Numerical Schemes for Overdamped Langevin Equations

Lecture notes by Aleksandar Donev

I. LANGEVIN EQUATION WITH POSITION-DEPENDENT FRICTION

Consider the simple system

o =F () — e 'y (x)v+ /2kTe 1y (x) W (1)
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in the overdamped limit € — 0. Taking this limit formally starts from rescaling time as 7 = e~ !¢,

to get a family of equations parameterized by e,

Ov=€F(x) — e 2y (x)v+e 'W2kTy () W (1)
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and then looking at the limit ¢ — 0. This is done by splitting the generator of this diffusion
process and the solution of the Fokker-Planck equation into a part proportional to e ' and a part
proportional to € 2 and doing asymptotic analysis as € — 0. This calculation gives the limiting
dynamics as the overdamped Langevin equation (here we take ¢ = 1 since in the limit the

precise value does not matter so long as it is small enough) as the Ito equation
dx = [y (@)] F () + V2kTy L () W (1) + (kT) 0 - v~ () . (1)
A. Derivative-Free Methods

The well-known Fixman algorithm can be thought of as a predictor-corrector algorithm for
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solving (1) in the enlarged space,



It is not hard to show that in the limit At — 0 this converges to the solution of the Ito equation (1).
The method is second-order deterministically but only first order weakly accurate and half-order
strongly accurate in the stochastic setting.

An alternative way to get the correct thermal drift term (kT') O - v~ ! () is to handle it using

a “random finite difference” approach and combine with Euler-Maruyama,
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where W are auxiliary i.i.d. standard normal variates and ¢ is a small number (chosen based on

roundoff considerations as with finite-difference methods).

B. Metropolization

Let us denote the mobility with M (z) = v~! (z). Assume that our trial (proposal) move is a

step of the Euler-Maruyama method,
T=x+vAt+ (2kBTAt)%BAW =+ v At + ATgng = © + Az,

where BBT = M, AW is a vector of i.i.d. standard normal variates, and v = —MF (x) =
MVU (x) is the deterministic steady-state velocity. It is important to note, however, that one
can also take v = 0 and still get a consistent algorithm. From now on tilde will denote a quantity
evaluated at x.

The transition probability from @ to & is trivial to calculate,

T
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To write the reverse one, we need to calculate the noise that would take us back,
~ ~ 1~ =
r =+ 0At+ (2kgTAt)2 BAW,

and then set

Q@x—x)=(2n) 2 5

1 FEo
4 M‘ b exp (_AW AW).

The target distribution for the Metropolis-Hastings acceptance-rejection is the Gibbs-Boltzmann

distribution ~ exp (U (x) /kgT).



After some algebra, we get that the acceptance probability for the trial move should be min(1, p)

where

l ~ ~ ~
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which can alternatively be written as
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where © = (v + ©) /2 is the average (midpoint estimate of the) drift, and recall that Ax = v At +
Ammnd-
In the limit At — 0 the resulting Metropolized Euler-Maruyama integrator converges to the

solution of the Ito equation (1).




