrium one) with density ρ(z), which satisfies
the forward equation:

(L∗ρ)(z) = 0 (13)

For example in the case when the dynamics of the system is governed by (1), then

ρ(x,p) = Z−1
H e−βH(x,p) (14)

where β = 1/(kBT ) and ZH =
∫
e−βH(x,p)dxdp. When the dynamics is governed by

(4), then

ρ(x) = Z−1e−βU(x) (15)

where Z =
∫
e−βU(x)dx.

Before ending this introduction, we make a comment about terminology. One class of
the most commonly studied transition events are chemical reactions. For this reason, we
also call transition events, “reactions”, and transition paths, “reaction paths”.
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2. METASTABLE STATES

Metastability is characterized by two disparate time scales, a short relaxation time scale
and long transition time scale. A metastable state is stable over the relaxation time scale,
but unstable over the transition time scale. The key parameter that enters in the discussion
is the ratio between noise amplitude and typical barrier height for the potential.

In a simple system, each local minimum of the potential is a metastable set. For complex
systems, metastable sets are less well-defined since we must deal with a set of wells, but
their intuitive meaning is quite clear. In practice, they can be defined with the help of some
coarse-grained variables or order parameters. For example, for a molecule, we can define
the metastable sets by restricting the values of a set of torsion angles.

Precise definition of the metastable sets can be found using the spectral theory of the
transfer operators or the generators associated with the underlying stochastic dynamics.
See for example [?, ?, ?]. Roughly speaking, metastability can be related to the gaps in
the spectrum of the relevant generators of the Markov process and metastable sets can be
defined through the eigenfunctions associated with the leading eigenvalues. Indeed, it can
be shown that these eigenfunctions are approximately piecewise constant, and the subsets
on which the eigenfunctions are approximately constant are the metastable sets.

3. TRANSITION STATE THEORY

The classical theory that describes barrier-crossing events over an energy landscape is
the transition state theory (TST), developed by Eyring, Polanyi, Wigner, Kramers, et al [?].
There are two main components in the transition state theory, the notion of transition states
and an expression for the transition rate. Transition states are the dynamic bottlenecks for
the transition. They are important for the following reasons:

(1) With very high probability, transition paths have to pass through a very small
neighborbood of the transition states. Exceptional paths have exponentially small
relative probability.

(2) Once the transition state is passed, the system can relax to the new stable state via
its own intrinsic dynamics, on the relaxation time scale.

For simple systems, given two neighboring local minima, the transition state is nothing but
the saddle point that separates the two minima.

The transition rate, i.e. the average number of transitions per unit time interval, can be
computed from the probability flux of particles that pass through the neighborhood of the
transition state. As an example, let us consider the canonical ensemble of a Hamiltonian
system. For simplicity, we will focus on an example of a one-dimensional system [?].
Let V be a one-dimensional potential with one local minimum at x = −1 and another at
x = 1 separated by a saddle point at x = 0. We are interested in computing the transition
rate from the local minimum at x = −1 to the local minimum at x = 1 in a canonical
ensemble with temperature T . According to the transition state theory, the transition rate
is given by the ratio of two quantities: The first is the flux of particles that tranverse the
transition state region from the side of the negative real axis to the side of the positive real
axis. The second is the equilibrium distribution of particles on the side of the negative real
axis, which is the basin of attraction of the initial state at x = −1. This second quantity is
given by:

ZA =
1

Z

∫
x<0

e−βH(x,p)dxdp (16)
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whereH(x, p) = 1
2mp

2 +U(x) is the Hamiltonian of the system, Z =
∫
R2 e
−βH(x,p)dxdp

is the normalization constant, β = (kBT )−1. The first quantity is given by

ZAB =
1

Zm

∫
x=0

pθ(p)e−βH(x,p)dp (17)

where θ is the Heaviside function: θ(z) = 1 if z > 0 and θ(z) = 0 if z < 0. To leading
order, we have

ZAB ∼
1

Zβ
e−βU(0) (18)

If we approximateU further by a quadratic function centered at x = −1, U(x) ∼ U(−1)+
1/2U ′′(−1)(x+ 1)2, we obtain:

ZA ∼
1

Z

2π

β

√
m

U ′′(−1)
e−βU(−1) (19)

The ratio of the two quantities gives the rate we are interested in:

νR =
1

2π

√
U ′′(−1)

m
e−βδE (20)

where δE = U(0)− U(−1) is the energy barrier.
Note that this rate depends on the mass of the particle and the second derivative of the

potential at the initial state, but it does not depend on the second derivative of the potential
at the saddle point.

More general situations will be discussed later after introducing the transition path the-
ory.

4. LARGE DEVIATION THEORY

Large deviation theory is a rigorous mathematical theory for characterizing rare events
in general Markov processes [?, ?]. The special case for random perturbations of dynamical
systems was considered by Freidlin and Wentzell [?]. This theory is often referred to as
the Wentzell-Freidlin theory.

Consider the stochastically perturbed dynamical system:

ẋ = b(x) +
√
εẇ, x ∈ Rd (21)

Fix two points A and B in Rd and a time parameter T > 0. Let φ : [−T, T ] → Rd be
a continuous and differentiable path such that φ(−T ) = A, φ(T ) = B. The Wentzell-
Freidlin theory asserts roughly that

Prob.{x stays in a neighborhood ofφ over the interval [−T, T ]} ∼ e−S(φ)/ε (22)

where the action functional S is defined by:

ST (φ) =
1

2

∫ T

−T
|φ̇(t)− b(φ(t))|2dt (23)

With (22), finding the path with maximum probability is turned into the problem of
finding the path with minimum action:

inf
T

inf
φ
ST (φ) (24)

subject to the constraint that φ(−T ) = A, φ(T ) = B. Consider the case when b(x) =
−∇U(x). Assume thatA andB are two neighboring local minima of U separated by the
saddle point C. Then we have:
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Lemma (Wentzell-Freidlin [?]):
(1) The minimum of (24) is given by:

S∗ = 2(U(C)− U(A)) (25)

(2) Consider the paths

φ̇1(s) = ∇U(φ1(s)), φ1(−∞) = A, φ1(∞) = C (26)

φ̇2(s) = −∇U(φ2(s)), φ2(−∞) = C, φ2(∞) = B (27)

then
S∗ = S∞(φ1) + S∞(φ2) = S∞(φ1) (28)

The most probable transition path is then the combination of φ1 and φ2: φ1 goes against
the original dynamics and therefore requires the action of the noise. φ2 simply follows the
original dynamics and therefore does not require the help from the noise.

It is not difficult to convince oneself that the minimum in T in (24) is attained when
T =∞. To see why the minimization problem in (24) is solved by the path defined above,
note that

S∞[φ1] = 2(U(C)− U(A)), S∞[φ2] = 0. (29)

In addition, for any path φ connecting A and a point on the separatrix that separates the
basins of attraction ofA andB, we have

S∞[φ] =
1

2

∫
R
〈φ̇−∇U, (φ̇−∇U)〉dt+ 2

∫
R
φ̇ · ∇Udt

≥ 2

∫
R
φ̇ · ∇Udt

= 2

∫
R
U̇dt

≥ 2(U(C)− U(A))

since C is the minimum of U on the separatrix.
This result can also be generalized to the case when there are intermediate stable states

betweenA andB. In that case the most probable transition path is a combination of paths
that satisfy:

φ̇(s) = ±∇U(φ(s)) (30)

Paths that satisfy this equation are called the minimum energy path (MEP). One can write
(30) as:

∇U(φ(s))⊥ = 0 (31)

where∇U(φ(s))⊥ denotes the component of∇U(φ(s)) normal to the curve described by
φ.

An alternative characterization of MEP is as follows. Given a path γ, let z be an ar-
bitrary point on γ, and Pz be the hyperplane that contains z and is normal to γ. γ is a
MEP if for any point z on γ, z is a local minimum of V restricted to Pz . As we will see
later in this section, this characterization is more directly linked with the transition tubes
or principal curves obtained from the transition path theory.

Example: A frequently used example is the Mueller potential:

U(x, y) =

4∑
i=1

Ai exp(ai(x− xi)2 + bi(x− xi)(y − yi) + ci(y − yi)2), (32)
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where the parameters are

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7),

x = (1, 0,−0.5,−1), y = (0, 0.5, 1.5, 1).

There are three local minima in this example. Shown in Figure 1 is the minimum energy
path that connects two of the local minima. This minimum energy path passes through the
third local minimum. In other words, the third local minimum is an intermediate state in
the transition between the two end points.

FIGURE 1. Mueller potential and a minimum energy path that connects
two local minima.

5. TRANSITION PATH THEORY (TPT)

5.1. The main objects in transition path theory. Given two sets A and B in phase-
space, viewed respectively as reactant and product states, TPT analyzes the reaction from
A to B by characterizing the statistical properties of the transition paths by which this
reaction occurs. More precisely, if we consider an infinitely long trajectory z(t) with
t ≥ 0, we can cut out from this trajectory the pieces during which the trajectory is on its
way from A to B without coming back to A (see figure 2 for a schematic illustration).
We call each such piece a reactive trajectory from A to B, an A-B reactive trajectory or
a transition path from A to B, and we refer to the set of transition paths as the transition
path ensemble from A to B. This ensemble is closely related to the one considered in TPS,
except that we do not put any restriction on the length of the reactive trajectories. Given
the trajectory z(t) with t ≥ 0, we will denote by R the subset of all the times at which
z(t) belongs to an A-B reactive path (i.e. R is the set of times during which the trajectory
is red in figure 2).

For the transition path ensemble, we can ask several questions:

Where do these paths spend their time? We are looking for a density ρR(z) that gives the
probability density to find a trajectory at z and that it be reactive. In the setup described
above, ρR(z) can be defined via

ρR(z) = lim
T→∞

1

T

∫ T

0

δ(z − z(t))1R(t)dt (33)

where 1R(t) = 1 if t ∈ R (i.e. at that time z(t) belongs to an A-B reactive path) and
1R(t) = 0 otherwise. Note that if we consider the whole trajectory (not just the reactive
pieces) and ask the same question, then the probability density at the right hand side should
be given by the density ρ(z) of the invariant distribution:

ρ(z) = lim
T→∞

1

T

∫ T

0

δ(z − z(t))dt (34)

Note also that ρR(z) is not normalized: the total integral of ρR(z) gives the probability of
that the trajectory is A-B reactive.

The density ρR(z) gives information about how likely it is for the A-B reactive paths
to go through a given region, but not about how they go from regions to regions. To
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A
B

FIGURE 2. Schematic illustration of a long trajectory oscillating be-
tween the reactant state A and the product state B. The reactive pieces
of this trajectory during which it travels from A to B are shown in red.

characterize how these paths flow from A to B on the average, we need another quantity,
namely their probability current. To understand how the probability current comes about,
let us consider first the instantaneous probability density ρ(z, t) of the (full) process z(t).
Formally, this probability density can be defined as

ρ(z, t) = 〈δ(z − z(t))〉 (35)

where the bracket denotes expectation with respect to the realizations of the noise in (8).
Differentiating (35) with respect to time we can write1

∂

∂t
ρ(z, t) = −〈ż(t) · ∇δ(z − z(t))〉 ≡ −∇ · J(z, t) (36)

where we defined the instantaneous probability current

J(z, t) = 〈ż(t)δ(z − z(t))〉 (37)

(36) has the form of a conservation law (the total probability being the quantity that is
conserved). The ergodicity assumption implies that ρ(z, t) → ρ(z) as t → ∞, i.e. the
time derivative at the left hand side of (36) tends to 0 in the long time limit. In turns this
implies that J(z, t) → J(z) for some divergence free J(z), i.e. such that ∇ · J(z) = 0.
By ergodicity, this steady state current can also be defined via the time average

J(z) = lim
T→∞

1

T

∫ T

0

ż(t)δ(z − z(t))dt (38)

Time averages of this type can be evaluated explicitly. In the present case the components
of the current J(z) can also be read directly from (13) (using the explicit form of L∗ given
in (12)):

Ji(z) = bi(z)ρ(z)−
d∑
j=1

∂

∂zj
(ai,j(z)ρ(z)) (39)

If the statistical steady state is an equilibrium one, then by definition J(z) = 0. For
nonequilibrium steady states, however, J(z) does not vanish, and the definition (38) shows
that this quantity is like an average velocity field of the process z(t) at point z which
thereby permits to characterize how this process flows on the average. This suggests asking
the same question for the A-B reactive paths, i.e. ask:

1Note that these manipulations require interpreting the various products in Stratonovich sense in order that
standard differentiation rules apply. This is just a technical point, however.
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What is the current associated with the reactive trajectories? The current associated with
the reactive paths is the vector field JR : Ω 7→ Rd defined as

JR(z) = lim
T→∞

1

T

∫ T

0

ż(t)δ(z − z(t))1R(t)dt (40)

This current must be divergence free outside of A and B, but it does not vanish. Indeed,
by construction A is a source and B is a sink of reactive trajectories (but there are no other
sources nor sinks of reactive trajectories outside of A and B). The flowlines of JR(z)
indicate how the reactive trajectories go from A to B on the average. The current JR(z) is
also useful to answer the following question:

What is the reaction rate? If NT is the number of A-B reactive trajectories (of the given
trajectory z(t)) in [0, T ], what is the limit of NT /T as T →∞? This is the reaction rate

νR = lim
T→∞

NT
T

(41)

The rate νR is the total probability flux of reactive trajectories out of A and into B, which
(since JR(z) is divergence free) is also the probability flux through any dividing surface S
leaving A on one side and B on the other:

νR =

∫
S

n̂S(z) · JR(z)dσS(z) (42)

where n̂S(z) is the unit normal to S pointing towardsB and dσS(z) is the surface element
in S. Another expression for νR will be given below, see (66). Notice that νR is also the
rate of the back reaction from B to A. Indeed, each time the process makes a transition
from A to B, it needs to make a transition from B to A before making another transition
from A to B, i.e. the number of A-B trajectories in [0, T ] is the same as the number of
B-A trajectories plus or minus one. Of course, this does not mean that the average time
it takes the process to go to B starting from A is the same as the one it takes to go to A
starting from B. To compute these average times, let TA be the total time in [0, T ] during
which the last set hit by the trajectory was A, and TB the total time during which the last
set was B. Then TA + TB = T , and we can define the rates

kA,B = lim
T→∞

NT
TA

, kB,A = lim
T→∞

NT
TB

(43)

These two rates are different (and different from νR) and their inverses give an estimate of
the average transition times from A to B and B to A. How to compute the rates in (43)
and relate them to νR is explained below.

5.2. The committor functions. To answer the questions listed in section 5.1, we need the
notion of committor functions [23, 65]. These are also referred as the capacitance functions
in the mathematics literature [17, 61].

Let q+ : Ω 7→ [0, 1] be the solution of
Lq+ = b · ∇q+ + a : ∇∇q+ = 0, z 6∈ A ∪B,
q+ = 0, z ∈ A,
q+ = 1, z ∈ B,

(44)

The function q+ is the called the forward committor function for the transition process
from A to B. In a similar fashion, we can define the backward committor function q− :
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Ω 7→ [0, 1] as the solution of
L†q− := −b · ∇q− +

2

ρ
div(aρ) · ∇q− + a : ∇∇q− = 0, z 6∈ A ∪B,

q− = 1, z ∈ A,
q− = 0, z ∈ B,

(45)

The operator L† (not to be confused with L∗) is the generator of the time-reversed process.
The committor functions have a very simple interpretation: q+(z) is the probability that
a trajectory initiated at z will reach B before it reaches A, and q−(z) is the probability
that a trajectory arriving at z came from A, i.e. before arriving at z, it left from A after
it left from B. The isosurfaces of these functions are called isocommittor surfaces. The
isosurface {z : q+(z) = 1

2} is of particular interest: points on this surface have an equal
probability of first reaching A or B.

For non-equilibrium processes, q− 6= 1 − q+ because L† 6= L (the process is not
statistically invariant under time reversal). In particular, for the Langevin equation (1),
q−(x,p) 6= 1−q+(x,p) since time reversal involves a momentum flip. In fact, q−(x,p) =
1 − q+(x,−p). For equilibrium processes, however, q− = 1 − q+ since L† = L. This is
the case, in particular, of the overdamped equation (4). The symmetry under time-reversal
implies that the committor function can be obtained from a minimization principle. In the
case of the overdamped equation, this involves minimizing the objective function

I(q) = kBTγ
−1Z−1

∫ d∑
i=1

m−1
i

(
∂q(x)

∂xi

)2

e−βU(x)dx (46)

over all q such that q(x) = 0 if x ∈ A and q(x) = 1 if x ∈ B.
The committor equations (44) and (45) cannot be solved in closed form except in the

simplest cases. One such case is that of the overdamped equation in one dimension,
when (44) reduces to

kBTq
′′
+ − U ′q′+ = 0 (47)

where the prime denotes derivative with respect to x. The solution of (47) with the bound-
ary condition q+(a) = 0, q+(b) = 1 with a ≤ b (i.e. A = {x ≤ a} and B = {x ≥ b})
is

q(x) =

∫ x
a
eβU(x′)dx′∫ b

a
eβU(x′)dx′

(48)

In particular, if U(x) is a double-well potential with a barrier much higher than kBT =
1/β, and a and b are two points at the bottom of the wells, e.g. U(x) = (1−x2)2, a = −1
and b = 1, we see that the function q(x) is close to zero on the left of the barrier, close to
1 on the right, and it goes rapidly from 0 to 1 in the region near the top of the barrier. In
particular, q(x) = 1

2 is attained close to the barrier top.
For more complicated situations, the committor equations (44) and (45) have to be

solved numerically. How to do this in high dimension will be the object of the later sections
of this paper since in such situations standard numerical techniques based e.g. on finite
element discretization are ineffective. One example where such discretization can be used,
however, is the overdamped equation on the rugged Mueller potential in two dimensions
shown in figure 3. Below, we will use this example for illustration. The isosurfaces of
the committor function in this example are shown in figure 4. Other low dimensional
examples, involving multiple pathways, entropic effects, etc. are discussed in [?].
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FIGURE 3. Isosurfaces of the rugged Mueller potential. The darker the
region, the lower the potential.
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FIGURE 4. Isosurfaces the committor function in the rugged Mueller
potential. The reactant state A is the ellipse in the upper left corner; the
product state is the ellipse in the lower right corner. Both sets are regions
where the potential shown in figure 3 is relatively low.

Remark: committor vs. averaged committor functions. q+ and q− are function of the
full phase space z of the process. It is sometime useful to work with averaged versions
of q+ and q−. For instance, in the case of the Langevin equation, the committor functions
depend on both the positions x and the momenta p, but it is useful to consider the averaged
function

q̄(x) = 〈q+(x,p)〉p (49)
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FIGURE 5. Isosurfaces of the probability density of reactive trajectories
ρ̂R in the example of the rugged Mueller potential. The density is as
rugged as the underlying potential and it is mostly peaked in the shallow
region in between A and B since this region plays the role of dynami-
cal trap for the transition. This figure should be compared with figure 6
which shows the flowlines of the probability current of reactive trajec-
tories. Comparison between these figures indicates that the information
contained in probability density of reactive trajectories is somewhat lim-
ited and the object which is most useful to characterize the mechanism
of the reaction is the probability current of these trajectories.

where 〈·〉p denotes canonical expectation with respect to the momenta. In fact, q̄(x) is
what some authors define as the committor function [6]. It is important to stress, however,
that, unlike q+(x,p), q̄(x) does not satisfy a closed form equation such as (44).

5.3. Probability density of reactive trajectories. Using the Markov nature of the dy-
namics, it is easy to see that the probability density to find a reactive trajectory at z can be
expressed as the product between ρ(z) (which give the probability density to find a trajec-
tory at z) times q+(z)q−(z) (which gives the probability that the trajectory came last from
A and will go next to B, i.e. that it is A-B reactive). As a result

ρR(z) = q+(z)q−(z)ρ(z) (50)

If we limit ourselves to the ensemble of reactive trajectories and ask what is the probability
density of finding them at z (i.e. we look at the probability density to find a trajectory at z
conditional on it being reactive), we need to normalize ρR i.e.

ρ̂R(z) = Z−1
R q+(z)q−(z)ρ(z) (51)

where the normalization factor

ZR =

∫
Ω

q+(z)q−(z)ρ(z)dz (52)

is the probability to be A-B reactive. The formula above were first derived in [35] as a
mean to analyze the transition path ensemble sampled by TPS.
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The isosurfaces of ρ̂ in the example of the rugged Mueller potential are shown in fig-
ure 5. Not surprisingly, this density is peaked in the shallow region in between A and B
since this region is a dynamical trap for the transition. This example shows that the in-
formation given by ρR about the mechanism of the reaction is somewhat limited. Note in
particular that ρR is not peaked at the transition state region.

5.4. The current of A-B reactive trajectories. The current of reactive trajectories can
be computed directly from (40). The only difficulty in the calculation is that it requires to
give a precise meaning to this integral since the process z(t), being solution of (8), is not
differentiable in time. For the convenience of the reader, this derivation is given at the end
of this section. The result is

JR = q+q−J + ρq−a∇q+ − ρq+a∇q− (53)

where J was given in (39). Componentwise, (53) is

JR,i = q+q−Ji + ρq−

d∑
j=1

ai,j
∂q+

∂zj
− ρq+

d∑
j=1

ai,j
∂q−
∂zj

(54)

Note that ∇ · JR = 0 outside of A and B, consistent with the fact that there are no other
source or sink of reactive trajectories besides A and B. Note also that

n̂∂A(z) · JR(z) = ρ(z)

d∑
i,j=1

n̂∂A,i(z)ai,j(z)
∂q+(z)

∂zj

= ρ(z)|∇q+(z)|−1
d∑

i,j=1

aij(z)
∂q+(z)

∂zi

∂q+(z)

∂zj
≥ 0.

(55)

where n̂∂A(x) is the unit outward normal of ∂Awhich can also be defined as |∇q+|−1∇q+.
(55) means that all reactive trajectories must go out of A, consistent with their definition.
Similarly, one can also check that the current is consistent with all the reactive trajectories
going into B since

n̂∂B(z) · JR(z) ≤ 0 (56)
where n̂∂B is the unit outward normal of ∂B.

For the Langevin equation (1), (53) reduces to

JR = Z−1
H e−βHq+q−

(
p
−∇U

)
+ kBTγZ

−1
H e−βH

 0

q−
∂q+

∂p
− q+

∂q−
∂p

 (57)

where q−(x,p) = 1− q+(x,−p). For the overdamped equation (4), we have simply

JR = kBTγ
−1Z−1e−βUm∇q (58)

The probability current JR can be analyzed in various ways. Of special interest are the
flowlines of this current, i.e. the solutions of the artificial dynamics

dz(τ)

dτ
= JR(z(τ)) (59)

If we solve this equation with initial conditions z(0) on ∂A, then each solution travels
toward B and eventually reaches B. The set of all these solutions are the flowlines of JR
and they indicate how on average the reactive trajectories proceed to go from A to B. Note
also that each flowline can be weighted according to the probability flux that it carries. This
weighting can be done in various ways, each of which gives some type of information. For
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FIGURE 6. The flowlines of the probability current of reactive trajec-
tories in the example of the rugged Mueller potential. Each flowline is
weighted by the amplitude of the current through the isocommittor 1

2
surface: the darker the line, the higher this amplitude. Thus, the darker
the region, the more flux of reactive trajectories going through this re-
gion. Note that this permits to define transition tubes carrying a certain
percentage of the flux of reactive trajectories. Note also that looking at
the reaction this way, the effect of the dynamical trap that affected the
probability density of reactive trajectories (see figure 5) has been filtered
out and the flowlines go smoothly through this trap.

instance, we can weight each flowline by the minimum of the amplitude of the current
along it, i.e. using

min
0≤τ≤τB

|JR(z(τ))| (60)

where z(0) ∈ ∂A and z(τB) ∈ ∂B. Another possibility is to assign as weight the am-
plitude of the current normal to a given dividing surface S, i.e. a hypersurface in Ω that
separates A and B. This amounts to using

n̂S(z(τ∗)) · JR(z(τ∗)) (61)

where n̂S(z) is the unit normal to S pointing toward B and z(τ∗) ∈ S is the first location
where the flowline z(τ) crosses S. We applied this second procedure in the example of
the rugged Mueller potential, using the isocommittor surface {x : q+(x) = 1

2} as dividing
surface, see figure 6. This procedure can be used to define transition tubes, an issue on
which we will come back in section 6. The integral of the current through a dividing
surface gives the total probability flux through this surface, i.e. the reaction rate νR. This
is discussed next in section 5.5.

Remark: reactive trajectories vs flowlines. The flowlines of the probability current of re-
active trajectories should not be confused with the reactive trajectories themselves. While
the latter are random and typically quite complicated, the former are averaged objects in
which all unnecessary details about the reaction have been filtered out. For instance, if
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there are dead ends along the way between the sets A and B or dynamical traps, this af-
fects the reactive trajectories that will wander in these dead ends and traps for what can be
long periods of time. But typically these wanders amount to the trajectories going back and
forth on themselves, and so they do not contribute to the current nor its flowlines. We have
already illustrated this point on the maze example shown in figure ?? and it is why looking
at the flowlines of the current of reactive trajectories rather than the reactive trajectories
themselves is a much better way to characterize the mechanism of the reaction.

Derivation of (53). The integral in (40) can be interpreted as

JR(z) = lim
h→0

lim
N→∞

1

N

N∑
n=1

δ(z − zn)a+
n+1a

−
n−1

zn+1 − zn−1

2h
(62)

where zn = z(nh), a+
n = 1 if the trajectory starting from zn will reach B before A and

a+
n = 0 otherwise, and a−n = 1 if the trajectory arriving at zn left A rather than B last and
a−n = 0 otherwise. By the ergodicity assumption, the limit as N → ∞ of (62) is easy to
compute:

JR(z) = lim
h→0

1

2h

∫
δ(z − z0)q+(z1)q−(z−1)ρ(z−1)p

z−1

h (z0)pz0

h (z1)

× (z1 − z−1)dz−1dz0dz1

(63)

where pzh(z′) is the probability density of z(h) conditional on z(0) = z. To compute the
limit as h→ 0, we can now use

pzh(z′) = δ(z′ − z) + hL∗z′δ(z
′ − z) + o(h) (64)

where L∗z′ is the forward operator defined in (12), with the subscript added to stress that it
acts on the variable z′. Inserting this expression in (63) permits to take the limit as h→ 0
and gives (53) after some straightforward algebra.

5.5. The transition rates. Let S be any dividing surface. Then by definition

νR =

∫
S

n̂S(z) · JR(z)dσS(z) (65)

Since JR is divergence-free, it is easy to see that the integral over S defined above is
actually independent of S. In fact, one can show that [65]

νR =

∫
Ω

d∑
i,j=1

ai,j(z)
∂q+(z)

∂zi

∂q+(z)

∂zj
ρ(z)dz. (66)

For the Langevin equation (1) this is

νR = kBTγZ
−1
H

∫ d∑
i=1

mi

(
∂q+

∂pi

)2

e−βH(x,p)dxdp. (67)

and for the overdamped equation

νR = kBTγ
−1Z−1

∫ d∑
i=1

mi

(
∂q+

∂xi

)2

e−βU(x)dx. (68)

How (67) reduces to (68) in the limit when γ � 1 is explained in [65].
Let us now consider the rates kA,B and kB,A defined in (43). Clearly, these rates can be

expressed as
kA,B =

νR
ρA
, kB,A =

νR
ρB

(69)
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where ρA and ρB are defined as

ρA = lim
T→∞

TA
T
, ρB = lim

T→∞

TB
T

= 1− ρA (70)

Since the time t contributes to TA if at that time the trajectory visited A rather than B last,
is easy to see that

ρA =

∫
Ω

ρ(z)q−(z)dz, ρB =

∫
Ω

ρ(z)(1− q−(z))dz. (71)

5.6. Definition of the sets and reduced dynamics. The framework of TPT does not re-
quire any specific property about the sets A and B and it can be used to characterize the
reaction between any pair of such sets. In most situations, however, we are not inter-
ested in understanding the reaction between arbitrary sets, but rather between sets that are
metastable. How should such metastable sets be defined? Intuitively, one would like that
when the trajectory reaches one of these metastable sets, it spends a long time around this
set and lose memory of where it came from before visiting another metastable set – the
standard jargon is then to say that the trajectory commits to the metastable set before vis-
iting another. Only if that is the case can we expect that the dynamics of the system will
be reducible to a continuous-time Markov chain with the sets playing the role of the states
in this chain and with some appropriate rates for the transition between the sets. The ques-
tions then become how to characterize concretely metastable sets with the property above
and how to compute the rates.

Definition of the sets. To answer the first question, a suitable set of metastable sets should
be such that (i) any trajectory launched from outside the sets reaches one of these sets
quickly and (ii) any trajectory launched from inside one of these sets takes a very long
time to reach another set2. Given a collection of sets, testing for these two properties is
in principle doable. How to obtain such a collection of sets in practice is a much more
complicated question, and one we shall not dwell upon further here since, typically, an-
swering this question will require some a priori knowledge of the system, i.e. it will be
system specific (see however section ??). Let us simply note that the metastable sets and
their number can vary and depend on the time scale at which one looks at the system. In-
deed this specifies what one means by quick and slow in the properties (i) and (ii) above,
and there can be different timescales for which these two requirements are satisfied with
different sets.

Reduced dynamics. Regarding the rates to be used to characterize the transition between
metastable sets, the main additional difficulty with respect to what we discussed in sec-
tion 5.5 is that there may be more than two metastable sets. However handling such situa-
tions is straightforward and amounts to repeating the calculations made before for different
partitions of the sets. Suppose indeed that the metastable sets are B1, B2, . . . , BN . For
every i = 1, . . . , N , take A = Bi and B = ∪j 6=iBj . Denoting by ki,j the rate at which
the transition from set Bi to set Bj occurs, it is then easy to see that the total rate of escape
from Bi = A is

N∑
j=1
j 6=i

ki,j = kA,B . (72)

2To avoid confusion, note that these sets do not need to partition state-space. To the contrary it will typically
be easier to satisfy requirements (i) and (ii) with rather small sets with lot of space in between.
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To get the individual rates ki,j we then simply need to estimate the probability that the
system reaches a specific Bj starting from Bi. This probability is simply the portion of the
flux of reactive trajectories going into Bj divided by their total flux going into ∪j 6=iBj :

pi,j =

∫
∂Bi

n̂∂Bi
(z) · JR(z)dσ∂Bi

(z)∑
j 6=i
∫
∂Bj

n̂∂Bj
(z) · JR(z)dσ∂Bj

(z)
. (73)

The denominator in this equation is just νR = kA,BρA. Combining (72) and (73) we see
that

ki,j = ρ−1
A

∫
∂Bi

n̂∂Bi
(z) · JR(z)dσ∂Bi

(z). (74)

Thus, by successively treating every set Bi as reactant set and its complement ∪j 6=iBj as
product set, we can obtain all the rates ki,j using TPT. Assuming that requirements (i) and
(ii) above are satisfied, the reduced dynamics where one maps the trajectory onto the index
of the last metastable set Bj it visited can then be approximated by a continuous-time
Markov chain with the rates given by (74).

5.7. Generalization: discrete TPT. It is straightforward to generalize TPT to discrete
systems whose dynamics is described by a discrete- or a continuous-time Markov chain [44]
(see also [72, 3]). Discrete TPT has become the tool of choice for analyzing the Markov
State Models (MSMs) that have recently become popular to postprocess long MD simu-
lation data data [55, 36, 40, 60, 59, 58, 13, 47, 50, 10]. In particular, like its continuous
counterpart, discrete TPT gives expressions for the probability density and current of the
reactive path, and thereby permits to calculate the equivalent of the flow lines of the current
of reactive trajectories as well as the rate of the reaction. Often in these examples, the size
of the chain, while big, remains small enough that the objects of TPT (in particular the
committor functions) can be calculated directly using standard tools from numerical linear
algebra and without having to make additional approximations. We refer the readers to
[44] for details.

5.8. Connection with transition state theory. First, let us formulate TST in more general
terms. TST computes the average frequency through a dividing surface S between A and
B rather than the reaction rate between these sets themselves as in TPT. More precisely,
let NS

T be the number of times the trajectory crosses S from the side where A is to the
one where B is in the interval [0, T ] (note that this number is, up to plus or minus 1, the
same as the number of crossings of S in the other direction, and half the total number of
crossings of S). Then the TST gives an exact expression for

νTST = lim
T→∞

NS
T

T
. (75)

To see how this limit can be computed, let θ(z) be such that θ(z) < 0 if z is on the side
of S where A is, θ(z) > 0 if z is on the side where B is, and θ(z) = 0 if z ∈ S. Then we
can write the following exact counter for NS

T :

NS
T =

∫ T

0

H(ż(t) · ∇θ(z(t)))
d

dt
H(θ(z(t)))dt (76)

where H(θ) is the Heaviside theta function. Indeed the integral of d
dtH(θ(z(t))) on any

interval such that the trajectory crosses S once from the side where A is to the one where
B is counts for 1, and only these crossings are accounted for because of the factorH(ż(t) ·
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∇θ(z(t))). The limit in (75) can be computed exactly using the ergodicity assumption and
the equality

d

dt
H(θ(z(t))) = ż(t) · ∇θ(z(t))δ(θ(z(t)))

The calculation gives

νTST =

∫
Ω

(b̃(z) · ∇θ(z))+δ(θ(z))ρ(z)dz (77)

where (b̃ · ∇θ)+ = max(b̃ · ∇θ, 0) and b̃(z) is the modified drift with components3

b̃i(z) = bi(z) +

d∑
j,k=1

∂σi,k(z)

∂zj
σj,k(z) (78)

To derive (77) we had to assume that the unit normal to the surface does not span the
direction in which the noise term in (8) acts, i.e. n̂S(z) · σ(z)ẇ(t) = 0 or, equivalently,
σT (z)n̂S(z) = 0. If that is not the case, then we cannot count the number of crossings of
S by z(t) and νTST = ∞. Dividing surfaces such that σT n̂S = 0 exist for the Langevin
equation (1): it suffices to take S = {(x,p) : θ(x) = 0} where θ(x) is a function of the
positions but not the momenta, in which case (77) reduces to

νTST = Z−1
H

∫
(pTm−1∇θ(x))+δ(θ(x))e−βH(x,p)dxdp

=

√
kBT

2π
Z−1

∫
Ω

∣∣m−1/2∇θ(x)
∣∣δ(θ(x))e−βU(x)dx

(79)

where Z =
∫
e−βU(x)dx and we obtained the second equality by performing explicitly

the integration over the momenta. However, surfaces such that σT n̂S = 0 do not exist for
the overdamped equation (4), i.e νTST =∞ in that case.

(77) is the standard expression for the TST rate. It can be re-expressed as a surface
integral to make explicit that it does not depend on the way we parametrized S by θ(z):

νTST =

∫
S

(b̃(z) · n̂S(z))+ρ(z)dσS(z). (80)

Clearly νTST ≥ νR since every transition fromA toB is associated to at least one one-sided
crossing of S, but not every one-sided crossing of S leads to a transition fromA toB. This
means that νTST can be a poor approximation of νR if the reactive trajectories tend to cross
several times the dividing surface. When that is the case, the standard jargon is to say that
there are many recrossing events, and the ratio νR/νTST is what is called the transmission
coefficient of the dividing surface. We will come back to this issue in section 6.2.1 where
we will analyze when (and for which dividing surface) νTST is an accurate approximation
of νR. This will also allow us to discuss the concept of transition state which is not readily
apparent in the formulas above.

Within the TST context, it is also possible to account for the recrossing events and
correct νTST to get νR. To do so, it suffices replace the counter in (76) by the following
counter for NT :

NT =

∫ T

0

1R(t)
d

dt
H(θ(z(t)))dt (81)

3The modified drift b̃(z) rather than b(z) enters (77) because the calculation requires to reinterpret (8) in
Stratonovich sense, in which case the drift term becomes b̃(z). Notice however that b̃(z) = b(z) if σ is
independent of z, e.g. like for the Langevin equation.
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Indeed the factor 1R(t) permits to focus on the reactive trajectories, and every such tra-
jectory crosses S one time more going from the side where A is to the one where B is
than the other way around. As a result, the integral of d

dtH(θ(z(t))) along each reactive
trajectory gives exactly 1. Dividing NT by T and letting T →∞, (81) gives the following
expression for νR:

νR =

∫
Ω

b̃(z) · ∇θ(z)δ(θ(z))q+(z)q−(z)ρ(z)dz

=

∫
S

b̃(z) · n̂S(z)q+(z)q−(z)ρ(z)dσS(z).

(82)

This expression is less general than the TPT expressions (65) and (66) (recall that the
normal to S cannot spend the direction in which the noise act for (82) to be valid), but it
can be seen that (82) is equivalent to (65) in that case. Indeed, using (53) and σT n̂S = 0,
we see that

n̂S · JR = q+q−n̂S · J = q+q−n̂S · b̃ρ (83)
which is precisely the integrand in (82).

The fact that the TST expression for νR is less general than that of TPT is not the most
important limitation of TST, however. Its most important limitation is that, unlike TPT,
TST gives no information about the reaction other than its rate.

6. ASYMPTOTIC SOLUTIONS BASED ON TPT

6.1. Transition tubes. TPT indicates that the committor functions are key objects that
characterize the mechanism of a reaction since they determine both the probability density
and the current of reactive trajectories. A main issue then is how to estimate these functions
and their gradients in systems of actual interest. As already mentioned in section 5.2
the main difficulty stems from the fact that such systems are typically high dimensional,
and therefore standard numerical methods such as finite difference or finite element are
ineffective. Here we discuss one possible way of approximating the committor function
which is the basis of the string method that we shall discuss in sections 7, 8 and 9. It also
allows to establish a rationale behind the objects calculated by other chain of state methods.

For simplicity, we will discuss first the case of the overdamped dynamics:

ẋ = −∇U(x) +
√

2kBT ẇ(t) (84)

This is (4) in which we setmi = γ = 1; this simply amounts to using mass-weighted coor-
dinates, i.e. use m1/2x as new positions and γ−1t as new time. Later we will translate our
results to the original variables and explain how to generalize our results to the Langevin
equation (1). The committor functions associated with (84) are such that q+(x) = q(x)
and q−(x) = 1− q(x) where q(x) satisfies

−∇U · ∇q + kBT∆q = 0, x 6∈ A ∪B,
q = 0, x ∈ A,
q = 1, x ∈ B,

(85)

To proceed we shall make two main assumptions: (i) most of the flux of reactive tra-
jectories goes through one or a few isolated and localized tubes and (ii) in these tubes, the
isosurfaces of q(x) are locally planar. To avoid confusions, we stress that the localized
tube assumption is about the flux of reactive trajectories and not the reactive trajectories
themselves: the flux may very well be localized in a few tubes even in situations where the
reactive trajectories are not. Under these two assumptions, the function q(x) can locally
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be approximated using its values along a suitably chosen curve – the value of q(x) at any
point x outside the curve is the same as its value at the point closest to x on the curve.
The main question then becomes where to place the curve(s) in such a way that it lies at
the center of the reaction tube(s) carrying most of the flux of reactive trajectories. Before
addressing this question, let us make precise the concept of reaction tube as well as the
locally planar isocommittor surface ansatz for q(x).

Defining transition tubes via the flux density across the isocommittor surfaces. The current
of reactive trajectories associated with (84) is

JR(x) = Z−1e−βU(x)∇q(x) (86)

Suppose that we look at the flux induced by this current through a given set of surfaces that
foliate space between A and B, i.e. such that they each are a dividing surface, they do not
intersect, and their union is the region between A and B. Suppose in addition that there
exists regions where this flux is localized in each surface (e.g carry a certain percentage of
the total flux through each surface). Then the ensemble of these regions will form one or
more of the transition tubes carrying this percentage of the flux of reaction trajectories.

Which surfaces should we use in this construction? The correct ones are the isocom-
mittor surfaces {q(x) = q∗} with q∗ ∈ [0, 1]. These surfaces form a foliation. In addi-
tion, they have the remarkable property that the flux intensity through these surfaces, i.e.
jR(x) = n̂ · JR = ∇q · JR/|∇q| or explicitly from (86)

jR(x) = Z−1e−βU(x)|∇q(x)| (87)

is, up to a normalization constant, proportional to the probability density of the last hitting
point of the reactive trajectories in the surface. This property was established in [71] and
its proof is quite technical, but it can be understood as follows. Consider the reactions from
the extended reactant sets A(q∗) = {x : q(x) ≤ q∗}, where q∗ ∈ [0, 1], to the product
set B. Because the isocommittor surfaces foliate space between A and B, the extended
reactant sets are nested into one another, i.e. A(q) ⊂ A(q′) if q < q′, and it is easy to see
that the committor functions for the reaction from A(q∗) to B is simply

q̃q∗(x) =
q(x)− q∗

1− q∗
(88)

since this function solves (85) in the region between A(q∗) and B with the right boundary
conditions. In particular, the flowlines of the current of the reaction from the extended set
A(q∗) toB are the same as those of the reaction fromA toB past the isosurface q(x) = q∗,
and the flux they carry is simply proportional in both cases. This is to say, the reaction from
A to B past the isosurface q(x) = q∗ happens exactly as the reaction from A(q∗) to B
and what happened before q(x) = q∗ has become irrelevant. This is why it is natural to
look at the flux of reactive trajectories out of these extended reactant sets, i.e. across the
isocommittor surfaces, to define the transition tubes.

Approximations of the committor function. Suppose that we connect the center of the re-
gions where a transition tube intersect the isocommittor surfaces. This defines a curve γ.
Let us parametrize the points along this curve by ϕ(s) with s ∈ [0, L]: here s is the ar-
clength along γ and L is the length of this curve so that |ϕ′(s)| = 1 (later it will be more
convenient to use other parametrizations, e.g. based on normalized arclength, but this one
is simpler for the calculations in this section). Define the function s : Ω→ [0, L] via

s(x) = arg min
s
|ϕ(s)− x| (89)
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FIGURE 7. Isosurfaces of the function s(x) defined in (89) and associ-
ated with the unit length (L = 1) curve shown in gray. The ansatz (91)
amounts to assuming that locally around such a curve the isosurfaces of
s(x) and those of q(x) coincide.

The value of s(x) at point x is the arclength of the point ϕ(s(x)) along the curve which
is the closest to x. The isosurfaces of s(x) are subsets of planes which are perpendicular
to the curve at point ϕ(s(x)), see figure 7 for an illustration. The function s(x) can also
be characterized by the equation

ϕ′(s(x)) · (ϕ(s(x))− x) = 0. (90)

Assuming that the isocommittor surfaces are locally planar around the curve γ at the center
of a transition tube is then equivalent to assuming that locally in this tube q(x) can be
represented as

q(x) = f(s(x)) (91)

In words, the function f : [0, L] → [0, 1] specifies the value of q(x) along the curve, and
the value of q(x) at any point x not on the curve is the same as the one at the point on
the curve closest to x, ϕ(s(x)). (91) implies that the isosurfaces of q(x) are the same as
the ones of s(x), up to relabeling. Note that (91) is supposed to hold only in the transition
tube, i.e. only locally in the vicinity of the curve γ.

The catch of course is that we do not know the isocommittor surfaces beforehand, so to
proceed we will have to turn the construction above upside down and identify the curve γ
first, then deduce the structure of the committor function locally around this curve via the
ansatz (91). This is what we do next in sections 6.2, 6.3 and 6.6 under various assumptions.
As we will see this will also allow us to deduce the value of the function f(s) in (91).

6.2. The minimum energy path. In this section we will assume that there exists one (or
more generally a few) line of current γ that carries most of the flux of reactive trajectories
(i.e. the transition tubes are very thin). Then, following the construction outlined in 6.1,
this line of current must be such that it maximizes jR(x) in each isosurface of q(x). Using
the ansatz (91), which implies that ∇q(x) = f ′(s(x))∇s(x), in (87) this is equivalent to
the requirement that

In s(x) = s, Z−1e−βU(x)f ′(s)|∇s(x)| must be maximum at x = ϕ(s) (92)
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This also means that the gradient of jR(x) must be parallel to ∇s(x) along γ, i.e. (ne-
glecting factors that are constants in s(x) = s)

∇
(
e−βU(ϕ)|∇s(ϕ)|

)
must be parallel to∇s(ϕ) along γ (93)

To make this equation explicit, take the gradient of (90) with respect to x to obtain

∇s(x) (1 +ϕ′′(s(x)) · (ϕ(s(x))− x)) = ϕ′(s(x)) (94)

where we used |ϕ′| = 1. Note that if x is a point along the curve, x = ϕ(s) and (94)
reduces to

∇s(ϕ) = ϕ′(s) (95)

(94) implies that

∇
(
e−βU(x)|∇s(x)|

)
= e−βU(x)|∇s(x)| (−β∇U(x) + |∇s(x)|ϕ′′(s(x))) (96)

Along the curve we have |∇s(ϕ)| = 1 from (95) and (96) reduces to

∇
(
e−βU(ϕ)|∇s(ϕ)|

)
= e−βU(ϕ) (−β∇U(ϕ) +ϕ′′) (97)

Inserting (95) and (97) in (93) gives the condition

−β∇U(ϕ) +ϕ′′ must be parallel to ϕ′ along γ (98)

Equivalently this can be written as

−β[∇U ]⊥ +ϕ′′ = 0 (99)

where [∇U ]⊥ = ∇U − (∇U · ϕ′)ϕ′ is the component of ∇U perpendicular to γ and
we used [ϕ′′]⊥ = ϕ′′. Condition (99) is well-known: it is the equation for the path
of max-flux originally derived in [4] using a different approach. As we will see next in
section ??, when the most of the flux of reactive trajectory is indeed carried by the flowline
satisfying (99), the term ϕ′′ is a small correction compared to −β[∇U ]⊥ and therefore
(99) can be approximated by

[∇U ]⊥ = 0 (100)

We recover the equation for the minimum energy path (MEP) defined earlier. Algorithms
to solve (99) and (100) will be discussed in section 7.

What about the function f? Let us start from expression (65) for the rate νR using the
isocommittor surface q(x) = f(s) as particular dividing surface:

νR =

∫
q(x)=f(s)

n̂(x) · JR(x)dσ(x) (101)

where n̂(x) denotes the unit normal to q(x) = f(s) and dσ(x) the surface element in this
surface. Using (86) as well as the ansatz (91) and rewriting the surface integral as a volume
integral using the Dirac delta function gives

νR = f ′(s)

∫
|∇s(x)|2Z−1e−βU(x)δ(s(x)− s)dx (102)

By our assumption that most of the flux of reactive trajectories goes through a thin tube
around γ the integral in (102) is dominated by a small region around γ. This means that
we can approximate |∇s(x)|2 by its value along γ, i.e. by |ϕ′|2 = 1 according to (95),
and get

νR = f ′(s)e−βF (s) (103)
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where we defined the free energy of s(x):

F (s) = −kBT ln

∫
Z−1e−βU(x)δ(s(x)− s)dx (104)

Since νR is independent of s, differentiating (103) with respect to s give the following
second order ordinary differential equation for f :(

f ′e−βF
)′

= 0, (105)

to be solved with the boundary conditions f(0) = 0, f(L) = 1. This gives

f(s) =

∫ s
0
eβF (s′)ds′∫ L

0
eβF (s′)ds′

. (106)

Note also that inserting back this expression in (103) implies that

νR =
(∫ L

0

eβF (s′)ds′
)−1

(107)

In terms of the non-mass-weighted coordinates and the original units of time, (104) remain
valid but (106) must be replaced by

f(s) =

∫ s
0
|m−1/2ϕ′(s′)|2eβF (s′)ds′∫ L

0
|m−1/2ϕ′(s′)|2eβF (s′)ds′

. (108)

and we need to multiply (107) by γ−1. Algorithms to calculate the free energy F (s) will
be discussed in section 9.1 in the context of the finite temperature string method.

6.2.1. Connection with variational transition state theory. Recall that for Langevin dy-
namics, the TST rate is given by (79)4. In that formula, the dividing surface is arbitrary.
Since, as was explained in section 5.8, νTST always overestimates the actual reaction rate
νR, a natural thing to do is to optimize the dividing surface so as to minimize the TST
rate. This is what is referred to as variational transition state theory (VTST) and it amounts
to viewing (79) as an objective function to be minimized over all possible dividing sur-
faces. The Euler-Lagrange equation for this minimization problem can be written down
explicitly [34, 67] (for simplicity we go back to mass-weighted coordinates)

−β∇U · n̂S + κS = 0 (109)

where n̂S is the unit normal to the surface and κS = ∇ · n̂S its local curvature, and we
must look for a solution of (109) that leaves the reactant set on one side and the product
set on the other. (109) is a complicated equation. It becomes much simpler, however, if we
assume that the curvature term in this equation is small and can be neglected. In this case,
(109) reduces to

∇U · n̂S = 0 (110)
The solutions are the stable manifold of any saddle point, i.e. the set of all initial conditions
such that the solutions of ẋ = −∇U(x) converge to the saddle point as t → ∞. This set
forms a dividing surface.

The above considerations show why the MEP is relevant also in the context of VTST.
Indeed, having identified a MEP between two minima, we can localize the saddle point
along it, and thereby calculate at least locally (e.g. by using a planar approximation) the

4Note that this formula is independent of the friction coefficient γ, so we can in principle take the overdamped
limit as γ � 1 without changing the result. There is a catch, of course: while νTST is independent of γ, νR is
not, which also means that how much recrossings events there are depends on γ in a way that we cannot predict
a priori. Since we are primarily interested in νR, not νTST, this is a problem.
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optimal dividing surface according to (110). The question, however, is when is this a
good approximation? Clearly, we again need the potential to be smooth rather than rugged
since otherwise there would be too many critical points in the system. In fact, to justify
neglecting the curvature term in (109) and to derive (110), we need to be in a situation
where LDT applies: the potential U(x) must have only a few critical points, among which
a few local minima that are all separated by energy barriers that are much larger than kBT .
As we have already mentioned, such situations are quite restrictive.

Finally, notice that even the TST rate associated with the optimal dividing surface may
be a poor approximation of νR if there are substantial recrossings. These problems are
overcome in TPT since TPT considers a family of isocommittor surfaces that foliates the
configuration (or phase) space between the reactant and product sets, not just a single
dividing surface.

6.3. Working with collective variables: the minimum free energy path. As we have
explained in section 6.2, a main difficulty in realistic examples is that their potential energy
surface is typically rugged, and when that is the case, it becomes the wrong question to look
for most probable transition paths. One way to go around this problem is to introduce some
appropriate collective variables, i.e. a set of functions θi : Ω→ R with i = 1, . . . , D, and
try to reformulate the problem in terms of these variables rather than the original ones.
As we will see in a moment, this amounts to analyzing the reaction using the free energy
landscape associated with the variables θ = (θ1, . . . , θD) rather than the original energy
landscape U(x). If the collective variables are well-chosen (which is a nontrivial issue that
we will come back to later) and D � d, we may expect that the free energy landscape
will be smooth even if U(x) is rugged, and entropic effects will be less of an issue as
well. Note that there is an obvious similarity to the notion of reaction coordinates that are
commonly used in the literature. Here we use “collective variables” for two reasons: The
first is that “reaction coordinates” is by now a very much abused terminology. The second
is that reaction coordinates usually involve one or very few variables, whereas collective
variables can live in rather high dimensions, i.e. D can still be very large even if it is
smaller than d.

How can we formalize the idea of analyzing the reaction by means of the collective vari-
ables? Let us answer this question first in the context of the overdamped equation (1) (in
this section we will work with the original non-mass-weighed coordinates) and consider the
Langevin equation later in section 6.5. A set of collective variables θ = (θ1, . . . , θD) is ad-
equate to describe the reaction if the committor function of the reaction can be parametrized
using these variables, i.e.

q(x) ≈ Q(θ(x)) (111)

for some suitable Q(θ). Inserting this ansatz into the objective function (46) for q(x), it is
easy to see that this objective function can be re-expressed as

I(Q) =

∫
RD

D∑
i,j=1

Mi,j(θ)
∂Q

∂θi

∂Q

∂θj
e−βG(θ)dθ (112)

where we defined the free energy associated with the variables θ,

G(θ∗) = −kBT ln

(
Z−1

∫
Rd

e−βU(x)
D∏
i=1

δ(θi(x)− θ∗i )dx

)
(113)
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and the metric tensor Mi,j(θ)

Mi,j(θ
∗) = kBTγ

−1

〈
d∑
k=1

m−1
k

∂θi
∂xk

∂θj
∂xk

〉
θ(x)=θ∗

(114)

where 〈·〉θ(x)=θ∗ denotes canonical expectation conditional on θ(x) = θ∗. The Euler
Lagrange equation associated with the minimization of (112) is

−βM∇θG · ∇θQ+ divθM · ∇θQ+M : ∇θ∇θQ = 0, θ 6∈ A ∪ B
Q = 0, θ ∈ A
Q = 1, θ ∈ B

(115)

whereA and B are the projections to the collective variable space of the reactant set A and
the product set B, respectively.

Remarkably, (115) is the equation for the (forward) committor of a reaction associated
with the following evolution equation for the collective variables θ:

θ̇ = −βM∇θG+ divθM +
√

2M1/2 ẇ (116)

which is similar to the original overdamped equation (4), except that the dimensionality of
space is reduced (D instead of d) and the friction has become space-dependent – the metric
tensor M(θ) plays the role of kBTγ−1m−1 in (4) and it depends on θ in general because
of the curvilinear nature of the coordinates θ. Therefore, using TPT, we can define the
probability density of reactive trajectories associated with (116), their probability current,
etc. and get information about the original reaction under the assumption that (111) holds.

This also means that we can generalize the construction made in sections 6.1 and 6.2
to (116). The equivalent of the ansatz (91) is obtained by picking a curve γ in collective
variable space, parametrizing it by ϕ(s) as before (but with ϕ(s) ∈ RD), defining the
equivalent of the function s(x), i.e. the function s(θ) specified by

M−1(ϕ(s(θ)))ϕ′(s(θ)) · (ϕ′(s(θ))− θ) = 0, (117)

and assuming that

Q(θ) = f(s(θ)) (118)

As in section 6.2, under the assumption that most of the flux of reactive trajectories as-
sociated with (116) are carried by the thin tubular neighborhood of one or a few isolated
curves, we can identify these curves using the look-forward property. The only additional
difficulty is the presence of the tensor M(θ), but this difficulty can be handled easily by an
appropriate change of metric. Skipping the details, the equivalent of (??) is (assuming for
simplicity that M(θ) is a slowly varying function of θ)

−β[M∇θG]⊥ +
ϕ′′

|M−1/2ϕ′|
= 0, (119)

the equivalent of (??) is

[M∇θG]⊥ = 0 (120)

and the equivalent of (108) is

f(s) =

∫ s
0
|M1/2(ϕ(s))ϕ′(s′)|2eβF (s′)ds′∫ L

0
|M1/2(ϕ(s))ϕ′(s′)|2eβF (s′)ds′

. (121)



MODELING RARE TRANSITION EVENTS 29

where F (s) is the free energy of s(θ)

F (s∗) = −kBT ln

∫
e−βG(θ)δ(s(θ)− s∗)dθ

= −kBT ln

∫
Z−1e−βU(x)δ(s(θ(x))− s∗)dx

(122)

Equation (119) defines the path of maxflux in collective variable space whereas equa-
tion (120) defines the minimum free energy path (MFEP). As before, when the assumptions
leading to (119) are satisfied, the second term in this equation is a small correction, i.e. its
solution can be approximated by the MFEP. Algorithms for identifying MFEPs will be
presented in section 8.

6.4. What is a good set of collective variables? For the MFEP solution of (120) to be
relevant, clearly we need to be in a situation where LDT applies to (116). This requires that
the free energyG(θ) has only a few critical point, among which a few local minima that are
all separated by free energy barriers that are much larger than kBT . In other words, G(θ)
must be smooth which, as explained before, is a less stringent requirement than asking that
U(x) is smooth.

Unfortunately, the smoothness of G(θ) is necessary but not sufficient to validate the
MFEP. Indeed we also need that the manipulations that led to (116) be justified which,
ultimately, amounts to justifying the approximation (111). This is a difficult question to
which a definite answer is not yet available. We should, however, dispel a possible source
of confusion: good collective variables (in the sense that (111) holds) are not necessarily
slow variables. At first sight, we may think that they should be slow, but the following
example shows that this is not necessarily the case and that slow variables can even be
the wrong ones to describe a reaction. Consider the two-dimensional overdamped system
governed by {

γxẋ = −∂xU(x, y) +
√

2kBTγx ẇx(t)

γy ẏ = −∂yU(x, y) +
√

2kBTγy ẇy(t)
(123)

where U(x, y) = (1− x2)2 + y2. Assume that γy � γx. This means that x evolves much
faster than y. At the same time, there is metastability in the x-direction and this is also
the direction in which the reaction occurs. This is not a paradox: while x is faster than y,
there is a hidden slow time scale in the x variable related to the hopping over the barrier,
and if the barrier ∆U is high enough that γ−1

x e−β∆U � γ−1
y � γ−1

x , the slow time scale
associated with the transition will be the slowest in the system. Therefore θ(x, y) = x
is a good collective variable for describing the reaction (indeed q(x, y) ≈ q(x) for this
reaction), but it is not a slow variable in the usual sense. This example illustrates reactive
events are rare because they involve many failed attempts, each of which can be pretty fast,
as the ones that do succeed.

The example above is specific, but the message it carries is quite general. To see why,
just think about picking q(x) itself as single collective variable, i.e. use θ(x) = q(x).
Then, obviously, (111) is exact with Q being the identity function. But q(x) is not a slow
variable in general, in the sense that it does not satisfy a closed equation. In fact, q(x)
satisfies

q̇ =
√

2kBTγ−1m−1/2∇q · ẇ(t), (124)
which is not closed (and cannot be closed in general because ∇q is not a function of q).
Note that the equivalent of (116) in this case is the averaged version of (124)

q̇ =
√

2kBTγ−1σ(q)ẇ(t) (125)
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where σ(q∗) =
√
〈m−1∇q · ∇q〉q(x)=q∗ . This raises the question: what is the range of

validity of the dynamical equation (116)? The above considerations shows that it can be
used to analyze the mechanism of a reaction, but it does not necessarily capture the true
dynamics of the collective variables. Again, this is not a paradox: the reactive trajectories
from different dynamics can have the same statistical properties.

6.5. The case of the Langevin equation. Generalizing the ideas of the previous sections
to the Langevin equation (1) poses an additional difficulty, namely that the equivalent of the
objective function (46) does not exist for q+(x,p). This is related to the fact that, unlike
the overdamped dynamics, the Langevin dynamics is not statistically invariant under time
reversal (invariance requires to also flip the momenta). One way to go around this difficulty
is to replace (46) by the following least square principle in which we minimizes

Ĩ(q+) = Z−1
H

∫
|Lq+|2e−βH(x,p)dxdp (126)

where L is the generator of the Langevin equation:

Lq+ = m−1p · ∇xq+ −∇U · ∇pq+ − γp · ∇pq+ + γkBTm : ∇p∇pq+ (127)

Clearly, the solution of Lq+ = 0 is a minimizer of (126). (126) can be used as the starting
point for further approximations. One such approximation is based on the assumption that
the committor function q+(x,p) can be represented by a function of the positions only, i.e.

q+(x,p) ≈ q(x) = 〈q+(x,p)〉p (128)

If one inserts this ansatz into (126) and performs explicitly the integration over the mo-
menta, it is easy to see that Ĩ(q) reduces exactly to the objective function (46) that arises in
the context of the overdamped equation (4). As explained in section 6.3, this does not mean
that the overdamped equation necessarily captures the actual dynamics of the system. It
simply means that it can be used to explain the mechanism of the reaction if one assumes
that (128) holds. Under this assumption, we can use all the technology developed in sec-
tions 6.2 and 6.3 to analyze the reaction either via identifying the MEPs (if appropriate), or
MFEPs (if appropriate). Under this assumption, we can also use the procedure explained
next in section 6.6 when neither the MEP nor the MFEP are the relevant object.

6.6. Going beyond the thin tube assumption via principal curves. One main difficulty
with the MEP is that it gives a viewpoint on the reaction that is too local. Indeed by trying
to identify a single line of current that carries most of the flux of reactive trajectories, one
ignores reaction channels that are less favorable energetically, but are broader and may
indeed carry more flux. The same criticism may apply to the MFEP, though to a less
extend.

In order to go beyond the concepts of MEP or MFEP, we must look at the problem more
globally. One possibility, advocated in [20, 54, 21, 70], is as follows. Instead of trying to
identify the point that maximizes the current intensity on each isocommittor surfaces, as
we did in section 6.2 to get the MEP, we can look for the position in these surfaces which
is centroidal with respect to the current intensity jR(x) defined in (87). In other words,
assuming that (91) holds, we can look for ϕ(s) that solves for every s ∈ [0, L]

0 =

∫
s(x)=s

(x−ϕ(s))jR(x)dσ(x)

≡ Z−1f ′(s)

∫
s(x)=s

e−βU(x)(x−ϕ(s))|∇s(x)|2δ(s(x)− s)dx
(129)
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where dσ(x) denotes the surface element in s(x) = s and we used |∇q| = f ′(s)|∇s|. If
we neglect curvature effects and approximate |∇s| by its value |ϕ′| = 1 along the curve
(see (95)), up to an irrelevant proportionality factor (129) reduces to the following equation
for ϕ(s)

0 =

∫
(x−ϕ(s))e−βU(x)δ(s(x)− s)dx (130)

(130) means that the conditional canonical expectation of x in s(x) = s must be ϕ(s) for
every s ∈ [0, L], i.e.

ϕ(s) = 〈x〉s(x)=s (131)

The curve satisfying this requirement is an object familiar in the statistics literature [29, 30]
called the principal curve associated with the density Z−1e−βU(x). The main advantage of
the principal curve over the MEP is that it permits to look more globally at the flux going
through each isocommittor surface. Indeed, the principal curve γ identified via (131) is
not anymore meant to be a single line of current that carries most of the flux, but rather the
center of a tube carrying most of the flux, and its location is influenced by the width of the
tube. Since (131) also involves an average in each isocommittor surface, this smoothes out
irrelevant details on the thermal scale or below in these surfaces and makes that the curve
γ is less sensitive to these details. This is illustrated in the context of the rugged Mueller
potential example in figure 8.

Note that we can include the next order term in (131) by using (94) to approximate
|∇s|2 as

|∇s|2 ≈ 1− 2ϕ′′ · (x−ϕ) (132)

It is easy to see that using this approximation in (129) gives the equation

0 = 〈x〉s(x)=s −ϕ(s) + C(s)ϕ′′(s) (133)

where we defined the tensor

C(s) = 2〈(x−ϕ)(x−ϕ)T 〉s(x)=s (134)

(133) is to (131) what the equation (99) for the line of maxflux is to (100) for the MEP.
Numerical algorithms to solve (131) and (133) will be presented in section 9. These

equations can also be generalized in collective variable space by an appropriate change
of metric. Since it is easier to explain what this amounts to doing algorithmically, we
postpone the discussion of this point till section 9.

Finally, note that, under the assumptions above, formula (106) for the function f re-
mains valid.

7. NUMERICAL ALGORITHMS FOR COMPUTING THE MINIMUM ENERGY PATH

For systems with smooth energy landscapes for which the original TST or Kramers’ rate
theory gives a sufficiently accurate description of the transition process, the main object of
interest are the transition states which are saddle points on the potential energy landscape.
From a numerical viewpoint, we are naturally interested in algorithms for finding such sad-
dle points. Ideas such as Newton’s method, the dimer method, conjugate peak refinement,
etc. are developed for this purpose. These algorithms are intended for searching directly
the saddle points. However, in cases when the initial and final states are separated by in-
termediate stable states, one is interested in a sequence of transition states. In that case,
algorithms for finding saddle points are no longer sufficient for determining the relevant
sequence of transition states. Instead, one must look for the MEP.
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FIGURE 8. The principal curve solution of (130) in the example of the
rugged Mueller potential. Also shown are the isosurfaces of the func-
tion s(x) associated with the curve, and, in the background, the actual
current of reactive trajectories already shown in figure 6. As can be
seen, the principal curve is a the center of the tube carrying most of
the flux of reactive trajectories. Inside this tube, the isosurfaces of the
function s(x) are good approximation of the isocommittor surfaces, i.e.
q(x) ≈ f(s(x)) with f given in (106). Note also that the principal
curve is rather smooth, i.e. it is not affected much by the ruggedness of
the potential.

In this section, we will mostly focus our discussion on the (zero-temperature) string
method. Even though it shares a lot of similarities with several other strategies that were
developed earlier, particularly for the discretized version, the string method distinguishes
itself by two important features that are worthy to be pointed out from the onset.

First, as we have seen in section 6.2, the MEP is defined as a curve in configuration
space. Therefore to look for the MEP, it is most natural to use an algorithm that moves
curves in the configuration space. The string method does exactly that: It is an intrinsic
formulation of the dynamics of curves in the configuration space. This is to be contrasted
with algorithms that are formulated as chain-of-states algorithms in the first place. It is true
that after discretizing the curves, the string method also becomes a chain-of-states method.
Nevertheless, it is much better to start with an intrinsic formulation and then discretize.
After all, this is why calculus is so important and useful. In addition, since the states are
continuously been reinterpolated, the states in the string method do not have the kind of
fixed identity as other chain-of-states methods.

Secondly, there are practical advantages of the intrinsic formulation. One is that it is
much easier to be extended to the case with rough energy landscapes (the finite temperature
string method). The other is that it is much easier to improve the accuracy of the algorithms
that are based an intrinsic formulation.
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For simplicity, throughout this section we use mass-weighted coordinates. Most of the
formulas below can be translated back in the original non-mass weighted coordinates by
the substitution ∇ → m−1/2∇ and ϕ→ m1/2ϕ.

7.1. The zero temperature string method. One main motivation for the string method is
to formulate a strategy based on the intrinsic dynamics of curves connecting two local min-
ima of the potential U(x) located, say, at xa and xb. Dynamics of curves are determined
by the normal velocity at each point along the curve. The tangential component does not
affect the graph of the curve. Since the MEP satisfies (??), the simplest dynamics for the
evolution of the curve toward a MEP is given abstractly by

vn = −[∇U ]⊥ (135)

where vn denotes the normal velocity of the curve. This formulation guarantees that it is
gauge invariant, i.e. it is invariant under the change of the parametrization of the curve.

To translate (135) to a form that can be readily used in numerical computations, we
assume that we have picked a particular parametrization of the evolving curve, γ(t). For
numerical purposes, the simplest choice is to use equal-arclength parametrization. In this
case the curve γ(t) is represented as γ(t) = {ϕ(α, t) : α ∈ [0, 1]}, where α is a constant
multiple of the arclength fromϕ(0, t) to the pointϕ(α, t)5. Denote by prime the derivative
we respect to α, we then have |ϕ′| = constant in α (this constant is the length of the
curve γ(t)). Other parametrizations are possible as well: for instance, we can add an
energy-dependent weight function along the curve in order to enhance the accuracy near
the saddle points [19]. In this case w(α)|ϕ′(α, t)| = constant in α, where w(α) is the
weight function. This kind of ideas has been used quite extensively since the 1980’s, for
example, in the work of Brower et al. on geometric models of interface evolution [8, 9].

Two slightly different forms of the string method have been suggested [19, 22]. The
original form was based on the evolution equation

ϕ̇ = −[∇U(ϕ)]⊥ + λτ̂ (136)

(136) is just the parametric version of (135): ϕ̇ denotes the time derivative of ϕ, τ̂ =
ϕ′/|ϕ′| is the unit tangent vector along the string and λτ̂ is a Lagrange multiplier term
for the purpose of enforcing the particular parametrization of the string, such as the equal-
arclength parametrization. The action of this term is very easy to compute and amounts
to a reparametrization step, as explained below. There is, however, a subtle point associ-
ated with the discretization of (136) related to the fact that the component of −[∇U(ϕ)]⊥

parallel to τ̂ is a convection term that needs to be discretized carefully in order to avoid nu-
merical instabilities [19, 53]. This point was noted already in [32]. On the other hand, since
the component of −[∇U(ϕ)]⊥ parallel to τ̂ can be absorbed into the Lagrange multiplier
term, (136) can be recast into

ϕ̇ = −∇U(ϕ) + λ̄τ̂ . (137)

where the particular parametrization of the string is now enforced by the action of λ̄τ̂ [22].
This new form permits us to eliminate the numerical instability issue discussed above.

In actual computations, the string is discretized into a number of images {ϕi(t), i =
0, 1, . . . , N} where ϕi(t) = ϕ(α = i/N, t) . The images along the string are evolved by
iterating upon the following two-step procedure:

5We use a constant multiple of the arclength, instead of the arclenght itself as in section 6.1, so that the range
of the parameter α is fixed, α ∈ [0, 1], even if the length of the curve γ(t) varies during its evolution. This is
more convenient in the numerics.
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1. Evolution step: The images on the string are evolved over some time-interval ∆t ac-
cording to the potential force at that point:

ϕ̇i = −∇U(ϕi) (138)

This equation can be integrated in time by any stable ODE solver, e.g. the forward Euler
method or Runge-Kutta methods.

2. Reparametrization step: The points (images) are redistributed along the string us-
ing a simple interpolation procedure (see [22]). Take the example of equal-arclength
parametrization. Then the reparametrization step again involves two steps. The first step is
to compute the arclength function along the string, i.e. the piecewise linear function `(α)
whose values at α = i/N is given by

`(0) = 0, `(i/N) =

i∑
j=1

|ϕj −ϕj−1|, i = 1, . . . , N (139)

This allows us to compute the new parametrization, the values of {αi, i = 0, 1, . . . , N}
which make up an equal-distance parametrization, i.e.

`(αi) =
i

N
`(1) (140)

The second step is to compute the images at these new parameter values using standard
piecewise polynomial interpolation. For instance, if ones uses linear interpolation, this
amounts to constructing the piecewise linear functionϕ(α) such that its values at α = i/N
are the images before reparametrization, then set ϕi = ϕ(αi).

Note that the time interval ∆t between the reparametrization steps can be bigger than
the actual time step used to evolve (138). A practical way to determine when to invoke the
reparametrization procedure is to monitor the distances between neighboring points along
the string by (138) and go to the reparametrization step if the ratio of the largest to the
smallest distances goes above a given prescribed tolerance. Note also that the position of
the end points along the curve, ϕ0(t) and ϕN (t), are not affected by the reparametrization
step since α0 = 0 and αN = 1 from (140). In other words, they find on their own the
location of the nearest minima of U(x) even if the end points of the curve where not
initially there.

One issue with the approach based on (137) is that even after the string has converged to
a steady state, points on the string will still move back and forth along the string: they move
down in energy by the evolution step (138), then back up by the reparametrization step.
To avoid this, we may modify the evolution step in (138) and project out the tangential
component of the potential force. By using the projected force instead of the bare one,
one eliminates the tendency for the images to move down in energy at the evolution step.
But, as mentioned before, some care must then be taken on how to discretize this term,
see[32, 53, 22] for details. For this reason, it is harder to design uniformly high order
accurate string method in this form, though it is possible [53].

The version of the string method described above is a very simple but very effective
technique for finding the minimum energy paths. Its implementation requires only a simple
ODE solver for the evolution step, and a simple interpolation routine for the parametriza-
tion step. It is therefore very easy to use and it can be readily incorporated in any existing
code as long as the code provides force evaluation.
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7.2. Broyden accelerated string method. Instead of using the evolution equations (136)
or (137), another way to proceed is to solve directly (??). This procedure, too, requires
the curve to be parametrized and discretized, but it permits to use accelerated methods for
solving non-linear equations, such as the quasi-Newton method due to Broyden. Denote
again by {ϕi, i = 0, 1, . . . , N} the images along the string and assuming that the end
points of the string are located at two minima of the potential, i.e. ϕ0 = xa and ϕN = xb,
the discretized version of (??) for the remaining images reads

0 = ∇U(ϕi) + (∇U(ϕi) · τ̂ i)τ̂ i, i = 1, . . . , N − 1 (141)

where τ̂ i is a suitable discrete approximation of the unit tangent vector along the string,
for instance

τ̂ i =
ϕi+1 −ϕi−1

|ϕi+1 −ϕi−1|
(142)

Solving the nonlinear equation (141) for ϕ1, . . . , ϕN−1 by Newton’s method requires to
calculate the inverse of the Jacobian matrix: if Gi(ϕ1, . . . , ϕN−1) denotes the right hand
side of (141), this Jacobian is the (N − 1)d× (N − 1)d matrix with d× d blocks

∂Gi(ϕ1, . . . ,ϕN−1)

∂ϕj
, i, j = 1, . . . N − 1 (143)

Computing and inverting this matrix can be impractical since it involves evaluating the
Hessian of the potential, ∇∇U . The idea behind Broyden’s method is to approximate the
inverse of (143) during the calculation and update its value at every iterative step used to
solve (141). In the limited memory version of the method, this is done via a low-rank ap-
proximation of the inverse Jacobian which makes the method practical even for systems too
large to store a (N −1)d× (N −1)d tensor. The details of how this is done in practice can
be found in standard textbooks. The only point worth mentioning is that the method needs
to be interfaced with the reparametrization step discussed in section 7.1 to enforce the
parametrization of the string. The limited memory Broyden’s string method was originally
proposed in [19], and shown to converge faster than the simpler string method discussed in
section 7.1. Broyden’s method was also recently used in the context of NEB in [49].

7.3. Action based methods to calculate the MEP. As was originally noted by Elber and
Olender [48] and rederived in [66], it is possible to write down a variational formulation
for the MEP. Specifically, the MEP is the minimizer of

E(ϕ) =

∫ 1

0

|∇U(ϕ)||ϕ′|dα (144)

Indeed, the functional derivative of (144) with respect to ϕ is (using |ϕ′| = constant)

δE

δϕ
=
|ϕ′|
|∇U |

[∇∇U∇U ]⊥ − |∇U |
|ϕ′|

ϕ′′ (145)

From (100), the MEP is such that ϕ′ must be parallel to∇U(ϕ), i.e. we must have

|ϕ′|∇U − |∇U |ϕ′ = 0 (146)

Differentiating this equation with respect to α using |ϕ′|′ = 0, one obtains the equation
δE/δϕ = 0, which means that the solution of (146) is a critical point of (144). It can be
checked that it is also a minimum. This suggests the possibility of identifying MEPs by
solving

[∇∇U∇U ]⊥ − |∇U |
2

|ϕ′|2
ϕ′′ = 0. (147)
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where we multiplied δE/δϕ = 0 by |∇U |/|ϕ′| to avoid singularities at the critical points
of the potential where∇U = 0. (148) can be discretized as

∇∇U(ϕi)∇U(ϕi)− (∇∇U(ϕi)∇U(ϕi) · τ̂ i)τ̂ i

− |∇U(ϕi)|2

|ϕi+1 −ϕi−1|2
(ϕi+1 +ϕi−1 − 2ϕi) = 0, i = 1, . . . , N − 1

(148)

where ϕ0 = xa and ϕN = xb. This equation can then be solved e.g. by the Broyden’s
method discussed in section 7.2 in the context of (141). A disadvantage of (148) is that it
requires computing∇∇U∇U . In practice, this can be done via finite difference using two
force evaluation per image, i.e.

∇∇U(ϕi)∇U(ϕi) ≈ δ−1[∇U(ϕi + δ∇U(ϕi))−∇U(ϕi)] (149)

where δ is a small parameter. An advantage of (148) is that it automatically enforces
the equal-arclenght parametrization of the string. Indeed, multiplying this equation by τ̂ i
implies that

τ̂ i · (ϕi+1 +ϕi−1 − 2ϕi) = 0, i = 1, . . . , N − 1 (150)

Using (142), it is easy to see that (150) can be cast into

|ϕi+1 −ϕi|2 − |ϕi −ϕi−1|2

|ϕi+1 −ϕi−1|
= 0, i = 1, . . . , N − 1 (151)

i.e. when (148) is satisfied, the images must be equidistant.

Remark: calculating the line of max-flux. The idea discussed above can also be used to
calculate the line of max-flux solution of (99). This has been recently discussed in [11].
(99) can be discretized as

−β∇U(ϕi) + β(∇U(ϕi) · τ̂ i)τ̂ i −
ϕi+1 +ϕi−1 − 2ϕi
|ϕi+1 −ϕi−1|2

= 0, (152)

where i = 1, . . . , N − 1 and ϕ0 = xa and ϕN = xb. Like (148), this equation au-
tomatically enforces the equal-arclenght parametrization of the string. Solving (152) by
Broyden’s method is simpler than solving (148), but it should be stressed that the solution
of (152) is a line of max-flux, not a MEP.

7.4. Chain-of-states methods.

7.4.1. Elastic band method. The basic idea is to connect the two stable states xa and xb
by a chain of states (replicas or images), and evolve this chain of states. In an early at-
tempt [52], Pratt proposed to use Monte Carlo methods to sample chains of states between
the initial and final states in order to find the transition state region. Pratt’s idea has been
developed in two directions. One is Monte Carlo algorithms for sampling true dynamical
trajectories between the initial and final states. This is the well-known transition path sam-
pling (TPS) algorithm, developed by Bolhuis, Chandler, Dellago and Geissler [15, 6]. The
second is the class of optimization algorithms for finding the MEP using a chain of states.
The elastic band method [28] is an example of this type of algorithms.

Given a chain of states {x0,x1, · · · ,xN}, where x0 = xa,xN = xb, let us define an
energy for the chain:

E(x1, · · · ,xN−1) =

N−1∑
i=1

U(xi) +
k∆α

2

N∑
i=1

|xi − xi−1|2

∆α2
(153)
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where ∆α = 1/N and k > 0 is a parameter. Alternative energy functions have been
proposed by Elber and Karplus [25, 62]q.

In the elastic band method (also called plain elastic band method, to be contrasted with
the nudged elastic band method discussed below), the idea is to move the chain of states
according to the gradient flow of the energy E [28]:

ẋi = − ∂E
∂xi

= −∇U(xi) + k
xi+1 + xi−1 − 2xi

∆α
, i = 1, . . . , N − 1. (154)

The first term at the right hand side is the potential force, the second term is the spring force.
Note how the scaling in the coefficient of the second term is chosen: Because of that, if we
use an explicit ODE solver to evolve (154), the time step size allowed is ∆t ∼ ∆α in order
to guarantee long time numerical stability. However, in this scaling, the second term drops
out in the continuum limit as ∆α→ 0.

The elastic band method is extremely simple and intuitive. However, this method fails
to converge to the MEP because the spring force tends to make the chain straight which
leads to corner-cutting [28].

7.4.2. The nudged elastic band method. To overcome the corner-cutting problem, Jónsson
et al. introduced the nudged elastic band method (NEB) [37, 31, 57]. This is a very simple
modification of the elastic band method, but one that made the method truly useful. Instead
of using the total potential force and spring force to move the chain, one uses only the
normal component of the potential force and the tangential component of the spring force:

ẋi = −[∇U(xi)]
⊥ + (F si · τ̂ i)τ̂ i, i = 1, · · · , N − 1. (155)

where F si = k(xi+1 +xi−1−2xi)/∆α and τ̂ i denotes the tangent vector along the elastic
band at xi.

It is easy to see that if the chain converges to a steady state, it should be (a discretized
approximation of) a MEP. In fact, from (155), we see that if the left hand side vanishes,
then

−[∇U(xi)]
⊥ + (F si · τ̂ i)τ̂ i = 0, i = 1, · · · , N − 1. (156)

Since the two terms in this equation are normal to each other, each has to vanish. In
particular, we have

[∇U(xi)]
⊥ = 0, i = 1, · · · , N − 1. (157)

which is the discretized version of (100). As already mentioned in section 7.2, we can also
solve (156) directly using accelerated methods such as Broyden’s [49].

The choice of the elastic constant k is a crucial issue for the performance of NEB. If k
is too large, then the elastic band is too stiff and one has to use very small time steps to
solve the set of ODEs in (155). If k is too small, then there is not enough force to prevent
the states on the chain from moving away from the saddle point, hence the accuracy of the
saddle point will be reduced. This difficulty can be alleviated by using the climbing-image
version of NEB [33], a strategy which can also be adapted to the string method [22].

It is natural to ask whether the elastic band method can also be formulated in terms of
evolution of continuous curves. As we remarked earlier, if we use the original scaling of the
spring constant, then the term that represents the elastic force disappears in the continuum
limit (which suggests that the elastic term in (154) is not enough to prevent the clustering
of the states near the local minima as ∆α→ 0). In order to retain the spring term, one has
to replace the spring constant k by k/∆α. In that case, we can take the continuum limit of
the (nudged) elastic band method and obtain:

ϕ̇ = −[∇U(ϕ)]⊥ + k(ϕ′′ · τ̂ )τ̂ (158)
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However, to evolve this dynamics, one has to use ∆t ∼ (∆α)2 and it will take many more
iterations in order for the dynamics to converge to MEP.

8. FINDING MINIMUM FREE ENERGY PATHS

8.1. The zero temperature string method in collective variable space. The zero tem-
perature string method discussed in section 7.1 can be easily modified to calculate MFEPs
which are solutions of (120). The equivalent of (137) simply becomes

ϕ̇ = −[M(ϕ)∇θG(ϕ)]⊥ + λ̄τ̂ (159)

where ϕ(α, t) is now a parametrized curve in collective variable space. If we discretize
this curve into N + 1 images {ϕi, i = 0, . . . , N}, these images can be evolved by the
two step procedure discussed in section 7.1. The reparametrization step is identical. The
evolution step amounts to integrating the following equation over some time-interval ∆t

ϕ̇i = −M(ϕi)∇θG(ϕi) (160)

This requires calculating the gradient of the free energy (i.e. the mean force) ∇θG(ϕi)
and the tensor M(ϕi) at every time step. Since both quantities can be expressed in terms
of canonical averages conditional on θ(x) = ϕi (see (114) for the entries of M ), they can
both be evaluated using standard constrained or restrained MD simulation, such as the blue
moon sampling [12, 14]. The details can be found in [41]. We will not repeat these here
since the method proposed in [41] can be simplified to avoid any explicit calculation of
conditional averages, as discussed next.

8.2. On-the-fly string method. The basic idea of the on-the-fly variant of the string
method proposed in [43] is to approximate (160) by the following coupled system of equa-
tions in which two independent copies, or replica, xi and x̄i of the actual system are
associated with every image ϕi along the string:

ϕ̇i = −κM̃(xi)(ϕi − θ(x̄i))

mẍi = −∇U(xi) + κ∇θ(xi)(ϕi − θ(xi))

m¨̄xi = −∇U(x̄i) + κ∇θ(x̄i)(ϕi − θ(x̄i))

i = 0, 1, . . . , N (161)

where κ > 0 is a parameter and we defined the D ×D tensor M̃(x) with entries

M̃i,j(x) = kBTγ
−1

d∑
k=1

m−1
k

∂θi
∂xk

∂θj
∂xk

, i, j = 1, . . . , D (162)

From (161), the replica xi and x̄i evolve by a modified force field arising from the potential
in which the original potential U(x) has been adjoined with

κ

2
|ϕi − θ(x)|2 (163)

This is a restraining potential which, if κ is adjusted appropriately, guarantees that the
replica remain slaved to the images during the evolution in the sense that θ(xi) ≈ ϕi and
θ(x̄i) ≈ ϕi. The key idea of the method is to artificially adjust the friction coefficient γ
entering M̃i,j(x) to make the evolution of ϕi slower than that of xi and x̄i. Then at any
given moment the replica xi and x̄i are at thermal equilibrium conditional on θ(xi) ≈ ϕi
and θ(x̄i) ≈ ϕi, and the images ϕi feel only their average effect. In other words, the
evolution of ϕi is effectively captured by

ϕ̇i = −〈M̃(xi)〉κ〈κ(ϕi − θ(x̄i))〉κ (164)



MODELING RARE TRANSITION EVENTS 39

where the brackets denote canonical averages with respect to Boltzmann distribution in-
volving the extended potential entering the equation for xi and x̄i in (161) (assuming that
a proper thermostat has been added in these equations). Explicitly

〈M̃(xi)〉κ =

∫
M̃(x)e−βU(x)− 1

2βκ|ϕi−θ(x)|2dx∫
e−βU(x)− 1

2βκ|ϕi−θ(x)|2dx
(165)

and similarly for 〈κ(ϕi − θ(x̄i))〉κ. A simple calculation (see []) indicates that, for suffi-
ciently large κ,

〈M̃(xi)〉κ ≈M(ϕi) and 〈κ(ϕi − θ(x̄i))〉κ ≈ ∇θG(ϕi) (166)

meaning that the evolution of the images ϕi by (161) approximates the evolution of these
images by (160). Note that we need two replicas per image to guarantee that the two
terms at the right hand side of the equation for ϕi in (161) self-average independently to
give (164).

The on-the-fly string method is very simple to implement since it amounts to evolving
concurrently the images and the replicas according to (161) and does not require any ex-
plicit averaging nor any restarting of the MD calculations. Beside the string discretization
errors, there are two sources of errors in the method. The first is due to the finiteness of κ
and it can be eliminated by replacing the retraining terms in (161) by Lagrange multiplier
terms to enforce the constraint that θ(xi) = ϕi and θ(x̄i) = ϕi exactly. The second
source of errors are statistical errors which arise to the fact that the time scale separation
between the images and the replica is not infinite in practice. These errors can be elimi-
nated if, after a certain time t∗, we replace the terms M̃(xi) and κ(ϕi − θ(x̄i)) by their
running time-averages,

1

t− t∗

∫ t

t∗
M̃(xi(t

′))dt′ and
κ

t− t∗

∫ t

t∗
(ϕi(t)− θ(xi(t

′)))dt′ (167)

This also guarantees convergence of the method. At that stage of the calculation, a single
replica per image becomes sufficient since we time-average M̃(xi) and κ(ϕi − θ(xi))
separately.

8.3. String method with swarms. In [51] another variant of the string method has been
proposed in which the reparametrization step is as before, but the evolution step is done
as follows. Given the current location of the images, ϕi(t), for each image a swarm of
initial conditions {xri , r = 1, . . . , R} are prepared which sample the canonical distribution
conditional on θ(xri ) = ϕi. These initial conditions are then evolved independently under
the original force field (i. e. without any restraint or constraint) over a time interval ∆t,
and their average positions at that time is used to update the image positions:

ϕi(t+ ∆t) =
1

R

R∑
r=1

θ(xri (∆t)), i = 0, 1, . . . , N (168)

where xri (∆t) denotes the position of the system evolved from the initial condition xri . A
reparametrization step is then applied to the images {ϕi(t + ∆t), i = 0, . . . , N}, and the
procedure is repeated.

If ∆t is small enough and the number M of replicas in the swarm is large enough, a
direct calculation [42] shows that the updating rule (168) is consistent with

ϕi(t+ ∆t) = ϕi(t)−∆tM(ϕi(t))∇θG(ϕi(t)) + ∆t kBT divθM(ϕi(t)) (169)
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up to corrections in ∆t2 and statistical errors due the finiteness of R. (169) is a time-
discretized version of the evolution equation

ϕ̇i = −M(ϕi)∇θG(ϕi) + kBT divθM(ϕi) (170)

Thus, if one is willing to accept the error introduced by the second term at the right hand
side of (169), the string method with swarms can indeed be used as another way to calculate
the MFEP approximately. Since the procedure requires to recreate R independent initial
conditions canonically distributed conditional on θ(xri ) = ϕi per images at every evolution
step, it is more expensive than the on-the-fly version of the method. The swarm version of
the string method has however the advantage that it can be interfaced easily with existing
MD packages using simple scripts.

Other variants of the string method to integrate (159) have been developed in [7, 38, 39].

9. FINDING THE TRANSITION TUBES

9.1. The finite temperature string method. Methods to solve (131) and find principal
curves have been developed in the statistics literature, see [30]. These methods are adap-
tations of the expectation-maximization (EM) algorithm in which the maximization step
is replaced by a relaxation step. Given the current configuration of the string, the new
configuration is found through the following steps:

1. Expectation step: Sample on the isosurfaces of the function s(x) defined in (89), i.e.
the pieces of hyperplanes normal to the current configuration of the string. How to do so
in practice is explained next.

2. Relaxation step: Compute the empirical center of mass 〈x〉s(x)=s on each hyperplane
and move the string to a new configuration according to:

ϕn+1 = ϕn + ∆t
(
〈x〉s(x)=s −ϕn

)
(171)

where ϕn denotes the current configuration of the string and ∆t is a step size.

In practice, the string is discretized into N + 1 images {ϕi, i = 0, 1, . . . , N}, and (171)
is used for each images along the string. It becomes the counterpart of the evolution step
performed in the zero temperature string method, whereas the reparametrization step is
done as before (see section 7.1). In the original version of the finite temperature string
method [20, 54, 21], 〈x〉s(x)=s was estimated via constrained or restrained simulations
in the hyperplanes perpendicular to the string. More recently in [70], it was realized that
there is a simpler way to estimate 〈x〉s(x)=s. The idea is to replace the surface s(x) = s
associated with ϕ(s) in the continuous setting by the Voronoi cell associated with image
ϕi, i.e. the region of space that contains all the points that are closer to ϕi than to any
other image:

Bi = {x : |x−ϕi| < |x−ϕj | for all j 6= i} (172)

The cellsB0 andBN play a special role: they are, respectively, the reactant and the product
states A and B. For i = 1, . . . , N − 1, however, the cell Bi is just a mollified version of
the surface s(x) = i/N , and we then have

〈x〉s(x)=i/N ≈ 〈x〉Bi , i = 1, . . . , N − 1 (173)

where 〈x〉Bi denotes canonical average conditional on x ∈ Bi. This conditional average
can be computed by a simple modification of the MD integrator in which we add a mo-
mentum reversal rule at collision with the boundaries of cell Bi to confine the simulation
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FIGURE 9. Result of a finite temperature string method calculation
made in the context of the rugged Mueller potential. The images along
the string are shown as black dots. The straight black lines show the
boundaries of the Voronoi cells associated with each image, and the
white and gray dots are the last 1000 positions of the MD replicas used
to perform the conditional sampling in these cells. This figure should
be compared to figure 8. Notice in particular that the replica sample the
transition tube concentrating the flux of reactive trajectories shown in
figure 8.

inside this cell. Thus, if (xi(t),pi(t)) denotes the position and momentum at time t of the
independent copy (or replica) of the MD system used to do the sampling in cell Bi, we set

(xi(t+ δt),pi(t+ δt)) =

{
(x∗i (t+ δt),p∗i (t+ δt)) if x∗i (t+ δt) ∈ Bi
(xi(t),−pi(t)) if x∗i (t+ δt) 6∈ Bi

(174)

where (x∗i (t + δt),p∗i (t + δt)) denotes the time-evolved value of (xi(t),pi(t)) after one
standard MD step of size δt. We then have

〈x〉Bi
= lim
N→∞

1

N

N−1∑
k=0

x∗i (kδt) (175)

up to small errors due to time-discretization. Note that the test made in (174) is a simple
distance check: is x∗i (t+ δt) still closest to ϕi? Note also that these MD calculations can
be performed in parallel in each cell Bi. Finally, note that it is not necessary to compute
with high precision the average (175) at every update of the string. Rather, it is more
efficient to evolve concurrently the images ϕi and the MD replicas and replace (175) by a
running time average. Details can be found in [70].

The scheme above can be straightforwardly generalized to solve (133) rather than (131).
This simply amounts to accounting for the action of the term C(s)ϕ′′ in the updating
rule (171). Since the diffusion tensor C(s) is given by a conditional average (see (134)), it



42 WEINAN E AND ERIC VANDEN-EIJNDEN

can be estimated by the procedure above: Denoting Ci = C(i/N), we have

Ci = lim
N→∞

2

N

N−1∑
k=0

(x∗i (kδt)−ϕi)(x∗i (kδt)−ϕi)T (176)

In practice, it is again more efficient to evolve the images ϕi and the MD replica con-
currently, and replace the average (176) by a running average. Note also that, even when
we solve (131), one typically needs to smooth the string to remove possible kinks arising
from statistical errors. In effect, this amounts to adding a diffusion term to the updating
rule (171), not unlike the one provided by the additional term C(s)ϕ′′ in (133), except that
we then need to pick a value for C(s) beforehand and keep it fixed once and for all.

The result of a finite temperature string method calculation made in the context of the
rugged Mueller potential is shown in figure 9.

9.2. Generalization to collective variable space. The finite temperature string method
can be easily generalized in collective variable space. As in section 8, the string now
lives in collective variable space. The updating rule (171) is left unchanged, except that
〈x〉s(x)=s must be replaced by 〈θ(x)〉s(θ(x))=s where s(θ) is the function defined in (117).
In practice, this conditional expectation can be approximated as

〈θ(x)〉s(θ(x))=i/N ≈ 〈θ(x)〉Bi
, i = 1, . . . , N − 1 (177)

Here 〈θ(x)〉Bi denotes canonical average conditional on x ∈ Bi where Bi is the Voronoi
cell

Bi = {x : ‖θ(x)−ϕi‖i,j < ‖θ(x)−ϕj‖i,j for all j 6= i} (178)

in which the Euclidean norm | · | used in (172) has been replaced by the norm

‖θ‖2i,j =

D∑
k,l=1

θk
M−1
k,l (ϕi) +M−1

k,l (ϕj)

2
θl (179)

In practice, 〈θ(x)〉Bi can therefore be evaluated using MD simulations confined in cell Bi
as before, except that the updating rule in (174) now involves a distance check using the
norm (179).

9.3. Free energy calculations. The free energy of the reaction defined in (104) (or (122)
if one uses collective variables) can be estimated from the equilibrium probability to find
the system in each Voronoi cell Bi, which we shall denote by πi. Indeed, if F (s) is given
by (104), then to leading in 1/N we have∫ (i+ 1

2 )/N

(i− 1
2 )/N

e−βF (s)ds = Z−1

∫
Bi

e−βU(x) ≡ πi. (180)

for i = 1, . . . , N − 1, whereas (since B0 = A and BN = B):

π0 = Z−1

∫
A

e−βU(x), πN = Z−1

∫
B

e−βU(x), . (181)

We can also define the free energy of the Voronoi tessellation as the vector (F0, F1, . . . , FN )
where Fi = −kBT lnπi.

The MD simulations used in the finite temperature string method offer a simple way
to calculate πi. Suppose that as we run these MD simulations in each cell, we store the
total number of times the MD replica in cell Bi made a collision with the boundary of cell
Bj . Let us denote by Ni,j this number of collisions observed during the interval Ti during
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which we ran the simulation in cell Bi (this time could be different in each cell, hence the
subscript i), and define

νi,j =
Ni,j
Ti

(182)

For large Ti, νi,j gives an estimate of the rate of escape from cell Bi to cell Bj . At
statistical steady state, by conservation of probability, we must then have

N∑
j=0
j 6=i

πjνj,i =

N∑
j=0
j 6=i

πiνi,j ,

N∑
i=1

πi = 1 (183)

Thus, by monitoring collisions with the boundaries of the cells, estimating νi,j , and finally
solving (183), we have a simple way to calculate πi and thereby estimate the free energy
F (s) from (180).

Note that the method we just described can be used to calculate the free energy asso-
ciated with any (discretized) path: zero temperature string, finite temperature string, in
Cartesian or collective variables, etc.

9.4. Rate calculations: milestoning, etc. The setup with Voronoi cells used in the finite
temperature string method can also be conveniently combined with several techniques that
have been introduced recently to calculate reaction rates: milestoning [27, 56, 24, 74, 71,
69], transition interface sampling (TIS) [64, 45, 46], forward flux sampling (FFS) [1, 2, 63],
etc. All these methods analyze a reaction by decomposing it into a series of steps, each
of which corresponds to the system going from one intermediate state to another. These
intermediates are called milestones in milestoning and interfaces in TIS and FFS, and a
basic issue is where to place them since this choice will affect the accuracy and/or the
efficiency of the procedures.

Recently in [69] it has been proposed to use as intermediates the boundaries of the
Voronoi cells along the string. This has two advantages. First it places the intermediate
optimally with respect to the reaction since the boundaries of the Voronoi cells are ap-
proximations of the isocommittor surfaces which, as we know, have special properties as
a reaction coordinate. Second it offers computational advantages. Let us briefly explain
these advantages in the context of Markovian milestoning.

The basic idea of Markovian milestoning is to reduce the dynamics of the original MD
system to that of the index of the last milestone it crossed, and to approximate the latter by
a continuous-time Markov chain. To estimate the rate matrix of this chain, in the original
procedure, initial conditions are generated on each milestones, then released and followed
in time till they hit another milestone. The rate matrix of the chain can then be estimated
easily from data collected from these short pieces of trajectories. The caveat with this
approach is that it requires reinitialization on the milestones, and the probability density
to perform this reinitialization is not explicitly known (in particular, as shown in [71] it is
not the equilibrium density). In the new procedure proposed in [69], the reinitialization is
avoided by extracting all the information to build the rate matrix from the MD simulations
confined in the cells. If we denote by a, b, etc. the index of the milestones (i.e. the index of
the boundaries of the cells Bi, not to be confused with the index i of these cells), the entry
ka,b of the rate matrix can then be estimated as

ka,b =

∑N
i=0 πiN

i
a,b/Ti∑N

i=0 πiT
i
a/Ti

, a 6= b (184)
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Here πi is the probability to be in cellBi (see (183)),N i
a,b is the total number of transitions

from edge a to edge b observed in the simulation confined to cell Bi, T ia is the total time
during this simulation during which the last edge hit was a, and Ti is the total duration of
the simulation confined to cell Bi (i.e.

∑
a T

i
a = Ti). Details can be found in [69].

Simulations confined to Voronoi cells can also be used to perform rate calculations à la
TIS and FFS using again the boundaries of the cells as interfaces, see [68]. In this case, the
procedure becomes a generalization of the nonequilibrium sampling method introduced
in [73, 16].

10. CONCLUSIONS

To conlcude this review, we emphasize again the generality of the problems discussed
here – such rare transition events are not rare, they are quite obiquitous. They are rare on
the microscopic time scale of the system, such as the atomic vibration time scale, but they
are not rare on the macroscopic time scales of interest.

In this review, we have focused on the A → B problem. Much progress has also been
made on the other two classes of problems. In particular, the gentlest ascent dynamics
(GAD) and its variants have emerged as an elegant tool for exploring the configuration
space [?, ?]. Voter’s work on hyperdynamics and temperature accelerated dynamics has
opened the door for accelerating molecular dynamics [?, ?]. These topics are very inter-
esting but beyond the scope of the present review.
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