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I. LANGEVIN EQUATION WITH POSITION-DEPENDENT FRICTION

Consider the simple system

∂tv = F (x)− ε−1γ (x)v +
√

2kTε−1γ (x)W (t)

∂tx = v,

in the overdamped limit ε → 0. Taking this limit formally starts from rescaling time as τ = ε−1t,

to get a family of equations parameterized by ε,

∂τv = ε−1F (x)− ε−2γ (x)v + ε−1
√

2kTγ (x)W (t)

∂τx = ε−1v,

and then looking at the limit ε → 0. This is done by splitting the generator of this diffusion

process and the solution of the Fokker-Planck equation into a part proportional to ε−1 and a part

proportional to ε−2 and doing asymptotic analysis as ε → 0. This calculation gives the limiting

dynamics as the overdamped Langevin equation (here we take ε = 1 since in the limit the

precise value does not matter so long as it is small enough) as the Ito equation

∂tx =
[
γ−1 (x)

]
F (x) +

√
2kTγ−1 (x)W (t) + (kT ) ∂x · γ−1 (x) . (1)

A. Derivative-Free Methods

The well-known Fixman algorithm can be thought of as a predictor-corrector algorithm for

solving (1) in the enlarged space,

γnvn =F n +

√
2kT

∆t
(γn)

1
2 W n

x?,n+1 =xn + vn∆t

γ?,n+1vn+1 =F n+1 +

√
2kT

∆t
(γn)

1
2 W n

xn+1 =xn +

(
vn + vn+1

2

)
∆t.
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It is not hard to show that in the limit ∆t→ 0 this converges to the solution of the Ito equation (1).

The method is second-order deterministically but only first order weakly accurate and half-order

strongly accurate in the stochastic setting.

An alternative way to get the correct thermal drift term (kT ) ∂x · γ−1 (x) is to handle it using

a “random finite difference” approach and combine with Euler-Maruyama,

xn+1 = xn + (γn)−1 F n∆t+
√

2kT∆t (γn)−
1
2 W n

+ (kT ) ∆t

{
δ−1

[
γ−1

(
x+

δ

2
W̃

n
)
− γ−1

(
x− δ

2
W̃

n
)]
W̃

n
}
,

where W̃
n

are auxiliary i.i.d. standard normal variates and δ is a small number (chosen based on

roundoff considerations as with finite-difference methods).

B. Metropolization

Let us denote the mobility with M (x) = γ−1 (x). Assume that our trial (proposal) move is a

step of the Euler-Maruyama method,

x̃ = x+ v∆t+ (2kBT∆t)
1
2 B∆W = x+ v∆t+ ∆xrand = x+ ∆x,

where BBT = M , ∆W is a vector of i.i.d. standard normal variates, and v = −MF (x) =

M∇U (x) is the deterministic steady-state velocity. It is important to note, however, that one

can also take v = 0 and still get a consistent algorithm. From now on tilde will denote a quantity

evaluated at x̃.

The transition probability from x to x̃ is trivial to calculate,

Q (x→ x̃) = (2π)−
d
2 |M |−

1
2 exp

(
−∆W T∆W

2

)
.

To write the reverse one, we need to calculate the noise that would take us back,

x = x̃+ ṽ∆t+ (2kBT∆t)
1
2 B̃∆W̃ ,

and then set

Q (x̃→ x) = (2π)−
d
2

∣∣∣M̃ ∣∣∣− 1
2

exp

(
−∆W̃

T
∆W̃

2

)
.

The target distribution for the Metropolis-Hastings acceptance-rejection is the Gibbs-Boltzmann

distribution ∼ exp (−U (x) /kBT ).
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After some algebra, we get that the acceptance probability for the trial move should be min(1, p)

where

p =
∣∣∣M̃−1

M
∣∣∣ 12 exp

[
β
(
U − Ũ

)
− β (v̄∆t+ ∆xrand)T M̃

−1
v̄ − β

4∆t
∆xTrandM̃

−1
∆xrand +

1

2
∆W T∆W

]
,

which can alternatively be written as

p =
∣∣∣B̃−1

B
∣∣∣ exp

[
β
(
U − Ũ

)
− β

(
M̃

−1
v̄
)T

∆x

− β∆t

4
(ṽ + v)T M̃

−1
(ṽ − v)

+
1

2
∆W T

(
I −BTM̃

−1
B
)

∆W

]
, (2)

where v̄ = (v + ṽ) /2 is the average (midpoint estimate of the) drift, and recall that ∆x = v∆t+

∆xrand.

In the limit ∆t → 0 the resulting Metropolized Euler-Maruyama integrator converges to the

solution of the Ito equation (1).


