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1The Mirosopi DynamisThe sope of these notes has some restritions. In partiular, we will onsider only isolated systems.We will assume also that at the most mirosopi level the system an be well desribed by lassialmehanis or, to be more spei�, by Hamilton's equations. No referene to quantum mehanis willbe made. Another ruial assumption is that the Hamiltonian dynamis of the system has a well-de�ned equilibrium state that is reahed by the system as the time proeeds. The assumption of isolatedsystem implies that we will look at the relaxational dynamis of the system towards its equilibrium state.This might seem a strong restrition from an experimental point of view. Experiments often deal withsituations in whih a system is subjet to the ation of �external in�uenes�, usually through the boundaryof the system. Nevertheless, the theory for isolated systems already provides the basi model equationsto whih boundary onditions an be applied in a latter stage.1.1 Classial MehanisWe will deal with marosopi systems that an be appropriately desribed with Classial Mehanis.Classial Mehanis is a theory of point partiles with de�nite positions ri and veloities vi that interatthrough fores. We will often idealize and refer to atoms and even moleules as point partiles, eventhough they may be omposite objets. The funtional forms of the fores between the point partiles isknown only in an approximate way, and model fore �elds are usually required and adopted. In priniple,these fores �elds should be derived from the quantum mehanial origin of the atoms or moleules thatare represented at a lassial level with point partiles. The formulation of aurate fore �elds is a vastsubjet in itself of great urrent interest.1.2 Hamilton's equationsThere are many di�erent formulations of the laws of Classial Mehanis whih are all equivalent to theoriginal formulation set forth by Newton. Newton's Laws give rise to equations of motion for the positionsof lassial objets that are diferential equations of seond order. Their solution requires the knowlegdeof the initial onditions given by the positions and veloities in order to predit the future evolution of thesystem. As stressed originaly by Gibbs, the Hamiltonian desription of Classial Mehanis is partiularlysuited to the formulation of Statistial Mehanis beause one of the distinguishing features of Hamilton'sequations is that they are �rst order di�erential equations. In Hamilton's formulation, the mirosopistate z = {qi,pi} of a system of N point partiles is given by the olletion of all qi and momenta pi of



10 The Mirosopi Dynamisthe partiles. The mirosopi state of the system evolves aording to Hamilton's equations
q̇i =

∂H

∂pi
(z), (1.1)

ṗi =−
∂H

∂qi
(z), (1.2)where H(z) is the Hamiltonian funtion assumed to be expliitly independent of time. Typially theHamiltonian has the form

H(z) =

N
∑

i=1

p2
i

2m
+ U(r1, · · · , rN ) +

N
∑

i=1

V (ri) (1.3)where the �rst sum is the kineti energy of the sytem, the potential of interation between partilesis U(r1, · · · , rN ) and V (r) is a time-independent external potential. We will always assume that theHamiltonian is a bounded funtion from below. Beause we an hoose an arbitrary onstant for thepotential funtion without hanging the dynamis, we will assume that H(z) ≥ 0 for all mirostates z.The ondition of bounded Hamiltonian is a requisite for the existene of a proper equilibrium state. Oneimportant ase for whih this ondition is not satis�ed is when the system interats with a gravitationalpotential. In this ase there are mirostates for whih the energy is arbitrarily negative (as when twomassive point partiles keep approahing and dereasing without bound its potential energy). A olletionof self-gravitating point objets does not have a well-de�ned equilibrium state.Hamilton's equations are �rst order di�erential equations that require the knowledge of an initialondition z0 = {qi(0),pi(0)}. The ulterior evolution of the mirostate zt is a trajetory in the 6Ndimensional spae of all mirosopi states z known as the phase spae Γ of the system. In fat, thetrajetory is restrited to live in a submanifold of the full phase spae, beause of the existene ofdynami invariants. A dynamial invariant I(z) is any dynamial funtion that does not hange intime, this is,
d

dt
I(z(t)) = 0. (1.4)The trajetory z(t) is, therefore, restrited to be in the submanifold I(z) = I0 where I0 = I(z0) is thevalue of the dynamial invariants at the initial time. The dynamial invariants emerge as the result ofsymmetries of the Hamiltonian. Aording to a fundamental theorem due to Emmy Noether, to everysymmetry of the Hamiltonian there is onserved property. Invariane under time translation ensuresthat the Hamiltonian itself is a onserved quantity. Invariane under spae traslations ensure that totalmomentum is onserved, while rotation invariane ensure that angular momentum is onserved. A timeindependent Hamiltonian like (1.3) onserves energy. If there is no external potential and the intera-tion potential depends only on the relative distanes between partiles, then total linear and angularmomentum will also be onserved. For typial Hamiltonian systems desribing moleular systems, thetrajetories in phase spae display the phenomenon of haos. This term refers to the property that ifwe start with initial onditions that are very similar, the trajetories starting at these initial onditionsseparate from eah other exponentially in time. Therefore, while Hamilton's equations are deterministi,in pratie its preditive power is rather limited beause any small unertainty in initial onditions readilyexplodes and renders the predition very inaurate. Although this seems to be an unfortunate feature, itis in fat what makes the statistial methods appliable and what, in the last instane, makes StatistialMehanis a preditive theory.Hamilton's equations may be writen in ompat form

żt = J0
∂H

∂z
(zt) (1.5)



1.2 Hamilton's equations 11
J0 is the so alled sympleti matrix having a blok diagonal matrix form with the bloks given by

(

0 1

−1 0

)

. (1.6)We may write also Hamilton's equations in the form
ż = iLz (1.7)where iL is the Liouville operator that has the expliit form

iL ≡

N
∑

i

(

∂H

∂pi

∂

∂qi
−

∂H

∂qi

∂

∂pi

)

= −
∂H

∂z
J0

∂

∂z
. (1.8)The Liouville operator ating on an arbitrary funtion F (z) an be expressed in terms of the Poissonbraket,

iLF (z) = −{H, F} (1.9)where the Poisson braket of two arbitrary funtions F (z), G(z) is
{F,G} ≡

∂F

∂qi

∂G

∂pi
−

∂F

∂pi

∂G

∂qi
(1.10)Given an initial mirostate z, the solution of Hamilton's equations an be denoted by

zt = Ttz (1.11)where Tt is a one-parameter operator ating on the initial ondition z. This operator satis�es T0 = 1 and
TtTt′ = Tt+t′ . A formal expression for this operator an be obtained in terms of the Liouville operator.Indeed, the formal solution of (1.7) is

zt = exp{iLt}z (1.12)where the exponential operator is de�ned formally through the Taylor series
exp{iLt} ≡ 1 + iLt+

1

2!
(iLt)2 +

1

3!
(iLt)3 + · · · . (1.13)Note that by substitution of (1.13) into (1.12) we reover the usual Taylor series of z(t) = zt around

z(0) = z. Any funtion in phase spae X(z) aquires a time dependene one evaluated on the timedependent mirostate, this is X(Ttz). Phase funtions evolve beause the mirostates evolve in time.The time derivative of this funtion is
d

dt
X(Ttz) =

∂X

∂z
(Ttz)

d

dt
Ttz =

∂X

∂z
(Ttz)J0

∂H

∂z
(Ttz) = iLX(Ttz) (1.14)This di�erential equation has as formal solution

X(Ttz) = exp{iLt}X(z) (1.15)



12 The Mirosopi DynamisTime reversibilityHamilton's equations are time reversible equations. In order to grasp the meaning of this statement, itis onvenient to introdue the time reversal operator de�ned as the operator ǫ that takes a mirostate
z = {ri,pi} and produes the mirostate ǫz = {ri,−pi}, i.e. it reverses the sign of the momentum.Obviously ǫ2 is the identity operator. With this operator, it is straighforward to observe the followingproperty of the Lioville operator

iLǫz =
∑

i

[

∂H(z)

∂pi

∂

∂ri
−

∂H(z)

∂ri

∂

∂pi

]
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= −ǫiLz (1.16)This is, the time reversal operator and the Liouville operator antiommute when applied to mirostates
iLǫz = −ǫiLz (1.17)This is a re�etion of the fat that the sympleti matrix J0 and the time reversal matrix ǫ antiommute,this is

J0ǫ =
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= −ǫJ0 (1.18)This property has the following onsequene on the evolution operator applied to an initial ondition z,
exp{iLt}z,

ǫ exp{iLt} = ǫ

[

1 + iLt+
1

2!
iLiLt2 + · · ·

]

z =

[

1ǫ− iLǫt−
1

2!
iLǫiLt2 + · · ·

]

z

=

[

1ǫ− iLǫt+
1

2!
iLiLǫt2 + · · ·

]

z

= exp{−iLt}ǫz (1.19)Changing the notation to Tt = exp{iLt} we have
ǫTtz = T−tǫz (1.20)or, equivalently,
TtǫTtz = ǫz (1.21)In words, this equation expresses the fat that if we take a mirostate z and let it evolve aording withHamilton's equations to get Ttz, and then we reverse the veloities of the evolved mirostate ǫTtz, andthen we evolve the resulting mirostate for a time t, to get TtǫtTtz, we end up with the initial mirostatewith the veloities reversed ǫz.



1.3 Liouville's theorem 131.3 Liouville's theoremHamilton's equation are �rst order diferential equations that provide the deterministi evolution of thesystem provided that the initial ondition z is given. However, it is in general impossible to know thepreise value of the initial values of the positions and momenta of all the partiles in our system. Usually,a system is prepared under idential marosopi onditions that do not allow to �x the value of thepositions and momenta of every single partile in the system. A olletion of idential systems preparedin idential manner at the initial time will have, in general, di�erent initial mirosopi states. For thisreason the best we an do is to express our knowledge about the initial mirostate of the system inprobabilisti terms by introduing a probability density ρ0(z) that the system has the mirostate z asinitial ondition. The probability distribution in phase spae is usually referred to as an ensemble. Eventhough the evolution of zt is deterministi, the unertainty about initial onditions renders the evolutionin phase spae a stohasti proess. The probability distribution funtion at a subsequent time is denotedby ρt(z) and it obeys the Liouville equation whih we will derive below for ompleteness. This equationis just an expression of a very important property of the solution of Hamilton's equation whih is theonservation of volume in phase spae.We may think of (1.11) as a oordinate transformation from z to zt. The Jaobian of this oordinatetransformation is, by de�nition, the following determinant
Jt(z0) ≡ det (Jt(z0)) (1.22)where the Jaobian matrix is
Jt(z0) ≡

∂zt(z0)

∂z0
(1.23)The time derivative of the Jaobian an be omputed by using the identity

Jt(z0) = det (Jt(z0)) = exp{Tr[lnJt(z0)]} (1.24)where the logarithm of the Jaobian matrix is de�ned in terms of the Taylor series of the logarithm.One way to prove the above identity is by diagonalizing the Jaobian matrix with an orthogonal matrix.Beause the determinant and trae operations are invariant under suh a transformation, we �nd that
exp{Tr[lnJt(z0)]} = exp

{

∑

k

lnλk

}

=
∏

k

λk (1.25)where λk are the eigenvalues of J. The last identity is just the determinant of the Jaobian matrix. Ifwe now take the time derivative of the Jaobian, we obtain
d

dt
Jt(z0) = exp{Tr[lnJt(z0)]}

d

dt
Tr[lnJt(z0)]}

= exp{Tr[lnJt(z0)]}Tr

[(

d

dt
Jt(z0)

)

J−1
t (z0)

]

= Jt(z0)Tr

[(

d

dt
Jt(z0)

)

J−1
t (z0)

] (1.26)



14 The Mirosopi DynamisConsider the time derivative of the Jaobian matrix
d

dt
Jt(z0) =

d

dt

∂zt(z0)

∂z0
=

∂

∂z0

d

dt
zt(z0)

=
∂

∂z0
J0

∂H

∂z
(zt(z0))

= J0
∂2H

∂z∂z
(zt(z0))

∂zt(z0)

∂z0

= J0
∂2H

∂z∂z
(zt(z0))Jt(z0) (1.27)Therefore, by inserting this result into (1.28) we obtain

d

dt
Jt(z0) = Jt(z0)Tr

[

J0
∂2H

∂z∂z
(zt(z0))

]

= 0 (1.28)Beause the Jaobian is onstant and at t = 0 it takes the value 1, then it will always be equal to 1.This result is a speial ase of the theorem of the integral invariants of Poinaré [?℄). The fat that theJaobian of the evolution is always equal to one has an important onsequene on the evolution of theprobability density in phase spae, as we now show.Let M be a region of not vanishing measure of Γ and TtM the region resulting from the evolution ofeah point of M aording to Hamilton's equations. It is obvious that the probability that the system isin the region M at t = 0 is idential to the probability of being at TtM at t = t. For this reason,
∫

M

ρ0(z)dz =

∫

TtM

ρt(z)dz. (1.29)By performing the hange of variables z′ = T−tz (with unit Jaobian) the integral in the left hand sidebeomes
∫

TtM

ρt(z)dz =

∫

M

ρt(Ttz)dz. (1.30)This is true for any region M and, therefore, the integrand of the right hand side of (1.29) and the lefthand side of (1.30) should be equal, i.e.
ρ0(z) = ρt(Ttz), (1.31)or, by a simple hange of variables,
ρt(z) = ρ0(T−tz). (1.32)This is the way the density in phase spae evolves in time. It simply says that the probability density ofmirostate z at time t is the same as the one that had the initial ondition of z at the initial time. Wemay of ourse �nd a di�erential equation for the probability density by just taking the time derivativeon both sides of (1.32). This gives

d

dt
ρt(Ttz) =

d

dt
ρ0(z) = 0. (1.33)that, again, expresses the fat that as we move with the �ow in phase spae, the probability densitydoes not hange. Further appliation of the hain rule leads to the Liouville equation for the probabilitydensity in phase spae,

∂tρ(z, t) = −iLρ(z, t), (1.34)where we have used the notation ∂t = ∂
∂t to denote the partial derivative with respet to time. It isobvious, by onstrution, that the formal solution of the Liouville equation (1.34) is given by (1.32).



1.4 Equilibrium at the mirosopi level 15An alternative derivation of the Liouville equation starts from the realization that the �ow in phasespae is inompressible. In order to prove this, note that from Hamilton's equations (1.2) we may de�nethe �ow veloity in phase spae as
v(z) = J0

∂H

∂z
(z) (1.35)Therefore, by taking the divergene of this veloity �eld we obtain

∂

∂z
v(z) = J0

∂2H

∂z∂z
(z) = 0 (1.36)The zero omes from the fat that we are ontrating a fully antisymmetri matrix J0 with a fullysymmetri one, the Hessian of the Hamiltonian. Eq. (1.36 tells us that the �ow veloity has null divergenein phase spae. This is another re�etion of the fat that the �ow in phase spae is inompressible, or thatvolumes are onserved by the Hamiltonian dynamis. As any other probability density, the probabilityin phase spae satis�es a ontinuity equation that re�ets the fat that probability is loally onserved.The ontinuity equation is

∂tρt(z) = −
∂

∂z
·v(z)ρt(z) (1.37)By using the inompressibility ondition (1.36), we obtain again the Liouville equation (1.34).1.4 Equilibrium at the mirosopi levelLet us onsider now the �nal state predited by the Liouville equation. A basi mathematial question isunder whih onditions the Liouville equation (1.34), whih is a �rst order partial di�erential equation,leads to a stationary solution with ∂tρ(z, t) = 0. That this is not generally the ase an be seen byonsidering an initial distribution of the form ρ(z, 0) = δ(z−z0) that expreses that we know with ertaintythat the initial state is z0. In this ase, we know that the solution is given by ρ(z, t) = δ(Ttz0−z), this is,the distribution funtion remains peaked at the solution of Hamilton's equations. There is no broadeningof the distribution funtion and the system does not reah a stationary state. However, if the dynamisgenerated by the Hamiltonian is highly unstable (i.e. haoti), we may expet that any non-delta initialdistribution will evolve with a sort of broadening. To be more spei�, if the dynamis of the system isof the mixing type, then the system reahes an e�etive stationary mirosopi probability that it is afuntion of the mirostate only through the dynamial invariants of the system [?℄. Usually, the proofthat a given system is of the mixing type is di�ult but we will assume that our system is of the mixingtype and has, therefore, a tendeny to reah a well de�ned equilibrium state.Any distribution funtion ρ(z) whih is a funtion g(I(z)) will be, therefore, a stationary solution ofthe Liouville equation and, as stated, we will assume that any stationary solution is of this type. Thisstationary distribution is alled the equilibrium ensemble ρeq(z). Therefore,

lim
t→∞

ρ(z, t) = ρeq(z) = g(I(z)). (1.38)Let us investigate the meaning of the funtion g(I) by onsidering the probability distribution P eq(I) ofdynamial invariants at equilibrium. By de�nition,
P eq(I) =

∫

dzρeq(z)δ(I(z)− I) =

∫

dzg(I(z))δ(I(z)− I) = g(I)Ωeq(I), (1.39)where we have introdued the measure Ωeq(I) of the region of phase spae ompatible with a given set



16 The Mirosopi Dynamisof dynamial invariants
Ωeq(I) =

∫

dzδ(I(z)− I). (1.40)Equation (1.39) allows to identify g(I) and (1.38) beomes
ρeq(z) =

P eq(I(z))

Ωeq(I(z))
. (1.41)Therefore, the equilibrium ensemble is fully determined by the probability distribution of dynamialinvariants at equilibrium.It is obvious that the distribution of dynamial invariants at any time is itself invariant. The proba-bility density of �nding a value I of the dynamial invariants I(z) is given by

P (I, t) =

∫

dzρt(z)δ(I(z)− I) (1.42)The time derivative of this probability is
∂tP (I, t) =

∫

dz(−iL)ρt(z)δ(I(z)− I) =

∫

dzρt(z)iLδ(I(z)− I) = 0 (1.43)Therefore, the probability of dynamial invariants is itself an invariant. As a onsequene the equilibriumdistribution of dinamial invariants is just the same as the initial distribution of dynamial invariants
P eq(I) = P (I, 0). We will denote P0(I) = P (I, t) and then the equilibrium ensemble is just

ρeq(z) = ρ0
P0(I(z))

Ω0(I(z))
. (1.44)where we have introdued ρ0 with dimensions of (ation)−N in order to have

Ω0(I) = ρ0

∫

dzδ(I(z)− I) (1.45)with the same physial dimensions as P0(I). The equilibrium ensemble ρeq(z) is fully determined one theinitial distribution P0(I) of dynamial invariants is known at the initial time. Eq. (1.44) is a fundamentalresult of equilibrium Statistial Mehanis. The intuitive meaning of (1.44) is very sugestive. Ω0(I) isthe measure of the submanifold of mirostates orresponding to the invariants I and we may thinkthat it is proportional to �the number� of mirostates that have a value I for the dynami invariants.Therefore, the probability density ρeq(z) of a given mirostate z is the �probability P0(I(z)) of being inthe submanifold I(z) = I divided by the number of mirostates of that submanifold�. We ould say, then,that at equilibrium �all mirostates with the same value of I(z) are equiprobable�. Of ourse, this is moreof a mnemotehinal rule for (1.44) than a rigorous statement beause, being a ontinuum submanifold,the �number of mirostates� satisfying I(z) = I is in�nite.The referene value ρ0NThe funtion Ω(E) gives the overall measure of the submanifold H(z) = E in phase spae. This subman-ifold is usually termed the energy shell. The funtion Ω(E) is usually termed the struture funtion [?℄and ontains all the marosopi thermodynami information about the system [?℄. Equations of state,in partiular, are derived from this funtion. It is also well-known that in order to have results thatagree with orresponding results obtained diretly from Quantum Mehanis, the appropriate value for



1.5 The single, all enompassing problem of Non-Equilibrium Statistial Mehanis 17
ρ0N should be taken as

ρ0N =
1

h3NN !
(1.46)Plank's onstant h gives the appropriate dimensions whereas the fator N ! is due to the indistinguisha-bility of the partiles [?℄ and it is known as the orret Boltzmann ounting. As it will be seen for theideal gas latter, it ensures the extensivity of the marosopi entropy. Of ourse, if we have a mixtureof partiles that an be distinguished by some property (for example, they have di�erent mass), thenthe fatorial oe�ient hanges aordingly to aount for the di�erent equivalent ways of ordering thepartiles.1.5 The single, all enompassing problem of Non-EquilibriumStatistial MehanisNon-Equilibrium Statistial Mehanis is based on the fundamental presuposition that all marosopiproesses an be ultimately understood in terms of the lassial laws of motion of isolated systems. Sofar, we have seen how an isolated lassial system made of partiles is governed at the mirosopi levelby Hamilton's equations with a time-independent Hamiltonian and how any initial distribution over thephase spae will evolve towards the equilibrium ensemble. This means that we restrit ourselves tostudy the evolution towards the equilibrium state of an initial distribution whih is not the stationarysolution of the Liouville equation orresponding to the Hamiltonian of the system. Our limitation onisolated systems that deay to equilibrium preludes, aparently, the possibility to study non-equilibriumstationary states that are mantained with �external ouplings�. These experimental situations, however,do �t into the framework of an �isolated deaying system� whenever we onsider the system under studyin ontat with reservoirs, in suh a way that the omposed system of system+reservoirs is isolated. Inthis view, a stationary state is just an extremely long-lived deay towards the global equilibrium of thesystem+reservoir, where the time sale towards equilibrium is ditated by the size of the reservoir.Therefore, the basi proess that we study is how an arbitrary initial ensemble deays towards theequilibrium ensemble

ρ0(z) −→ ρeq(z) (1.47)A system left to evolve will reah the equilibrium state orresponding to the Hamiltonian of the system.Beause no matter how an isolated system is prepared1 it will go towards the same equilibrium state, theequilibration of a system is a partiularly simple way to prepare and ontrol the initial state of a systemin the preparation phase of an experiment. Therefore, we assume that the initial ensemble ρ0(z) is theequilibrium state of ertain Hamiltonian H0. At t = 0 some parameter of the Hamiltonian hanges andtransforms the original Hamiltonian H0 into another Hamiltonian H1. The ensemble ρ0 is no longer theequilibrium ensemble of H1 and it will evolve aording to the dynamis generated by H1 until it reahesthe equilibrium state of H1.Callen in his magni�ent book �Thermodynamis� states in a rystalline sentene whih is, perhaps,the essential tenet of the book: �The single, all enompassing problem of thermodynamis is the determi-nation of the equilibrium state that eventually results after the removal of internal onstraints in a losed,omposite system�. If we think about this problem in mirosopi terms, the removal of an internal on-straint an always be desribed at a moleular level as a hange of the Hamiltonian of the system and,therefore, is a proess of the form desribed in the previous paragraph. For this reason, we may statethat the fundamental problem of Thermodynamis is, indeed the very same problem of Non-Equilibrium1Provided the distribution of dynami invariants is the same in all preparations!



18 The Mirosopi DynamisStatistial Mehanis, exept that in the latter ase not only the �nal equilibrium state is seeked for, butthe riher question of how this state is reahed in time is answered.



2The Mesosopi Dynamis2.1 Levels of desriptionThe theory of oarse-graining is a formalization of the proess of representing a given system with lessinformation than that aptured by the atual mirostate of the system. One and the same systemmay be desribed at di�erent levels of desription depending on the amount of information whihone retains marosopially. The di�erent levels of desription of a system are haraterized by thedynamial invariants of the system I(z) and a set of phase funtions A(z) whih are not dynamialinvariants. The phase funtions A(z) that haraterize a given level of desription will be referred toas relevant variables but they have reeived in the past a number of di�erent names. Marostates,marosopi variables, gross variables, olletive variables, oarse-grained variables, reation oordinates,order parameters, internal variables, strutural variables, et. are all synonyms for relevant variables.With the symbol A(z) we denote a olletion of phase funtions eah one labeled with a disrete indexlike in, for example, A(z) = {Aµ(z), µ = 1, · · · ,M}.The identi�ation of the relevant variables A(z) is an art of the theory of oarse-graining and a ruialelement in order to desribe marosopially a system with many degrees of freedom. As we have stressedin the previous hapter, we are onerned with the transition (1.47) from an initial ensemble towards theequilibrium ensemble. Usually, this happens in a way that it is possible to identify olletive motions andpatterns that emerge in the ourse of the relaxation towards equilibrium. When we stop stirring our upof o�e, whih at its most mirosopi level is made of olliding atoms, vorties are learly visible thatsuggest that the relaxation happens following �paths� in the phase spae. These paths are haraterizedby phase funtions whose values evolve in time muh slowly than other phase funtions. We will see thatfrom a pratial point of view only when there is a lear separation of time sales between the seletedrelevant variables and the orrelations of their time rate of hange, it is possible to have simple dynamiequations for the relevant variables. When this happens we have that the relevant variables �forget� theirpast rapidly and their future is essentially determined by their present values. In these ases, we say thatthe desription is Markovian. The general strategy when there is no suh a separation of time sales isto look for additional variables that also evolve in omparable time sales as the ones that we believe arethe slow variables. By enlarging the set of relevant variables, we hope that the resulting desription maybe Markovian.There are few guiding priniples for the seletion of relevant variables. Whenenever we have onservedor quasionserved variables, we expet that they will need to be inluded in the desription. Therefore,we will always inlude in the set of relevant variables the dynami invariants of the system. In partiular,the Hamiltonian H(z) will be inluded in the desription. If for some reason, we expet a harateristifeature (orientation, strehing, elongation, et. ) to play a role in the dynamis of the system, then we



20 The Mesosopi Dynamisneed to inlude the phase funtions that best apture suh feature in the olletion of relevant variables.Ideally, one would like to develop tools for analyzing the �ow in phase spae and automatially produethe appropiate relevant variables for the problem at hand. This pattern reognition proess is far frombeing addressed in the literature beause the problems to fae are enormous given the high dimensionalityof phase spae.Let us turn bak to the motion of the system in phase spae. We have said that the single enom-pasing problem of Non-Equilibrium Statistial Mehanis is the study of how the system approahes theequilibrium state. This proes is one in whih a loud of points initially onentrated in a region of theenergy shell (or a loud inhomogenous in any other way) spread uniformly in that energy shell. Now,imagine that the system has an additional invariant (you may think, for example, about total linearmomentum). This means that the �ow in phase spae will be �strati�ed� in layers, in whih the points onevery layer never leaves the layer (in order to onserve the dynamial invariant). Now, imagine that wedo not have suh additional dynami invariant, but the �ow in phase spae is quasi-strati�ed, in a waythat it beomes rapidly homogeneous in layers and the �ow from one layer to another ours slowly. Ifthis is the dynamial senario at the mirosopi level, we expet that the phase funtion that impliitlyde�nes the layers will be slow variables and good andidates to be relevant variables.In the present hapter, we want to derive the governing equations for the probability distributionsof the relevant variables starting from the mirosopi dynamis of the system. The resulting exatdynami equation for the probability distribution P (a, t) takes, in the Markovian approximation, theform of a Fokker-Plank equation (FPE). This FPE was introdued by Green in a seminal paper in 1952by using a a line reasoning where he assumed that the stohasti proess of relevant variables was aMarkovian stohasti proess. From this assumption he derived the governing equation for the transitionprobability of this proess. Green's paper is arguably a ornerstone in the theory of non-equilibriumstatistial mehanis. The derivation by Zwanzig in 1961 of the same FPE with the help of a projetionoperator, showed how this equation emerges in the limit of lear separation of time sales from an exatnon-Markovian equation.2.2 Stohasti proesses in Phase SpaeWe will onsider relevant variables A(z) with the property that an equation like A(z) = a de�nes a propersubmanifold of phase spae. By this we mean that the measure Ω(a) of the submanifold A(z) = a de�nedas
Ω(a) =

∫

dzρ0Nδ(A(z)− a) (2.1)exists and it is well de�ned. Roughly, Ω(a) �ounts� the number of mirostates z that are ompatiblewith a given marostate a. When the relevant variables de�ne proper submanifolds it is possible todesribe the evolution of the relevant variables in terms of stohasti proesses. A stohasti proess isfully haraterized [?℄ by giving the hierarhy of joint probability distributions P (a1, t1, · · · , an, tn)of having the value a1 at time t1 and the value a2 at time t2 et. where t1 < t2 < · · · < tn, for all n.Let us express this joint probability in mirosopi terms. In this setion we assume that the number ofpartiles is known. Extension to the maroanonial phase spae is straightforward. The motion in phasespae Γ of a mirostate z = (q1, . . . , qN , p1, . . . , pN ), where qi, pi are the position and momentum of the
i-th partile, an be viewed as a stohasti proess itself. The orresponding joint probabilities for thisproess will be denoted by ρn(z1t1, . . . , zntn). The ombination of the two fats, that the randomness isgiven only at the initial time and that the later evolution is deterministi, makes the one-time probabilitydensity ρ1(z, t) the most relevant joint probability of the hierarhy. In fat, all the joint probabilities ρnwith n ≥ 2 an be expressed in terms of the one-time probability density ρ1(z, t). By denoting with Ttz



2.2 Stohasti proesses in Phase Spae 21the solution of Hamilton's equations with initial onditions z we have
ρn(z1t1, . . . , zntn) = ρ1(z1t1)δ(z2 − Tt2−t1z1) . . . δ(zn − Ttn−tn−1

zn−1) (2.2)The one-time probability density or ensemble density satis�es the well known Liouville's equation withformal solution given by Eq. (1.32) All the stohastiity in the proess given by Ttz arises from theunertainty in the initial onditions.We next onsider the evolution of the relevant variables A(Ttz) as a onseuene of the evolution of themirostate itself. The values that these dynami variables take an be regarded as a stohasti proess.The n-time joint probability densities P (a1t1, . . . , antn) whih haraterize the stohasti proess of therelevant variables and the n-time probability densities ρ(z1t1, . . . , zntn) of the orresponding mirosopiproess are related to eah other through
P (a1t1, . . . , antn) =

∫

. . .

∫

ρ(z1t1, . . . , zntn)δ(A(z1)− a1) . . . δ(A(zn)− an)dz1 . . . dzn (2.3)whih an be further simpli�ed by using (2.2) and integrating over z2, . . . , zn
P (a1t1, . . . , antn) =

∫

dzρ(z, t1)δ(A(z) − a1)δ(A(Tt2−t1z)− a2) . . . δ(A(Ttn−t1z)− an) (2.4)where it has been used that TtTt′ = Tt+t′ . By performing the hange of oordinates z = T−t1z1 (whihhas inverse z1 = Tt1z and unit jaobian) equation (2.4) an be written as
P (a1t1, . . . , antn) =

∫

dzρ(z, 0)δ(A(Tt1z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz)− an) (2.5)This is the �nal form for the marosopi n-time joint probability density whih appears as an integralover the initial ensemble ρ(z, 0) of delta funtions that �ontrat� the desription from mirostates z tomarostates a and whih involves the mirosopi dynamis Tt.Initial ensembleA basi question that arises now is, what is the atual funtional form of ρ(z, 0)? As mentioned, inpriniple we annot measure the initial mirosopi state z exatly. If we are going to desribe a systemat a given oarse-grained level, we must assume that we have aess to the measurement of the oarse-grained variables A(z). In general, all the information we have about our system at the initial time is apartiular distribution P (a, 0), whih is the outome of a repeated set of measurements of the funtions
A(z) with numerial outomes a over the system prepared in an idential manner at the initial time.Therefore, we have to determine the distribution funtion ρ(z, 0) with the sole information that it shouldprovide preisely the distribution P (a, 0). Both distribution funtions are related through

P (a, 0) =

∫

dzδ(A(z)− a)ρ(z, 0). (2.6)However, there are many di�erent ρ(z, 0) that an produe the same P (a, 0). Whih is the orret one?Aording to information theory [?℄, the least biased distribution whih is ompatible with the marosopiinformation P (a, 0) is the one that maximizes the entropy funtional
S[ρ0] ≡ −kB

∫

Γ

ρ(z, 0) ln
ρ(z, 0)

ρ0N
dz. (2.7)



22 The Mesosopi Dynamisonditioned to the restrition (2.6). We enounter here a problem of Lagrange multipliers. By intro-duing the multipliers λ(a) for the ontinuum set of restritions (2.6) (one for eah a), we maximize thefuntional I[ρ0] = S[ρ0] +
∫

dxλ(a)P (a, 0) + µ
∫

dxP (a, 0), where the µ Lagrange multiplier stands forthe normalization to unity restrition of ρ(z, 0). The Lagrange multipliers are obtained by substitutingthe maximum value into the restrition (2.6). The following �nal result is obtained [?℄
ρ(z, 0) =

P (A(z), 0)

Ω(A(z))
, (2.8)where Ω(a) is given in (2.1).By substituting this initial ensemble into equation (2.5) and by hoosing t1 equal to 0 for simpliity,one obtains

P (a10, . . . , antn) =
P1(a1, 0)

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz)− an) (2.9)We now introdue the onditional probability density P (a10|a2t2, . . . , antn) of �nding the system in a2at time t2 and in a3 at time t3 and so on till an, tn, provided it was in a1 at the initial time t1 = 0. It isgiven by
P (a10|a2t2, . . . , antn) ≡

P (a10, a2t2, . . . , antn)

P (a1, 0)
=

=
1

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz − an) (2.10)For further referene it is onvenient to onsider n = 2 in (2.10), that reeives the name of transitionprobability
P (a10|a2t2) =

1

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) (2.11)This is a fundamental equation that relates the transition probability of the CG variables with the mi-rosopi dynamis. It an be given an heuristi interpretation as follows. The numerator Ω(a1) is �thenumber of mirostates ompatible with a1� while the denominator in (2.11) is �the number of mirostatesompatible with a1 that after a time are at a2�. Therefore, the transition probability is just the frationof mirostates ompatible with a1 that after a given time are at a2.



2.3 Green's view of oarse-graining 232.3 Green's view of oarse-grainingGreen in his 1952 remarkable paper presented the essentials of the theory of oarse-graining as we know it.The basi assumption taken by Green and on whih the whole onstrution of oarse-graining is based isthat the stohasti proess of the relevant variables is a ontinuum Markov proess. As we will see in thissetion, this single hypothesis is su�ient to obtain a dynamial equations for the relevant variables, theFokker-Plank equation, with all the objets appearing in the dynams de�ned in terms of mirosopiexpressions. But �rst we have to introdue the Markov stohasti proess and some of its properties.A Markov proess is haraterized by the fat that the n-time joint probability an be fully expressed interms of the one-time probabability, and the transition probability. In fat, any other n-time probabilityis written as
P (a1t1, . . . , antn) = P (a1, t1)P (a1, t1|a2, t2) · · ·P (an−1, tn−1|an, tn) (2.12)For a Markov proess the full stohasti proess is haraterized by the one time probability and thetransition probability alone. We have already enountered a Markov proess, the one orresponding tothe deterministi Hamiltonian dynamis desribed in Eq. (2.2). If we onsider the onditional probability

P2(a1, t1|a2, t2, a3, t3) of having a2 at t2 and a3 at t3 provided that we had a1 at t1, the Markov propertystates
P (a1, t1|a2, t2, a3, t3) = P (a1, t1|a2, t2)P (a2, t2|a3, t3) (2.13)We an interpret the Markov ondition in geometrial terms as we did when disussing the mixingproperty. The Markov property says that the fration of points of the submanifold a1 that happen to beat a2 at t2 and then at a3 at t3 equals the fration of points of a1 that will be at a2 at t2 (irrespetive ofwhere they will go afterwards) times the fration of points of a2 that will be in a3 at time t3.If we integrate Eq. (2.13) over a2 we need to have the following onsisteny ondition
P2(a1, t1|a3, t3) =

∫

da2P (a1, t1|a2, t2)P (a2, t2|a3, t3) (2.14)This onsisteny ondition is known as the Chapman-Kolmogorov equation for the transition proba-bilities. The intuitive idea with this equation is that the probability of a transition from a1 to a3 is givenas the sum of all the transition probabilites over an intermediate state a2.The Chapman-Kolmogorov is an integral equation that links all the transtion probabilities of a Markovproess. There exists an equivalent di�erential form for the Chapman-Kolmogorov whih is namedas the Fokker-Plank equation. The derivation of the Fokker-Plank equation from the Champan-Kolmogorov equation is presented in [?℄ and we only quote the �nal result. The Fokker-Plank equationgoverns the one time probability distribution
∂

∂t
P (a, t) = −

∂

∂a
D(1)(a)P (a, t) +

1

2

∂2

∂a∂a
D(2)(a)P (a, t) (2.15)The two time joint probability and one time probability are related by

P (a1, t1) =

∫

da0P (a0, t0, a1, t1) (2.16)beause both sides of this equation are the probability of �nding a1 at time t1 irrespetive of the value of
a0 at time t0. This equation gives the following integral equation relating the one time probability and



24 The Mesosopi Dynamisthe transition probability
P (a1, t1) =

∫

da0P (a0, t0)P (a0, t0|a1, t1) (2.17)Note that, from Eq. (2.17) if we take as initial ondition P (a0, t0) = δ(a0− â) then P (a, t) = P (â, t0|a, t),this is, the transition probability is idential to the one-time probability with a Dira delta initial ondi-tion. As a onsequene, the transition probability also satis�es the Fokker-Plank equation (2.15)
∂

∂t
P (a0t0|a, t) = −

∂

∂a
D(1)(a)P (a0t0|a, t) +

1

2

∂2

∂a∂a
D(2)(a)P (a0t0|a, t) (2.18)where, by de�nition, we have that the initial ondition for this equation is

P (a0, t0|a, t0) = δ(a− a0) (2.19)Therefore, Green's basi assumption that the stohasti proess of the relevant variables is a Markovproess is equivalent to the hypothesis that the one-time and transition probabilities of the relevantvariables obey the Fokker-Plank equation.Moleular expresion of drift and di�usionThe drift vetor D(1)(a) and the di�usion tensor D(2)(a) introdued in Eq. (2.15) are given in termsof moments of the transition probability at short times. Its partiular form is, atually, spei�ed asonditions in the derivation of the Fokker-Plank equation from the Chapman-Kolmogorov equation [?℄.However, we may also obtain the spei� form of these objets by just the requirement that the transitionprobability obeys the FPE (2.18). Let us see how this arise. The solution of the Fokker-Plank equation(2.18) is di�ult to obtain in general due to the fat that the objets D(1)(a), D(2)(a) may depend ingeneral on the state a in a non-linear way. Nevertheless, it is possible to obtain an expliit solution forshort times. Beause the initial ondition (2.19) of the transition probability is a Dira delta, we expetthat for su�iently short times t = t0 + ∆t with ∆t ≈ 0, the transition probability will remain highlypeaked. In this ase, we may approximate in (2.18) D(1)(a) ≈ D(1)(a0) and D(2)(a) ≈ D(2)(a0). Thisresults in a Fokker-Plank equation with onstant oe�ients whih is easy to solve
∂

∂t
P (a0t0|a, t) = −D(1)(a0)

∂

∂a
P (a0t0|a, t) +D(2)(a0)

1

2

∂2

∂a∂a
P (a0t0|a, t) (2.20)The exat solution of this equation with initial ondition (2.19) has a Gaussian form

P (a0, t0|a1, t0 +∆t) = exp

{

−
1

2∆t

(

a1 − a0 −∆tD(1)(a0)
)

D−1
(2)(a0)

(

a1 − a0 −∆tD(1)(a0)
)

}

×
1

(2π∆t)M/2 det(D(2)(a0))1/2
(2.21)provided that the inverse of the di�usion matrix D(2)(a) exists. In systems with inertia the inverse doesnot exist but it is nevertheless still possible to write down the transition probability, that will inludesome delta funtions [?℄. The transition probability (2.21) has the following moments

∫

da1(a1 − a0)P (a0, t0|a1, t0 +∆t) = D(1)(a0)∆t

∫

da1(a1 − a0)(a1 − a0)P (a1, t0 +∆t|a0, t0) = D(2)(a0)∆t+D(1)(a0)D
(1)(a0)∆t2 (2.22)



2.3 Green's view of oarse-graining 25The seond moment an also be expressed as
∫

da1(a1 − a0 −D(1)(a0)∆t)(a1 − a0 −D(1)(a0)∆t)P (a1, t0 +∆t|a0, t0) = D(2)(a0)∆t (2.23)Note that these expressions give the drift D(1)(a) and di�usion D(2)(a) in terms of the �rst and seondmoments of the short time form of the transition probability. But note now that we have also a mirosopiexpression for the transition probability, given in (2.11)! Therefore, by substituting (2.11) into (2.22) and(2.23) we may obtain expliit moleular expressions for D(1)(a) and D(2)(a). Consider the �rst term
D(1)(a0) and use Eq. (2.11) in Eq. (2.22)

D(1)(a0) =
1

∆t

∫

da(a− a0)
1

Ω(a1)

∫

δ(A(z)− a0)δ(A(T∆tz)− a)dz (2.24)We perform the integral over the variable a of the Dira delta funtion and obtain
D(1)(a0) =

1

∆t

∫

dz
δ(A(z)− a0)

Ω(a0)
(A(T∆tz)−A(z)) =

〈

A(∆t) −A(0)

∆t

〉a0 (2.25)where we have introdued the generalized miroanonial average or onditional average
〈· · · 〉

a0 ≡

∫

dz
δ(A(z)− a0)

Ω(a0)
· · · (2.26)Eq. (2.25) is the desired mirosopi expression for the drift D(1)(a0). In a similar way, by substitutionof (2.11) into (2.23) we obtain a mirosopi expression for the di�usion tensor

D(2)(a0) =
1

∆t

〈

[A(∆t) − a0 −D(1)(a0)∆t][A(∆t) − a0 −D(1)(a0)∆t]
〉a0 (2.27)This expression known as the Einstein-Helfand formula for the di�usion oe�ient and it basi-ally says that the square displaement of the relevant variables inreases proportional to ∆t, with theproportionality fator given by the di�usion tensor.Now, while both (2.25) and (2.27) are mirosopi expressions for the drift and di�usion tensor, theydepend on the time ∆t. Of ourse we would like to eliminate somehow the dependene on ∆t. We wantto expand the above expressions in terms of ∆t and keep only the zero order term whih is independentof ∆t. However, the fat that ∆t, although small, is not vanishing small leads to some subtelties. Letus onsider the drift term �rst. As a �rst approximation, we would use a simple Taylor expansion of therelevant variable

A(T∆tz) = A(z) + iLA(z)∆t+O(∆t)2 (2.28)and neglet terms of high order, to obtain
D(1)(a0) = 〈iLA〉

a0 +O(∆t) (2.29)The drift would be given as the onditional average of the �veloity� of the relevant variables. However,this is not quite orret. Even though we have assumed that ∆t is �small�, the time interval ∆t annotgo to zero stritly beause then the basi Markovian assumption with no memory of the past would nothold. We need to onsider the time interval ∆t as neesarily �nite and the mirosopi dynamis may



26 The Mesosopi Dynamishave time to do funny things. It is, therefore, preferable to use the following identity
A(T∆tz)−A(z) =

∫ ∆t

0

dt
d

dt
A(Ttz) =

∫ ∆t

0

dtiLA(Ttz) (2.30)By using this identity in (2.25), we obtain an mathematially idential expression for D(1)(a0), this is
D(1)(a0) =

1

∆t

∫ ∆t

0

dt

∫

dz
δ(A(z)− a0)

Ω(a0)
iLA(Ttz) =

1

∆t

∫ ∆t

0

dt 〈iLA(t)〉a0 (2.31)In this way, we see that it the drift is the time average over the time interval ∆t of the average �veloity�of the relevant variables. We now perform the hange of variables Ttz → z, with unit Jaobian, andobtain
D(1)(a0) =

1

∆t

∫ ∆t

0

dt

∫

dz
δ(A(T−tz)− a0)

Ω(a0)
iLA(z) (2.32)Now onsider the identity, similar to (2.30)

A(T−tz) = A(z) +

∫ 0

−t

dt′iLA(Tt′) (2.33)
D(1)(a0) =

1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∫

dzδ

(

A(z) +

∫ 0

−t

dt′iLA(Tt′z)− a0

)

iLA(z) (2.34)We an now formally expand the Dira delta funtion around A(z)− a0

δ

(

A(z) +

∫ 0

−t

dt′iLA(Tt′z)− a0

)

= δ (A(z)− a0)−
∂

∂a0
δ (A(z)− a0)

∫ 0

−t

dt′iLA(Tt′(z)) + · · · (2.35)By inserting this formal expansion into (2.34) we have
D(1)(a0) = 〈iLA〉

a0

+
1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∂

∂a0

∫ 0

−t

dt′
∫

dzδ (A(z)− a0) iLA(Tt′(z))iLA(z)

+
1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∂2

∂a0∂a0

∫ 0

−t

dt′
∫ 0

−t

dt′′
∫

dzδ (A(z)− a0) iLA(Tt′′(z))iLA(Tt′(z))iLA(z)

+ · · · (2.36)This expression an be written in a more ompat form as
D(1)(a0) = 〈iLA〉

a0

+
1

Ω(a0)

∂

∂a0
Ω(a0)

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0

+
1

Ω(a0)

∂2

∂a0∂a0
Ω(a0)

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′
∫ 0

−t

dt′′ 〈iLA(t′′)iLA(t′)iLA〉
a0

+ · · · (2.37)



2.3 Green's view of oarse-graining 27By retaining all the terms in this expression we have an expression that is mathematial equivalent to(2.25). We observe, therefore, that, in addition to the naive term 〈iLA〉a0 we have additional ontributionsthat are time integrals of orrelation funtions. The task now is to evaluate whether these ontributionssale as (∆t)0 or with a higher power of ∆t. Let us onsider the �rst orrelation matrix
1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0 =

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′′ 〈iLA(−t′′)iLA〉
a0

=
1

∆t

∫ ∆t

0

dt′′
∫ ∆t

t′′
dt 〈iLA(−t′′)iLA〉

a0

=
1

∆t

∫ ∆t

0

dt′′(∆t− t′′) 〈iLA(−t′′)iLA〉
a0 (2.38)where we have performed a hange of variables. Next we add and substrat the term 〈iLA〉a0〈iLA〉a0 inorder to have a proper orrelation that deays to zero

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0 =

∫ ∆t

0

dt′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0

−
1

∆t

∫ ∆t

0

dt′′t′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0

+
∆t

2
〈iLA〉a0〈iLA〉a0 (2.39)We expet that the matrix of orrelations 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉

a0 deays to zero as
|t′′| inreases and that the integral then onverges to a term whih is independent of ∆t, for su�ientlylarge ∆t. We denote with D(a0) the resulting matrix

D(a0) ≡

∫ ∆t

0

dt′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0 (2.40)On the other hand, we also expet that the seond integral in Eq. (2.39) also onverges, but due tothe prefator 1/∆t, this seond integral will deay as 1/∆t1. Therefore, if ∆t is slightly larger than theorrelation time in whih the veloity �utuations of the relevant variables deay, we may neglet theseond integral. Finally, the last term in Eq. (2.39) is of order ∆t.The analysis of the third and higher order terms in Eq. (2.37) beomes readily very ompliated. Wewill assume, though, that these terms are �small� and that an be negleted. This approximation is notrigorous and one has to judge the resulting expression a posteriori. Therefore, we obtain the followingform for the drift term

D(1)(a0) = 〈iLA〉
a0 +

1

Ω(a0)

∂

∂a0
Ω(a0)D(a0) +O(∆t) (2.41)where the expliitly displayed terms in this equation are independent of ∆t. Note that, as ompared withthe naive result (2.29), we have an additional term in the drift. This term arises due to the fat that thetime ∆t is large ompared with the orrelation of the �utuations of the veloity of the relevant variables.At the same time, ∆t needs to be short in omparison with the evolution of the relevant variablesthemselves, otherwise, we are not allowed to use the Gaussian form for the transition probability onwhih the whole proedure is bases. The existene of suh time ∆t is based on the fat that there mustbe a separation of time sales between the relevant variables and the �utuations of their veloities.1One may onsider a simple example in whih the orrelation deay as exponentials to get a feeling for this behaviour.



28 The Mesosopi DynamisWe may obtain an expression for the di�usion tensor (2.27) by expanding again in the small time ∆t.In order to have the proper orders in ∆t, substitute just one of the terms (A(T∆tz)− a0) by using (2.28),this is
D(2)(a0) =

〈

[iLA−D(1)(a0)][A(∆t) −A(0)]
〉a0

+O(∆t) (2.42)This expression is equivalent to (2.27) up to small terms of order ∆t and an also be used to obtain thedi�usion tensor by mirosopi means. This seond form of the di�usion tensor has no spei� nameassoiated to it.Still, a third way to express the di�usion tensor is by using the identity (2.30) in (2.42). Then wehave
D(2)(a0) =

∫ ∆t

0

dt
〈

[iLA−D(1)(a0)]iLA(t)
〉a0

+O(∆t) (2.43)We may symmetrize this expression by substrating D(1)(a0) to the last iLA(Ttz) term
D(2)(a0) =

∫ ∆t

0

dt
〈

[iLA−D(1)(a0)][iLA(t)−D(1)(a0)]
〉a0

+O(∆t) (2.44)This is theGreen-Kubo formula for the di�usion tensor. The three expressions (2.27),(2.42) and (2.44)are equivalent forms for the di�usion tensor in mirosopi terms.We may now ask about the value of ∆t. We have used the form (2.21) for the transition probabilityunder the assumption that ∆t is �small�. However, we annot take the mathematial limit ∆t → 0beause the above mirosopi expressions give the result D(2)(a) = 0. Clearly ∆t has to be a timewhih is large enough for the orrelations of the �utuations iLA−D(1) of the �veloity� to have deayedor, equivalently, for the square of the �displaement� A(∆t) − a0 − D(1)(a0)∆t in the Einstein-Helfandexpression to have reahed a behaviour linear in time. At the same time, it has to be short enough forbeing able to use the Gaussian approximation for the transition probability. As this Gaussian behaviouris related to the fat that we ould make the substitution D(1)(a), D(2)(a) with D(1)(a0), D
(2)(a0), weexpet that the time ∆t has to be short in front of the typial sale of evolution of the relevant variables.In summary, one obvious requirement for the validity of the above expressions is that there exists a learseparation of time sales between the relevant variables and the the �utuations of the veloity of therelevant variables. In other words, the relevant variables need to be slow variables (in the time saleof its veloity �utuations). It is obvious that one needs to inlude in the set of relevant variables athe dynami invariants, in partiular the Hamiltonian, of the system as they are the slowest possiblevariables. This is, the �rst omponent of the vetor A(z) needs to be the Hamiltonian. In this way theonditional expetations (2.26) do, in fat, ontain a Dira delta funtion over the Hamiltonian whih isnothing else that the equilibrium miroanonial ensemble.In this setion, we have presented the theory of oarse-graining as was given by Green. In priniple,and quite often in pratie, this is all what we would need to know about the theory of oarse-graining.Of ourse, the whole onstrution is based on the assumption that the stohasti proess of relevantvariables has the Markov property. We have seen that this assumption is equivalent to postulate thatthe one-time and transition probabilities obey the Fokker-Plank equation. If this is true, then we haveexpliit moleular expressions for the dynamis of the relevant variables. Of ourse, in the proess ofobtaining these moleular expressions we have followed a number of non-rigorous approximations thatmay leave us with an unonfortable feeling.In order to get some more insight into the problem, in the next setions, we will not postulate theFokker-Plank equation but rather will derive it from the mirosopi Hamilton's equations. We hopethat in this way, we will have some more light into the problem.



2.4 Zwanzig view of oarse-graining 292.4 Zwanzig view of oarse-graining2.4.1 Exat equation for P (a, t)The evolution of the mirosopi ensemlbe ρ(z, t) aording to the Liouville equation indues an evolutionof the mesosopi distribution P (a, t), beause both are related aording to
P (a, t) =

∫

δ(A(z)− a)ρ(z, t)dz. (2.45)Of ourse, we would like to have a losed dynamial equation for P (a, t) that makes no referene to theunderlying dynamis given by ρ(z, t). This losed equation an be obtained with the help of a projetionoperator tehnique. Following Zwanzig [?℄, we introdue a projetion operator P that applies to anyfuntion F (z) of phase spae Γ
PF (z) = 〈F 〉A(z), (2.46)where we have introdued the onditional average 〈F 〉a by

〈F 〉a =
1

Ω(a)

∫

dzρ0Nδ(A(z)− a)F (z), (2.47)Note that the e�et of the operator P on an arbitrary funtion of phase spae is to transform it into afuntion of the relevant variables A(z). The operator P satis�es the projetion property P2 = P . Weintrodue also the omplementary projetion operator Q = 1 − P whih satis�es PQ = 0 and Q2 = Q.The operators P ,Q satisfy
∫

dzρ0NA(z)PB(z) =

∫

dzρ0NB(z)PA(z), (2.48)for arbitrary funtions A(z), B(z). It is onvenient to introdue the following notation
Ψa(z) = δ(A(z)− a), (2.49)and onsider the Dira's delta funtion as an ordinary phase funtion with a ontinuum index a. Aordingto the formal solution (1.15) this phase funtion will evolve aording to

Ψa(Ttz) = exp{iLt}Ψa(z), (2.50)and, therefore,
∂tΨa(Ttz) = exp{iLt}iLΨa(z). (2.51)Now we introdue a mathematial identity between operators

exp{iLt} = exp{iLt}P +

∫ t

0

dt′ exp{iLt′}PiLQ exp{iLQ(t− t′)}+Q exp{iLQt}. (2.52)This identity an be proved by taking the time derivative on both sides. If two operators have the samederivative and oinide at t = 0 then they are the same operator. We now apply this identity (2.52) tothe left hand side of (2.51). After some algebra, whih uses the expliit form of the operators P ,Q, theproperties (2.48), and the hain rule in the form
iLΨa(z) = iLAµ

∂

∂aµ
Ψa(z), (2.53)



30 The Mesosopi Dynamiswhere summation over repeated indies is implied, one obtains,
∂tΨa(Ttz) = −

∂

∂aµ
·vµ(a)Ψa(Ttz)

+

∫ t

0

dt′
∫

da′Ω(a′)
∂

∂aµ
·Dµν(a, a

′, t− t′)·
∂

∂a′j

Ψa′(Tt′z)

Ω(a′)

+ Q exp{iLQt}QiLΨa(Ttz). (2.54)We have de�ned the drift vµ(a) and the di�usion tensor Dµν(a, a
′, t) through

vµ(a) = 〈iLAµ〉
a,

Dµν(a, a
′, t) = 〈(iLAν − 〈iLAν〉

a′

) exp{iLQt}Ψa(iLAµ − 〈iLAµ〉
a)〉a

′

. (2.55)If we multiply (2.54) by ρ(z, 0), integrate over z, and use (??), we obtain a �nal exat and losed equationfor P (a, t)

∂tP (a, t) = −
∂

∂aµ
·vµ(a)P (a, t) +

∫ t

0

dt′
∫

da′Ω(a′)
∂

∂aµ
·Dµν(a, a

′, t− t′)·
∂

∂a′ν

P (a′, t′)

Ω(a′)
, (2.56)where we have used that the initial ensemble (2.8) is a funtion of A(z) and, therefore,

∫

dzρ(z, 0)Q exp{iLQt}QiLΨa(Ttz) = 0, (2.57)where we have used the hermitiity (2.48) as well as the projetion property Qf(A) = 0.2.4.2 The Markovian approximation and the Fokker-Plank EquationEquation (2.56) is an exat an rigorous losed equation governing the distribution funtion P (a, t). Noapproximations have been made and, essentially, it is another way of rewriting the Liouville equation.In priniple, it is as di�ult to solve as the original Liouville equation. However, as it happens oftenin Physis, just by rewriting the same thing in a di�erent form, it is possible to perform suitable ap-proximations that allow for an advane in the understanding of the problem. In the ase of (2.56), theapproximation is alled the Markovian approximation and transforms the integro-di�erential equationinto a simple Fokker-Plank equation.The Markovian assumption is one about separation of time sales between the time sale of evolutionof the phase funtion A(z) and the rest of variables of the system. If this separation of time sales existsthen, in the time sale in whih the tensorDµν(a, a
′, t−t′) deays, the probability P (a, t′) has not hangedappreiably. Shematially, we write the memory term in (2.56) as

∫ t

0

dt′D(t− t′)P (t′) ≈ P (t)

∫ ∆t

0

D(t′)dt′. (2.58)This approximation is depited in Fig. 2.1. We have extended in (2.58) the upper limit of integrationto a time ∆t su�iently large for the memory kernel D(t) to have deayed . Note that the tensor
Dµν(a, a

′, t − t′) is a quantity of order (iLA)2, i.e. seond order in the time derivatives of the relevantvariables. The time sale of evolution of P (a, t) is the same as the time sale of the variables A(z). Theapproximation (2.58) amounts, therefore, to neglet third order time derivatives of the relevant variablesin front of seond order terms. We, therefore, onsistently perform a formal expansion of the tensor
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t

D(t)
P(t’)

D(t−t’)

P(t)

t’=0 t t’Figure 2.1: The Markovian approximation.
Dµν(a, a

′, t− t′) in (2.55) in terms of iLA and keep only seond order terms. Then,
exp{iLQt}ΨaQiLA = Ψa exp{iLQt}QiLA+O(iLA)2. (2.59)Therefore, up to terms of order O(iLA3) we have

Dµν(a, a
′, t) = δ(a− a′)〈(iLAν − 〈iLAν〉

a) exp{iLQt}(iLAµ − 〈iLAµ〉
a)〉a, (2.60)and the tensor beomes diagonal in a, a′. By substitution of the approximate form (2.60) into the exatequation (2.56) and using (2.58) we obtain

∂tP (a, t) = −
∂

∂aµ
vµ(a)P (a, t) +

∂

∂aµ
Ω(a)Dµν(a)

∂

∂aν

P (a, t)

Ω(a)
, (2.61)where we have de�ned the di�usion tensor

Dµν(a) =

∫ ∆t

0

dt′〈(iLAν − 〈iLAν〉
a) exp{iLQt′}(iLAµ − 〈iLAµ〉

a)〉a, (2.62)Note that within the neglet of third order terms, we an also substitute the projeted dynamis withthe real dynamis, this is
Dµν(a) =

∫ ∆t

0

dτ 〈(iLAν − Vν(a))) exp {−iLτ} (iLAµ − Vµ(a))〉
Ea (2.63)We summarize for ompleteness the rest of quantities appearing in (2.61)

vµ(a) = 〈iLAµ〉
a,

〈. . .〉a =
1

Ω(a)

∫

dzρ0Nδ(A(z)− a) . . . ,

Ω(a) =

∫

dzρ0Nδ(A(z)− a). (2.64)As we inlude in the set A(z) the total energy as a relevant variable, it is onvenient to single out its



32 The Mesosopi Dynamise�et. Let us write expliitly
vµ(a,E) = 〈iLAµ〉

a,E ,

〈. . .〉a =
1

Ω(a,E)

∫

dzρ0Nδ(H(z)− E)δ(A(z)− a) . . . ,

Ω(a,E) =

∫

dzρ0Nδ(H(z)− E)δ(A(z) − a). (2.65)It is onvenient to multiply the numerator and denominator of the onditional averages with
Ω(E) ≡

∫

dzδ(H(z)− E) (2.66)whih is the measure of the number of mirostates of a given energy. In this way, we obtain the onditionalaverages as
〈 · 〉a,E =

1

Pmic(a)

∫

dzρmic(z)δ(A(z)− a) · · · (2.67)where we have introdued the usual miroanonial ensemble ρmic(z) and the equilibrium probability ofthe relevant variables as
ρmic(z) =

1

Ω(E)
δ(H(z)− E)

P eq(a) =

∫

dzρmic(z)δ(A(z)− a) (2.68)at the same time we have
Ω(a,E) = Ω(E)P eq(a) (2.69)Beause iLH = 0, many of the terms in the FPE vanish, preisely those involving derivatives with respeto the total energy. For this reason, we may write (2.61) as

∂tP (a, t) = −
∂

∂aµ
Vµ(a)P (a, t) +

∂

∂aµ
P eq(a)Dµν(a)

∂

∂aν

P (a, t)

P eq(a)
, (2.70)whih may also be written in the equivalent form

∂tP (a, t) = −
∂

∂aµ

[

Vµ(a) +Dµν(a)
∂S

∂a
(a)

]

P (a, t) +
∂

∂aµ
Dµν(a)

∂

∂aν
P (a, t) (2.71)where we have introdued the entropy funtion S(a) throught the elebrated Einstein's formula for �u-tuations

P eq(a) = exp{S(a)/kB} (2.72)We an hek that P eq(a) is the equilibrium solution. By substituting P eq(a) into (2.61) we have that
P eq(a) will be a stationary solution of the FPE (2.61) if and only if

∑

µ

∂

∂aµ
vµ(a)P

eq(a) = 0. (2.73)



2.4 Zwanzig view of oarse-graining 33By using the de�nition (2.55), the onstrained average (2.47), and the hain rule we have
∂

∂aµ
vµ(a)P

eq(a) =

∫

dzρmic(z)
∂

∂aµ
δ(A(z)− a)iLAµ(z) = −

∫

dzρmic(z)iLδ(A(z)− a) = 0, (2.74)where we have integrated by parts the Liouville operator and used that iLH = 0.Equation (2.61) is the desired Fokker-Plank equation for the dynamis at the mesosopi oarse-grained level of desription. This equation is one of the ornerstones of non-equilibrium statistial me-hanis and was obtained by Zwanzig in 1961 [?℄ following the path pioneered by Green in [?℄. In thisequation, all the objets vµ(a), Dµν(a, t) and Ω(a) have a de�nite mirosopi de�nition. In partiular,(2.62) is a general form of the well-known Green-Kubo formulae that relates the transport oe�ients
Dµν(a) with a time integral of a orrelation funtion of mirosopi variables. The FPE (2.61) is validwhenever there is a lear separation of time sales suh that the Markovian approximation is valid.Clearly, the FPE will desribe orretly the evolution of P (a, t) only for times whih are larger thanthe typial time sales of deay of the orrelation involved in Dµν(a). We annot investigate with thisequation shorter time sales. For this short time sales, the transport oe�ients start to depend ontime.
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3Example: Di�using interating olloidalpartilesAt the most mirosopi level, we an model the olloidal suspension by assuming that the solid suspendedobjets are spherial and we need only 6 degrees of freedom for desribing the state of the objet, theposition Qi and the momentum Pi of its enter of mass. For irregular objets we would need also toonsider orientation, angular veloities, et. The �uid in whih these solid olloidal partiles are suspendedwill be desribed at the most mirosopi level by the positions qi and momenta pi of the enter of massof the moleules that onstitute the �uid. Again, we assume spherial moleules for simpliity. Themirosopi state will be denoted by z = {qi,pi,Qi,Pi}. The evolution of the mirostate is governed byHamilton's equations,
q̇i =

∂H(z)

∂pi
, Q̇i =

∂H(z)

∂Pi
,

ṗi = −
∂H(z)

∂qi
, Ṗi = −

∂H(z)

∂Qi
, (3.1)where the Hamiltonian is given by

H(z) =
∑

i

(

p2i
2mi

+
P 2
i

2Mi

)

+
1

2

∑

ij

(

V SS
ij (q) + V SC

ij (q,Q) + V CC
ij (Q)

)

. (3.2)Here, mi is the mass of a solvent moleule, Mi the mass of a olloidal partile, and V SS , V SC , V CCare the potential of the fores between solvent moleules, solvent and olloidal partiles, and olloidalpartiles, respetively.In priniple, the di�erential equations (3.1) an be solved numerially with a omputer. The tehniqueis known as moleular dynamis and allows us to keep trak of all the mirosopi dynamis of the system[?℄. The smallest typial time sale is a ollision time in the range of pioseonds and, onsistently, we willneed to use a time step for the numerial solution whih is muh smaller than this time sale. However,if the mass of the olloidal partiles is muh larger than the mass of the solvent partiles, as it ours inreality, the evolution of the olloidal partiles will be very slow in omparison with the evolution of thesolvent moleules. If we are interested in the motion of the olloidal partiles, then we would need anenormous number of time steps (and, therefore, of omputer time) to observe an appreiable motion ofthe olloidal partiles. To study these large time sales in a olloidal suspension, moleular dynamis isabsolutely impratiable.



36 Example: Di�using interating olloidal partilesWe illustrate now how the general formalism developed in the previous setion an be applied to thease of a olloidal suspension in order to derive the FPE. The idea is simply to translate to our system thedi�erent objets de�ned in (2.62), (2.65) that appear in the FPE (2.61). The mirosopi Hamiltonian isgiven in (3.2). We selet as relevant variables A(z) = x the positions of the olloidal partiles Qi whihtake numerial values Qi. Let us onsider the equilibrium probability for these variables. It is given by
Pmic(Q) =

∫

dzρmic(z)
∏

i

δ(Qi −Qi) (3.3)As we know from equilibrium statistial mehanis, we may use the anonial ensemble instead of themiroanonial ensemble in order to ompute averages. The anonial ensemble is given
ρeq(z) =

1

Z
exp{−βH(z)}, (3.4)where β = (kBT )

−1 is proportional to the inverse of the temperature T . The partiular value of T is�xed in order to give an average energy given by E. By using the anonial ensemble, we may write theequilibrium distribution of the positions of the olloidal partiles as
Pmic(Q) ∝ exp{−βV CC(Q)}

∫

dq exp{−β
(

V CS(Q, q) + V SS(q)
)

}

≡ exp{−βV
eff
(Q)}, (3.5)where ∫ dq is a ondensed notation for the integral over solvent positions. We have introdued the e�etivepotential as

V
eff
(Q) = V CC(Q)− kBT ln

∫

dq exp{−β
(

V CS(Q, q) + V SS(q)
)

}. (3.6)The e�etive potential has a ontribution V CC(Q) oming from the diret interation potential and anadditional ontribution that represents the e�et of the stati and equilibrium averaged solvent mediatedinteration between olloidal partiles.After performing the integrals over the Dira delta funtions, the onstrained average in (2.65) nowtakes the form
〈· · · 〉Q =

1

Ω(Q)

∫

dqρeq(q,Q) · · · . (3.7)Note that this onstrained average is simply an equilibrium average over the solvent degrees of freedom,in whih the olloidal partiles are assumed to be �xed at the values Q. It is, therefore, an equilibriumensemble average in whih the olloidal partiles at as external stati fore �elds.Beause the time derivatives iLA are simply Pi/Mi, the drift term v(a) = 〈iLA〉a de�ned in (2.65)is now the onstrained equilibrium average of the momentum of the olloidal partiles, whih is zero byisotropy of the equilibrium ensemble. The di�usion tensor (2.62) beomes
Dij(Q) =

∫ ∆t

0

dt′〈Vj exp{iLt
′}Vi〉

Q. (3.8)The �nal FPE (2.61) takes now the form
∂tP (Q, t) =

∂

∂Qi

[

βDij(Q)
∂V

eff
(Q)

∂Qj

]

P (Q, t) +
∂

∂Qi
Dij(Q)·

∂

∂Qj
P (Q, t), (3.9)In this example, we observe how the general Fokker-Plank desription an be applied to a spei� level



37of desription of a given system. The essential bene�ts of this approah are that it is very simple toget the struture of the oarse-grained equation. Also, we obtain expliit mirosopi expressions for allthe objets in the FPE. In partiular, the di�usion tensor whih desribes the mutual, solvent-mediatedin�uene of the olloidal partiles is given in terms of the auto and ross-orrelations of the veloitiesof the olloidal partiles, where the averages are taken over the solvent degrees of freedom whih aredistributed aording to an equilibrium ensemble in the presene of the external �elds due to the statiolloidal partiles. The FPE that governs now the probability density P (Q, t) is alled the Smoluhowskyequation.


