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1The Mi
ros
opi
 Dynami
sThe s
ope of these notes has some restri
tions. In parti
ular, we will 
onsider only isolated systems.We will assume also that at the most mi
ros
opi
 level the system 
an be well des
ribed by 
lassi
alme
hani
s or, to be more spe
i�
, by Hamilton's equations. No referen
e to quantum me
hani
s willbe made. Another 
ru
ial assumption is that the Hamiltonian dynami
s of the system has a well-de�ned equilibrium state that is rea
hed by the system as the time pro
eeds. The assumption of isolatedsystem implies that we will look at the relaxational dynami
s of the system towards its equilibrium state.This might seem a strong restri
tion from an experimental point of view. Experiments often deal withsituations in whi
h a system is subje
t to the a
tion of �external in�uen
es�, usually through the boundaryof the system. Nevertheless, the theory for isolated systems already provides the basi
 model equationsto whi
h boundary 
onditions 
an be applied in a latter stage.1.1 Classi
al Me
hani
sWe will deal with ma
ros
opi
 systems that 
an be appropriately des
ribed with Classi
al Me
hani
s.Classi
al Me
hani
s is a theory of point parti
les with de�nite positions ri and velo
ities vi that intera
tthrough for
es. We will often idealize and refer to atoms and even mole
ules as point parti
les, eventhough they may be 
omposite obje
ts. The fun
tional forms of the for
es between the point parti
les isknown only in an approximate way, and model for
e �elds are usually required and adopted. In prin
iple,these for
es �elds should be derived from the quantum me
hani
al origin of the atoms or mole
ules thatare represented at a 
lassi
al level with point parti
les. The formulation of a

urate for
e �elds is a vastsubje
t in itself of great 
urrent interest.1.2 Hamilton's equationsThere are many di�erent formulations of the laws of Classi
al Me
hani
s whi
h are all equivalent to theoriginal formulation set forth by Newton. Newton's Laws give rise to equations of motion for the positionsof 
lassi
al obje
ts that are diferential equations of se
ond order. Their solution requires the knowlegdeof the initial 
onditions given by the positions and velo
ities in order to predi
t the future evolution of thesystem. As stressed originaly by Gibbs, the Hamiltonian des
ription of Classi
al Me
hani
s is parti
ularlysuited to the formulation of Statisti
al Me
hani
s be
ause one of the distinguishing features of Hamilton'sequations is that they are �rst order di�erential equations. In Hamilton's formulation, the mi
ros
opi
state z = {qi,pi} of a system of N point parti
les is given by the 
olle
tion of all qi and momenta pi of



10 The Mi
ros
opi
 Dynami
sthe parti
les. The mi
ros
opi
 state of the system evolves a

ording to Hamilton's equations
q̇i =

∂H

∂pi
(z), (1.1)

ṗi =−
∂H

∂qi
(z), (1.2)where H(z) is the Hamiltonian fun
tion assumed to be expli
itly independent of time. Typi
ally theHamiltonian has the form

H(z) =

N
∑

i=1

p2
i

2m
+ U(r1, · · · , rN ) +

N
∑

i=1

V (ri) (1.3)where the �rst sum is the kineti
 energy of the sytem, the potential of intera
tion between parti
lesis U(r1, · · · , rN ) and V (r) is a time-independent external potential. We will always assume that theHamiltonian is a bounded fun
tion from below. Be
ause we 
an 
hoose an arbitrary 
onstant for thepotential fun
tion without 
hanging the dynami
s, we will assume that H(z) ≥ 0 for all mi
rostates z.The 
ondition of bounded Hamiltonian is a requisite for the existen
e of a proper equilibrium state. Oneimportant 
ase for whi
h this 
ondition is not satis�ed is when the system intera
ts with a gravitationalpotential. In this 
ase there are mi
rostates for whi
h the energy is arbitrarily negative (as when twomassive point parti
les keep approa
hing and de
reasing without bound its potential energy). A 
olle
tionof self-gravitating point obje
ts does not have a well-de�ned equilibrium state.Hamilton's equations are �rst order di�erential equations that require the knowledge of an initial
ondition z0 = {qi(0),pi(0)}. The ulterior evolution of the mi
rostate zt is a traje
tory in the 6Ndimensional spa
e of all mi
ros
opi
 states z known as the phase spa
e Γ of the system. In fa
t, thetraje
tory is restri
ted to live in a submanifold of the full phase spa
e, be
ause of the existen
e ofdynami
 invariants. A dynami
al invariant I(z) is any dynami
al fun
tion that does not 
hange intime, this is,
d

dt
I(z(t)) = 0. (1.4)The traje
tory z(t) is, therefore, restri
ted to be in the submanifold I(z) = I0 where I0 = I(z0) is thevalue of the dynami
al invariants at the initial time. The dynami
al invariants emerge as the result ofsymmetries of the Hamiltonian. A

ording to a fundamental theorem due to Emmy Noether, to everysymmetry of the Hamiltonian there is 
onserved property. Invarian
e under time translation ensuresthat the Hamiltonian itself is a 
onserved quantity. Invarian
e under spa
e traslations ensure that totalmomentum is 
onserved, while rotation invarian
e ensure that angular momentum is 
onserved. A timeindependent Hamiltonian like (1.3) 
onserves energy. If there is no external potential and the intera
-tion potential depends only on the relative distan
es between parti
les, then total linear and angularmomentum will also be 
onserved. For typi
al Hamiltonian systems des
ribing mole
ular systems, thetraje
tories in phase spa
e display the phenomenon of 
haos. This term refers to the property that ifwe start with initial 
onditions that are very similar, the traje
tories starting at these initial 
onditionsseparate from ea
h other exponentially in time. Therefore, while Hamilton's equations are deterministi
,in pra
ti
e its predi
tive power is rather limited be
ause any small un
ertainty in initial 
onditions readilyexplodes and renders the predi
tion very ina

urate. Although this seems to be an unfortunate feature, itis in fa
t what makes the statisti
al methods appli
able and what, in the last instan
e, makes Statisti
alMe
hani
s a predi
tive theory.Hamilton's equations may be writen in 
ompa
t form

żt = J0
∂H

∂z
(zt) (1.5)



1.2 Hamilton's equations 11
J0 is the so 
alled symple
ti
 matrix having a blo
k diagonal matrix form with the blo
ks given by

(

0 1

−1 0

)

. (1.6)We may write also Hamilton's equations in the form
ż = iLz (1.7)where iL is the Liouville operator that has the expli
it form

iL ≡

N
∑

i

(

∂H

∂pi

∂

∂qi
−

∂H

∂qi

∂

∂pi

)

= −
∂H

∂z
J0

∂

∂z
. (1.8)The Liouville operator a
ting on an arbitrary fun
tion F (z) 
an be expressed in terms of the Poissonbra
ket,

iLF (z) = −{H, F} (1.9)where the Poisson bra
ket of two arbitrary fun
tions F (z), G(z) is
{F,G} ≡

∂F

∂qi

∂G

∂pi
−

∂F

∂pi

∂G

∂qi
(1.10)Given an initial mi
rostate z, the solution of Hamilton's equations 
an be denoted by

zt = Ttz (1.11)where Tt is a one-parameter operator a
ting on the initial 
ondition z. This operator satis�es T0 = 1 and
TtTt′ = Tt+t′ . A formal expression for this operator 
an be obtained in terms of the Liouville operator.Indeed, the formal solution of (1.7) is

zt = exp{iLt}z (1.12)where the exponential operator is de�ned formally through the Taylor series
exp{iLt} ≡ 1 + iLt+

1

2!
(iLt)2 +

1

3!
(iLt)3 + · · · . (1.13)Note that by substitution of (1.13) into (1.12) we re
over the usual Taylor series of z(t) = zt around

z(0) = z. Any fun
tion in phase spa
e X(z) a
quires a time dependen
e on
e evaluated on the timedependent mi
rostate, this is X(Ttz). Phase fun
tions evolve be
ause the mi
rostates evolve in time.The time derivative of this fun
tion is
d

dt
X(Ttz) =

∂X

∂z
(Ttz)

d

dt
Ttz =

∂X

∂z
(Ttz)J0

∂H

∂z
(Ttz) = iLX(Ttz) (1.14)This di�erential equation has as formal solution

X(Ttz) = exp{iLt}X(z) (1.15)



12 The Mi
ros
opi
 Dynami
sTime reversibilityHamilton's equations are time reversible equations. In order to grasp the meaning of this statement, itis 
onvenient to introdu
e the time reversal operator de�ned as the operator ǫ that takes a mi
rostate
z = {ri,pi} and produ
es the mi
rostate ǫz = {ri,−pi}, i.e. it reverses the sign of the momentum.Obviously ǫ2 is the identity operator. With this operator, it is straighforward to observe the followingproperty of the Lioville operator

iLǫz =
∑

i

[

∂H(z)

∂pi

∂

∂ri
−

∂H(z)

∂ri

∂

∂pi

]

















...
rj

−pj...
















=

















...
pi

mi

−Fi...
















= −ǫ

















...
pi

mi

Fi...
















= −ǫiLz (1.16)This is, the time reversal operator and the Liouville operator anti
ommute when applied to mi
rostates
iLǫz = −ǫiLz (1.17)This is a re�e
tion of the fa
t that the symple
ti
 matrix J0 and the time reversal matrix ǫ anti
ommute,this is

J0ǫ =













. . . ... ...
· · · 0 1 · · ·
· · · −1 0 · · ·... ... . . . 























. . . ... ...
· · · 1 0 · · ·
· · · 0 −1 · · ·... ... . . . 











=













. . . ... ...
· · · 0 −1 · · ·
· · · −1 0 · · ·... ... . . . 











= −ǫJ0 (1.18)This property has the following 
onsequen
e on the evolution operator applied to an initial 
ondition z,
exp{iLt}z,

ǫ exp{iLt} = ǫ

[

1 + iLt+
1

2!
iLiLt2 + · · ·

]

z =

[

1ǫ− iLǫt−
1

2!
iLǫiLt2 + · · ·

]

z

=

[

1ǫ− iLǫt+
1

2!
iLiLǫt2 + · · ·

]

z

= exp{−iLt}ǫz (1.19)Changing the notation to Tt = exp{iLt} we have
ǫTtz = T−tǫz (1.20)or, equivalently,
TtǫTtz = ǫz (1.21)In words, this equation expresses the fa
t that if we take a mi
rostate z and let it evolve a

ording withHamilton's equations to get Ttz, and then we reverse the velo
ities of the evolved mi
rostate ǫTtz, andthen we evolve the resulting mi
rostate for a time t, to get TtǫtTtz, we end up with the initial mi
rostatewith the velo
ities reversed ǫz.



1.3 Liouville's theorem 131.3 Liouville's theoremHamilton's equation are �rst order diferential equations that provide the deterministi
 evolution of thesystem provided that the initial 
ondition z is given. However, it is in general impossible to know thepre
ise value of the initial values of the positions and momenta of all the parti
les in our system. Usually,a system is prepared under identi
al ma
ros
opi
 
onditions that do not allow to �x the value of thepositions and momenta of every single parti
le in the system. A 
olle
tion of identi
al systems preparedin identi
al manner at the initial time will have, in general, di�erent initial mi
ros
opi
 states. For thisreason the best we 
an do is to express our knowledge about the initial mi
rostate of the system inprobabilisti
 terms by introdu
ing a probability density ρ0(z) that the system has the mi
rostate z asinitial 
ondition. The probability distribution in phase spa
e is usually referred to as an ensemble. Eventhough the evolution of zt is deterministi
, the un
ertainty about initial 
onditions renders the evolutionin phase spa
e a sto
hasti
 pro
ess. The probability distribution fun
tion at a subsequent time is denotedby ρt(z) and it obeys the Liouville equation whi
h we will derive below for 
ompleteness. This equationis just an expression of a very important property of the solution of Hamilton's equation whi
h is the
onservation of volume in phase spa
e.We may think of (1.11) as a 
oordinate transformation from z to zt. The Ja
obian of this 
oordinatetransformation is, by de�nition, the following determinant
Jt(z0) ≡ det (Jt(z0)) (1.22)where the Ja
obian matrix is
Jt(z0) ≡

∂zt(z0)

∂z0
(1.23)The time derivative of the Ja
obian 
an be 
omputed by using the identity

Jt(z0) = det (Jt(z0)) = exp{Tr[lnJt(z0)]} (1.24)where the logarithm of the Ja
obian matrix is de�ned in terms of the Taylor series of the logarithm.One way to prove the above identity is by diagonalizing the Ja
obian matrix with an orthogonal matrix.Be
ause the determinant and tra
e operations are invariant under su
h a transformation, we �nd that
exp{Tr[lnJt(z0)]} = exp

{

∑

k

lnλk

}

=
∏

k

λk (1.25)where λk are the eigenvalues of J. The last identity is just the determinant of the Ja
obian matrix. Ifwe now take the time derivative of the Ja
obian, we obtain
d

dt
Jt(z0) = exp{Tr[lnJt(z0)]}

d

dt
Tr[lnJt(z0)]}

= exp{Tr[lnJt(z0)]}Tr

[(

d

dt
Jt(z0)

)

J−1
t (z0)

]

= Jt(z0)Tr

[(

d

dt
Jt(z0)

)

J−1
t (z0)

] (1.26)



14 The Mi
ros
opi
 Dynami
sConsider the time derivative of the Ja
obian matrix
d

dt
Jt(z0) =

d

dt

∂zt(z0)

∂z0
=

∂

∂z0

d

dt
zt(z0)

=
∂

∂z0
J0

∂H

∂z
(zt(z0))

= J0
∂2H

∂z∂z
(zt(z0))

∂zt(z0)

∂z0

= J0
∂2H

∂z∂z
(zt(z0))Jt(z0) (1.27)Therefore, by inserting this result into (1.28) we obtain

d

dt
Jt(z0) = Jt(z0)Tr

[

J0
∂2H

∂z∂z
(zt(z0))

]

= 0 (1.28)Be
ause the Ja
obian is 
onstant and at t = 0 it takes the value 1, then it will always be equal to 1.This result is a spe
ial 
ase of the theorem of the integral invariants of Poin
aré [?℄). The fa
t that theJa
obian of the evolution is always equal to one has an important 
onsequen
e on the evolution of theprobability density in phase spa
e, as we now show.Let M be a region of not vanishing measure of Γ and TtM the region resulting from the evolution ofea
h point of M a

ording to Hamilton's equations. It is obvious that the probability that the system isin the region M at t = 0 is identi
al to the probability of being at TtM at t = t. For this reason,
∫

M

ρ0(z)dz =

∫

TtM

ρt(z)dz. (1.29)By performing the 
hange of variables z′ = T−tz (with unit Ja
obian) the integral in the left hand sidebe
omes
∫

TtM

ρt(z)dz =

∫

M

ρt(Ttz)dz. (1.30)This is true for any region M and, therefore, the integrand of the right hand side of (1.29) and the lefthand side of (1.30) should be equal, i.e.
ρ0(z) = ρt(Ttz), (1.31)or, by a simple 
hange of variables,
ρt(z) = ρ0(T−tz). (1.32)This is the way the density in phase spa
e evolves in time. It simply says that the probability density ofmi
rostate z at time t is the same as the one that had the initial 
ondition of z at the initial time. Wemay of 
ourse �nd a di�erential equation for the probability density by just taking the time derivativeon both sides of (1.32). This gives

d

dt
ρt(Ttz) =

d

dt
ρ0(z) = 0. (1.33)that, again, expresses the fa
t that as we move with the �ow in phase spa
e, the probability densitydoes not 
hange. Further appli
ation of the 
hain rule leads to the Liouville equation for the probabilitydensity in phase spa
e,

∂tρ(z, t) = −iLρ(z, t), (1.34)where we have used the notation ∂t = ∂
∂t to denote the partial derivative with respe
t to time. It isobvious, by 
onstru
tion, that the formal solution of the Liouville equation (1.34) is given by (1.32).



1.4 Equilibrium at the mi
ros
opi
 level 15An alternative derivation of the Liouville equation starts from the realization that the �ow in phasespa
e is in
ompressible. In order to prove this, note that from Hamilton's equations (1.2) we may de�nethe �ow velo
ity in phase spa
e as
v(z) = J0

∂H

∂z
(z) (1.35)Therefore, by taking the divergen
e of this velo
ity �eld we obtain

∂

∂z
v(z) = J0

∂2H

∂z∂z
(z) = 0 (1.36)The zero 
omes from the fa
t that we are 
ontra
ting a fully antisymmetri
 matrix J0 with a fullysymmetri
 one, the Hessian of the Hamiltonian. Eq. (1.36 tells us that the �ow velo
ity has null divergen
ein phase spa
e. This is another re�e
tion of the fa
t that the �ow in phase spa
e is in
ompressible, or thatvolumes are 
onserved by the Hamiltonian dynami
s. As any other probability density, the probabilityin phase spa
e satis�es a 
ontinuity equation that re�e
ts the fa
t that probability is lo
ally 
onserved.The 
ontinuity equation is

∂tρt(z) = −
∂

∂z
·v(z)ρt(z) (1.37)By using the in
ompressibility 
ondition (1.36), we obtain again the Liouville equation (1.34).1.4 Equilibrium at the mi
ros
opi
 levelLet us 
onsider now the �nal state predi
ted by the Liouville equation. A basi
 mathemati
al question isunder whi
h 
onditions the Liouville equation (1.34), whi
h is a �rst order partial di�erential equation,leads to a stationary solution with ∂tρ(z, t) = 0. That this is not generally the 
ase 
an be seen by
onsidering an initial distribution of the form ρ(z, 0) = δ(z−z0) that expreses that we know with 
ertaintythat the initial state is z0. In this 
ase, we know that the solution is given by ρ(z, t) = δ(Ttz0−z), this is,the distribution fun
tion remains peaked at the solution of Hamilton's equations. There is no broadeningof the distribution fun
tion and the system does not rea
h a stationary state. However, if the dynami
sgenerated by the Hamiltonian is highly unstable (i.e. 
haoti
), we may expe
t that any non-delta initialdistribution will evolve with a sort of broadening. To be more spe
i�
, if the dynami
s of the system isof the mixing type, then the system rea
hes an e�e
tive stationary mi
ros
opi
 probability that it is afun
tion of the mi
rostate only through the dynami
al invariants of the system [?℄. Usually, the proofthat a given system is of the mixing type is di�
ult but we will assume that our system is of the mixingtype and has, therefore, a tenden
y to rea
h a well de�ned equilibrium state.Any distribution fun
tion ρ(z) whi
h is a fun
tion g(I(z)) will be, therefore, a stationary solution ofthe Liouville equation and, as stated, we will assume that any stationary solution is of this type. Thisstationary distribution is 
alled the equilibrium ensemble ρeq(z). Therefore,

lim
t→∞

ρ(z, t) = ρeq(z) = g(I(z)). (1.38)Let us investigate the meaning of the fun
tion g(I) by 
onsidering the probability distribution P eq(I) ofdynami
al invariants at equilibrium. By de�nition,
P eq(I) =

∫

dzρeq(z)δ(I(z)− I) =

∫

dzg(I(z))δ(I(z)− I) = g(I)Ωeq(I), (1.39)where we have introdu
ed the measure Ωeq(I) of the region of phase spa
e 
ompatible with a given set



16 The Mi
ros
opi
 Dynami
sof dynami
al invariants
Ωeq(I) =

∫

dzδ(I(z)− I). (1.40)Equation (1.39) allows to identify g(I) and (1.38) be
omes
ρeq(z) =

P eq(I(z))

Ωeq(I(z))
. (1.41)Therefore, the equilibrium ensemble is fully determined by the probability distribution of dynami
alinvariants at equilibrium.It is obvious that the distribution of dynami
al invariants at any time is itself invariant. The proba-bility density of �nding a value I of the dynami
al invariants I(z) is given by

P (I, t) =

∫

dzρt(z)δ(I(z)− I) (1.42)The time derivative of this probability is
∂tP (I, t) =

∫

dz(−iL)ρt(z)δ(I(z)− I) =

∫

dzρt(z)iLδ(I(z)− I) = 0 (1.43)Therefore, the probability of dynami
al invariants is itself an invariant. As a 
onsequen
e the equilibriumdistribution of dinami
al invariants is just the same as the initial distribution of dynami
al invariants
P eq(I) = P (I, 0). We will denote P0(I) = P (I, t) and then the equilibrium ensemble is just

ρeq(z) = ρ0
P0(I(z))

Ω0(I(z))
. (1.44)where we have introdu
ed ρ0 with dimensions of (a
tion)−N in order to have

Ω0(I) = ρ0

∫

dzδ(I(z)− I) (1.45)with the same physi
al dimensions as P0(I). The equilibrium ensemble ρeq(z) is fully determined on
e theinitial distribution P0(I) of dynami
al invariants is known at the initial time. Eq. (1.44) is a fundamentalresult of equilibrium Statisti
al Me
hani
s. The intuitive meaning of (1.44) is very sugestive. Ω0(I) isthe measure of the submanifold of mi
rostates 
orresponding to the invariants I and we may thinkthat it is proportional to �the number� of mi
rostates that have a value I for the dynami
 invariants.Therefore, the probability density ρeq(z) of a given mi
rostate z is the �probability P0(I(z)) of being inthe submanifold I(z) = I divided by the number of mi
rostates of that submanifold�. We 
ould say, then,that at equilibrium �all mi
rostates with the same value of I(z) are equiprobable�. Of 
ourse, this is moreof a mnemote
hin
al rule for (1.44) than a rigorous statement be
ause, being a 
ontinuum submanifold,the �number of mi
rostates� satisfying I(z) = I is in�nite.The referen
e value ρ0NThe fun
tion Ω(E) gives the overall measure of the submanifold H(z) = E in phase spa
e. This subman-ifold is usually termed the energy shell. The fun
tion Ω(E) is usually termed the stru
ture fun
tion [?℄and 
ontains all the ma
ros
opi
 thermodynami
 information about the system [?℄. Equations of state,in parti
ular, are derived from this fun
tion. It is also well-known that in order to have results thatagree with 
orresponding results obtained dire
tly from Quantum Me
hani
s, the appropriate value for
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ρ0N should be taken as

ρ0N =
1

h3NN !
(1.46)Plan
k's 
onstant h gives the appropriate dimensions whereas the fa
tor N ! is due to the indistinguisha-bility of the parti
les [?℄ and it is known as the 
orre
t Boltzmann 
ounting. As it will be seen for theideal gas latter, it ensures the extensivity of the ma
ros
opi
 entropy. Of 
ourse, if we have a mixtureof parti
les that 
an be distinguished by some property (for example, they have di�erent mass), thenthe fa
torial 
oe�
ient 
hanges a

ordingly to a

ount for the di�erent equivalent ways of ordering theparti
les.1.5 The single, all en
ompassing problem of Non-EquilibriumStatisti
al Me
hani
sNon-Equilibrium Statisti
al Me
hani
s is based on the fundamental presuposition that all ma
ros
opi
pro
esses 
an be ultimately understood in terms of the 
lassi
al laws of motion of isolated systems. Sofar, we have seen how an isolated 
lassi
al system made of parti
les is governed at the mi
ros
opi
 levelby Hamilton's equations with a time-independent Hamiltonian and how any initial distribution over thephase spa
e will evolve towards the equilibrium ensemble. This means that we restri
t ourselves tostudy the evolution towards the equilibrium state of an initial distribution whi
h is not the stationarysolution of the Liouville equation 
orresponding to the Hamiltonian of the system. Our limitation onisolated systems that de
ay to equilibrium pre
ludes, aparently, the possibility to study non-equilibriumstationary states that are mantained with �external 
ouplings�. These experimental situations, however,do �t into the framework of an �isolated de
aying system� whenever we 
onsider the system under studyin 
onta
t with reservoirs, in su
h a way that the 
omposed system of system+reservoirs is isolated. Inthis view, a stationary state is just an extremely long-lived de
ay towards the global equilibrium of thesystem+reservoir, where the time s
ale towards equilibrium is di
tated by the size of the reservoir.Therefore, the basi
 pro
ess that we study is how an arbitrary initial ensemble de
ays towards theequilibrium ensemble

ρ0(z) −→ ρeq(z) (1.47)A system left to evolve will rea
h the equilibrium state 
orresponding to the Hamiltonian of the system.Be
ause no matter how an isolated system is prepared1 it will go towards the same equilibrium state, theequilibration of a system is a parti
ularly simple way to prepare and 
ontrol the initial state of a systemin the preparation phase of an experiment. Therefore, we assume that the initial ensemble ρ0(z) is theequilibrium state of 
ertain Hamiltonian H0. At t = 0 some parameter of the Hamiltonian 
hanges andtransforms the original Hamiltonian H0 into another Hamiltonian H1. The ensemble ρ0 is no longer theequilibrium ensemble of H1 and it will evolve a

ording to the dynami
s generated by H1 until it rea
hesthe equilibrium state of H1.Callen in his magni�
ent book �Thermodynami
s� states in a 
rystalline senten
e whi
h is, perhaps,the essential tenet of the book: �The single, all en
ompassing problem of thermodynami
s is the determi-nation of the equilibrium state that eventually results after the removal of internal 
onstraints in a 
losed,
omposite system�. If we think about this problem in mi
ros
opi
 terms, the removal of an internal 
on-straint 
an always be des
ribed at a mole
ular level as a 
hange of the Hamiltonian of the system and,therefore, is a pro
ess of the form des
ribed in the previous paragraph. For this reason, we may statethat the fundamental problem of Thermodynami
s is, indeed the very same problem of Non-Equilibrium1Provided the distribution of dynami
 invariants is the same in all preparations!



18 The Mi
ros
opi
 Dynami
sStatisti
al Me
hani
s, ex
ept that in the latter 
ase not only the �nal equilibrium state is seeked for, butthe ri
her question of how this state is rea
hed in time is answered.



2The Mesos
opi
 Dynami
s2.1 Levels of des
riptionThe theory of 
oarse-graining is a formalization of the pro
ess of representing a given system with lessinformation than that 
aptured by the a
tual mi
rostate of the system. One and the same systemmay be des
ribed at di�erent levels of des
ription depending on the amount of information whi
hone retains ma
ros
opi
ally. The di�erent levels of des
ription of a system are 
hara
terized by thedynami
al invariants of the system I(z) and a set of phase fun
tions A(z) whi
h are not dynami
alinvariants. The phase fun
tions A(z) that 
hara
terize a given level of des
ription will be referred toas relevant variables but they have re
eived in the past a number of di�erent names. Ma
rostates,ma
ros
opi
 variables, gross variables, 
olle
tive variables, 
oarse-grained variables, rea
tion 
oordinates,order parameters, internal variables, stru
tural variables, et
. are all synonyms for relevant variables.With the symbol A(z) we denote a 
olle
tion of phase fun
tions ea
h one labeled with a dis
rete indexlike in, for example, A(z) = {Aµ(z), µ = 1, · · · ,M}.The identi�
ation of the relevant variables A(z) is an art of the theory of 
oarse-graining and a 
ru
ialelement in order to des
ribe ma
ros
opi
ally a system with many degrees of freedom. As we have stressedin the previous 
hapter, we are 
on
erned with the transition (1.47) from an initial ensemble towards theequilibrium ensemble. Usually, this happens in a way that it is possible to identify 
olle
tive motions andpatterns that emerge in the 
ourse of the relaxation towards equilibrium. When we stop stirring our 
upof 
o�e, whi
h at its most mi
ros
opi
 level is made of 
olliding atoms, vorti
es are 
learly visible thatsuggest that the relaxation happens following �paths� in the phase spa
e. These paths are 
hara
terizedby phase fun
tions whose values evolve in time mu
h slowly than other phase fun
tions. We will see thatfrom a pra
ti
al point of view only when there is a 
lear separation of time s
ales between the sele
tedrelevant variables and the 
orrelations of their time rate of 
hange, it is possible to have simple dynami
equations for the relevant variables. When this happens we have that the relevant variables �forget� theirpast rapidly and their future is essentially determined by their present values. In these 
ases, we say thatthe des
ription is Markovian. The general strategy when there is no su
h a separation of time s
ales isto look for additional variables that also evolve in 
omparable time s
ales as the ones that we believe arethe slow variables. By enlarging the set of relevant variables, we hope that the resulting des
ription maybe Markovian.There are few guiding prin
iples for the sele
tion of relevant variables. Whenenever we have 
onservedor quasi
onserved variables, we expe
t that they will need to be in
luded in the des
ription. Therefore,we will always in
lude in the set of relevant variables the dynami
 invariants of the system. In parti
ular,the Hamiltonian H(z) will be in
luded in the des
ription. If for some reason, we expe
t a 
hara
teristi
feature (orientation, stre
hing, elongation, et
. ) to play a role in the dynami
s of the system, then we
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opi
 Dynami
sneed to in
lude the phase fun
tions that best 
apture su
h feature in the 
olle
tion of relevant variables.Ideally, one would like to develop tools for analyzing the �ow in phase spa
e and automati
ally produ
ethe appropiate relevant variables for the problem at hand. This pattern re
ognition pro
ess is far frombeing addressed in the literature be
ause the problems to fa
e are enormous given the high dimensionalityof phase spa
e.Let us turn ba
k to the motion of the system in phase spa
e. We have said that the single en
om-pasing problem of Non-Equilibrium Statisti
al Me
hani
s is the study of how the system approa
hes theequilibrium state. This pro
es is one in whi
h a 
loud of points initially 
on
entrated in a region of theenergy shell (or a 
loud inhomogenous in any other way) spread uniformly in that energy shell. Now,imagine that the system has an additional invariant (you may think, for example, about total linearmomentum). This means that the �ow in phase spa
e will be �strati�ed� in layers, in whi
h the points onevery layer never leaves the layer (in order to 
onserve the dynami
al invariant). Now, imagine that wedo not have su
h additional dynami
 invariant, but the �ow in phase spa
e is quasi-strati�ed, in a waythat it be
omes rapidly homogeneous in layers and the �ow from one layer to another o

urs slowly. Ifthis is the dynami
al s
enario at the mi
ros
opi
 level, we expe
t that the phase fun
tion that impli
itlyde�nes the layers will be slow variables and good 
andidates to be relevant variables.In the present 
hapter, we want to derive the governing equations for the probability distributionsof the relevant variables starting from the mi
ros
opi
 dynami
s of the system. The resulting exa
tdynami
 equation for the probability distribution P (a, t) takes, in the Markovian approximation, theform of a Fokker-Plan
k equation (FPE). This FPE was introdu
ed by Green in a seminal paper in 1952by using a a line reasoning where he assumed that the sto
hasti
 pro
ess of relevant variables was aMarkovian sto
hasti
 pro
ess. From this assumption he derived the governing equation for the transitionprobability of this pro
ess. Green's paper is arguably a 
ornerstone in the theory of non-equilibriumstatisti
al me
hani
s. The derivation by Zwanzig in 1961 of the same FPE with the help of a proje
tionoperator, showed how this equation emerges in the limit of 
lear separation of time s
ales from an exa
tnon-Markovian equation.2.2 Sto
hasti
 pro
esses in Phase Spa
eWe will 
onsider relevant variables A(z) with the property that an equation like A(z) = a de�nes a propersubmanifold of phase spa
e. By this we mean that the measure Ω(a) of the submanifold A(z) = a de�nedas
Ω(a) =

∫

dzρ0Nδ(A(z)− a) (2.1)exists and it is well de�ned. Roughly, Ω(a) �
ounts� the number of mi
rostates z that are 
ompatiblewith a given ma
rostate a. When the relevant variables de�ne proper submanifolds it is possible todes
ribe the evolution of the relevant variables in terms of sto
hasti
 pro
esses. A sto
hasti
 pro
ess isfully 
hara
terized [?℄ by giving the hierar
hy of joint probability distributions P (a1, t1, · · · , an, tn)of having the value a1 at time t1 and the value a2 at time t2 et
. where t1 < t2 < · · · < tn, for all n.Let us express this joint probability in mi
ros
opi
 terms. In this se
tion we assume that the number ofparti
les is known. Extension to the ma
ro
anoni
al phase spa
e is straightforward. The motion in phasespa
e Γ of a mi
rostate z = (q1, . . . , qN , p1, . . . , pN ), where qi, pi are the position and momentum of the
i-th parti
le, 
an be viewed as a sto
hasti
 pro
ess itself. The 
orresponding joint probabilities for thispro
ess will be denoted by ρn(z1t1, . . . , zntn). The 
ombination of the two fa
ts, that the randomness isgiven only at the initial time and that the later evolution is deterministi
, makes the one-time probabilitydensity ρ1(z, t) the most relevant joint probability of the hierar
hy. In fa
t, all the joint probabilities ρnwith n ≥ 2 
an be expressed in terms of the one-time probability density ρ1(z, t). By denoting with Ttz



2.2 Sto
hasti
 pro
esses in Phase Spa
e 21the solution of Hamilton's equations with initial 
onditions z we have
ρn(z1t1, . . . , zntn) = ρ1(z1t1)δ(z2 − Tt2−t1z1) . . . δ(zn − Ttn−tn−1

zn−1) (2.2)The one-time probability density or ensemble density satis�es the well known Liouville's equation withformal solution given by Eq. (1.32) All the sto
hasti
ity in the pro
ess given by Ttz arises from theun
ertainty in the initial 
onditions.We next 
onsider the evolution of the relevant variables A(Ttz) as a 
onse
uen
e of the evolution of themi
rostate itself. The values that these dynami
 variables take 
an be regarded as a sto
hasti
 pro
ess.The n-time joint probability densities P (a1t1, . . . , antn) whi
h 
hara
terize the sto
hasti
 pro
ess of therelevant variables and the n-time probability densities ρ(z1t1, . . . , zntn) of the 
orresponding mi
ros
opi
pro
ess are related to ea
h other through
P (a1t1, . . . , antn) =

∫

. . .

∫

ρ(z1t1, . . . , zntn)δ(A(z1)− a1) . . . δ(A(zn)− an)dz1 . . . dzn (2.3)whi
h 
an be further simpli�ed by using (2.2) and integrating over z2, . . . , zn
P (a1t1, . . . , antn) =

∫

dzρ(z, t1)δ(A(z) − a1)δ(A(Tt2−t1z)− a2) . . . δ(A(Ttn−t1z)− an) (2.4)where it has been used that TtTt′ = Tt+t′ . By performing the 
hange of 
oordinates z = T−t1z1 (whi
hhas inverse z1 = Tt1z and unit ja
obian) equation (2.4) 
an be written as
P (a1t1, . . . , antn) =

∫

dzρ(z, 0)δ(A(Tt1z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz)− an) (2.5)This is the �nal form for the ma
ros
opi
 n-time joint probability density whi
h appears as an integralover the initial ensemble ρ(z, 0) of delta fun
tions that �
ontra
t� the des
ription from mi
rostates z toma
rostates a and whi
h involves the mi
ros
opi
 dynami
s Tt.Initial ensembleA basi
 question that arises now is, what is the a
tual fun
tional form of ρ(z, 0)? As mentioned, inprin
iple we 
annot measure the initial mi
ros
opi
 state z exa
tly. If we are going to des
ribe a systemat a given 
oarse-grained level, we must assume that we have a

ess to the measurement of the 
oarse-grained variables A(z). In general, all the information we have about our system at the initial time is aparti
ular distribution P (a, 0), whi
h is the out
ome of a repeated set of measurements of the fun
tions
A(z) with numeri
al out
omes a over the system prepared in an identi
al manner at the initial time.Therefore, we have to determine the distribution fun
tion ρ(z, 0) with the sole information that it shouldprovide pre
isely the distribution P (a, 0). Both distribution fun
tions are related through

P (a, 0) =

∫

dzδ(A(z)− a)ρ(z, 0). (2.6)However, there are many di�erent ρ(z, 0) that 
an produ
e the same P (a, 0). Whi
h is the 
orre
t one?A

ording to information theory [?℄, the least biased distribution whi
h is 
ompatible with the ma
ros
opi
information P (a, 0) is the one that maximizes the entropy fun
tional
S[ρ0] ≡ −kB

∫

Γ

ρ(z, 0) ln
ρ(z, 0)

ρ0N
dz. (2.7)
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s
onditioned to the restri
tion (2.6). We en
ounter here a problem of Lagrange multipliers. By intro-du
ing the multipliers λ(a) for the 
ontinuum set of restri
tions (2.6) (one for ea
h a), we maximize thefun
tional I[ρ0] = S[ρ0] +
∫

dxλ(a)P (a, 0) + µ
∫

dxP (a, 0), where the µ Lagrange multiplier stands forthe normalization to unity restri
tion of ρ(z, 0). The Lagrange multipliers are obtained by substitutingthe maximum value into the restri
tion (2.6). The following �nal result is obtained [?℄
ρ(z, 0) =

P (A(z), 0)

Ω(A(z))
, (2.8)where Ω(a) is given in (2.1).By substituting this initial ensemble into equation (2.5) and by 
hoosing t1 equal to 0 for simpli
ity,one obtains

P (a10, . . . , antn) =
P1(a1, 0)

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz)− an) (2.9)We now introdu
e the 
onditional probability density P (a10|a2t2, . . . , antn) of �nding the system in a2at time t2 and in a3 at time t3 and so on till an, tn, provided it was in a1 at the initial time t1 = 0. It isgiven by
P (a10|a2t2, . . . , antn) ≡

P (a10, a2t2, . . . , antn)

P (a1, 0)
=

=
1

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) . . . δ(A(Ttnz − an) (2.10)For further referen
e it is 
onvenient to 
onsider n = 2 in (2.10), that re
eives the name of transitionprobability
P (a10|a2t2) =

1

Ω(a1)

∫

dzδ(A(z)− a1)δ(A(Tt2z)− a2) (2.11)This is a fundamental equation that relates the transition probability of the CG variables with the mi-
ros
opi
 dynami
s. It 
an be given an heuristi
 interpretation as follows. The numerator Ω(a1) is �thenumber of mi
rostates 
ompatible with a1� while the denominator in (2.11) is �the number of mi
rostates
ompatible with a1 that after a time are at a2�. Therefore, the transition probability is just the fra
tionof mi
rostates 
ompatible with a1 that after a given time are at a2.



2.3 Green's view of 
oarse-graining 232.3 Green's view of 
oarse-grainingGreen in his 1952 remarkable paper presented the essentials of the theory of 
oarse-graining as we know it.The basi
 assumption taken by Green and on whi
h the whole 
onstru
tion of 
oarse-graining is based isthat the sto
hasti
 pro
ess of the relevant variables is a 
ontinuum Markov pro
ess. As we will see in thisse
tion, this single hypothesis is su�
ient to obtain a dynami
al equations for the relevant variables, theFokker-Plan
k equation, with all the obje
ts appearing in the dynam
s de�ned in terms of mi
ros
opi
expressions. But �rst we have to introdu
e the Markov sto
hasti
 pro
ess and some of its properties.A Markov pro
ess is 
hara
terized by the fa
t that the n-time joint probability 
an be fully expressed interms of the one-time probabability, and the transition probability. In fa
t, any other n-time probabilityis written as
P (a1t1, . . . , antn) = P (a1, t1)P (a1, t1|a2, t2) · · ·P (an−1, tn−1|an, tn) (2.12)For a Markov pro
ess the full sto
hasti
 pro
ess is 
hara
terized by the one time probability and thetransition probability alone. We have already en
ountered a Markov pro
ess, the one 
orresponding tothe deterministi
 Hamiltonian dynami
s des
ribed in Eq. (2.2). If we 
onsider the 
onditional probability

P2(a1, t1|a2, t2, a3, t3) of having a2 at t2 and a3 at t3 provided that we had a1 at t1, the Markov propertystates
P (a1, t1|a2, t2, a3, t3) = P (a1, t1|a2, t2)P (a2, t2|a3, t3) (2.13)We 
an interpret the Markov 
ondition in geometri
al terms as we did when dis
ussing the mixingproperty. The Markov property says that the fra
tion of points of the submanifold a1 that happen to beat a2 at t2 and then at a3 at t3 equals the fra
tion of points of a1 that will be at a2 at t2 (irrespe
tive ofwhere they will go afterwards) times the fra
tion of points of a2 that will be in a3 at time t3.If we integrate Eq. (2.13) over a2 we need to have the following 
onsisten
y 
ondition
P2(a1, t1|a3, t3) =

∫

da2P (a1, t1|a2, t2)P (a2, t2|a3, t3) (2.14)This 
onsisten
y 
ondition is known as the Chapman-Kolmogorov equation for the transition proba-bilities. The intuitive idea with this equation is that the probability of a transition from a1 to a3 is givenas the sum of all the transition probabilites over an intermediate state a2.The Chapman-Kolmogorov is an integral equation that links all the transtion probabilities of a Markovpro
ess. There exists an equivalent di�erential form for the Chapman-Kolmogorov whi
h is namedas the Fokker-Plan
k equation. The derivation of the Fokker-Plan
k equation from the Champan-Kolmogorov equation is presented in [?℄ and we only quote the �nal result. The Fokker-Plan
k equationgoverns the one time probability distribution
∂

∂t
P (a, t) = −

∂

∂a
D(1)(a)P (a, t) +

1

2

∂2

∂a∂a
D(2)(a)P (a, t) (2.15)The two time joint probability and one time probability are related by

P (a1, t1) =

∫

da0P (a0, t0, a1, t1) (2.16)be
ause both sides of this equation are the probability of �nding a1 at time t1 irrespe
tive of the value of
a0 at time t0. This equation gives the following integral equation relating the one time probability and
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sthe transition probability
P (a1, t1) =

∫

da0P (a0, t0)P (a0, t0|a1, t1) (2.17)Note that, from Eq. (2.17) if we take as initial 
ondition P (a0, t0) = δ(a0− â) then P (a, t) = P (â, t0|a, t),this is, the transition probability is identi
al to the one-time probability with a Dira
 delta initial 
ondi-tion. As a 
onsequen
e, the transition probability also satis�es the Fokker-Plan
k equation (2.15)
∂

∂t
P (a0t0|a, t) = −

∂

∂a
D(1)(a)P (a0t0|a, t) +

1

2

∂2

∂a∂a
D(2)(a)P (a0t0|a, t) (2.18)where, by de�nition, we have that the initial 
ondition for this equation is

P (a0, t0|a, t0) = δ(a− a0) (2.19)Therefore, Green's basi
 assumption that the sto
hasti
 pro
ess of the relevant variables is a Markovpro
ess is equivalent to the hypothesis that the one-time and transition probabilities of the relevantvariables obey the Fokker-Plan
k equation.Mole
ular expresion of drift and di�usionThe drift ve
tor D(1)(a) and the di�usion tensor D(2)(a) introdu
ed in Eq. (2.15) are given in termsof moments of the transition probability at short times. Its parti
ular form is, a
tually, spe
i�ed as
onditions in the derivation of the Fokker-Plan
k equation from the Chapman-Kolmogorov equation [?℄.However, we may also obtain the spe
i�
 form of these obje
ts by just the requirement that the transitionprobability obeys the FPE (2.18). Let us see how this arise. The solution of the Fokker-Plan
k equation(2.18) is di�
ult to obtain in general due to the fa
t that the obje
ts D(1)(a), D(2)(a) may depend ingeneral on the state a in a non-linear way. Nevertheless, it is possible to obtain an expli
it solution forshort times. Be
ause the initial 
ondition (2.19) of the transition probability is a Dira
 delta, we expe
tthat for su�
iently short times t = t0 + ∆t with ∆t ≈ 0, the transition probability will remain highlypeaked. In this 
ase, we may approximate in (2.18) D(1)(a) ≈ D(1)(a0) and D(2)(a) ≈ D(2)(a0). Thisresults in a Fokker-Plan
k equation with 
onstant 
oe�
ients whi
h is easy to solve
∂

∂t
P (a0t0|a, t) = −D(1)(a0)

∂

∂a
P (a0t0|a, t) +D(2)(a0)

1

2

∂2

∂a∂a
P (a0t0|a, t) (2.20)The exa
t solution of this equation with initial 
ondition (2.19) has a Gaussian form

P (a0, t0|a1, t0 +∆t) = exp

{

−
1

2∆t

(

a1 − a0 −∆tD(1)(a0)
)

D−1
(2)(a0)

(

a1 − a0 −∆tD(1)(a0)
)

}

×
1

(2π∆t)M/2 det(D(2)(a0))1/2
(2.21)provided that the inverse of the di�usion matrix D(2)(a) exists. In systems with inertia the inverse doesnot exist but it is nevertheless still possible to write down the transition probability, that will in
ludesome delta fun
tions [?℄. The transition probability (2.21) has the following moments

∫

da1(a1 − a0)P (a0, t0|a1, t0 +∆t) = D(1)(a0)∆t

∫

da1(a1 − a0)(a1 − a0)P (a1, t0 +∆t|a0, t0) = D(2)(a0)∆t+D(1)(a0)D
(1)(a0)∆t2 (2.22)
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ond moment 
an also be expressed as
∫

da1(a1 − a0 −D(1)(a0)∆t)(a1 − a0 −D(1)(a0)∆t)P (a1, t0 +∆t|a0, t0) = D(2)(a0)∆t (2.23)Note that these expressions give the drift D(1)(a) and di�usion D(2)(a) in terms of the �rst and se
ondmoments of the short time form of the transition probability. But note now that we have also a mi
ros
opi
expression for the transition probability, given in (2.11)! Therefore, by substituting (2.11) into (2.22) and(2.23) we may obtain expli
it mole
ular expressions for D(1)(a) and D(2)(a). Consider the �rst term
D(1)(a0) and use Eq. (2.11) in Eq. (2.22)

D(1)(a0) =
1

∆t

∫

da(a− a0)
1

Ω(a1)

∫

δ(A(z)− a0)δ(A(T∆tz)− a)dz (2.24)We perform the integral over the variable a of the Dira
 delta fun
tion and obtain
D(1)(a0) =

1

∆t

∫

dz
δ(A(z)− a0)

Ω(a0)
(A(T∆tz)−A(z)) =

〈

A(∆t) −A(0)

∆t

〉a0 (2.25)where we have introdu
ed the generalized mi
ro
anoni
al average or 
onditional average
〈· · · 〉

a0 ≡

∫

dz
δ(A(z)− a0)

Ω(a0)
· · · (2.26)Eq. (2.25) is the desired mi
ros
opi
 expression for the drift D(1)(a0). In a similar way, by substitutionof (2.11) into (2.23) we obtain a mi
ros
opi
 expression for the di�usion tensor

D(2)(a0) =
1

∆t

〈

[A(∆t) − a0 −D(1)(a0)∆t][A(∆t) − a0 −D(1)(a0)∆t]
〉a0 (2.27)This expression known as the Einstein-Helfand formula for the di�usion 
oe�
ient and it basi-
ally says that the square displa
ement of the relevant variables in
reases proportional to ∆t, with theproportionality fa
tor given by the di�usion tensor.Now, while both (2.25) and (2.27) are mi
ros
opi
 expressions for the drift and di�usion tensor, theydepend on the time ∆t. Of 
ourse we would like to eliminate somehow the dependen
e on ∆t. We wantto expand the above expressions in terms of ∆t and keep only the zero order term whi
h is independentof ∆t. However, the fa
t that ∆t, although small, is not vanishing small leads to some subtelties. Letus 
onsider the drift term �rst. As a �rst approximation, we would use a simple Taylor expansion of therelevant variable

A(T∆tz) = A(z) + iLA(z)∆t+O(∆t)2 (2.28)and negle
t terms of high order, to obtain
D(1)(a0) = 〈iLA〉

a0 +O(∆t) (2.29)The drift would be given as the 
onditional average of the �velo
ity� of the relevant variables. However,this is not quite 
orre
t. Even though we have assumed that ∆t is �small�, the time interval ∆t 
annotgo to zero stri
tly be
ause then the basi
 Markovian assumption with no memory of the past would nothold. We need to 
onsider the time interval ∆t as ne
esarily �nite and the mi
ros
opi
 dynami
s may
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opi
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shave time to do funny things. It is, therefore, preferable to use the following identity
A(T∆tz)−A(z) =

∫ ∆t

0

dt
d

dt
A(Ttz) =

∫ ∆t

0

dtiLA(Ttz) (2.30)By using this identity in (2.25), we obtain an mathemati
ally identi
al expression for D(1)(a0), this is
D(1)(a0) =

1

∆t

∫ ∆t

0

dt

∫

dz
δ(A(z)− a0)

Ω(a0)
iLA(Ttz) =

1

∆t

∫ ∆t

0

dt 〈iLA(t)〉a0 (2.31)In this way, we see that it the drift is the time average over the time interval ∆t of the average �velo
ity�of the relevant variables. We now perform the 
hange of variables Ttz → z, with unit Ja
obian, andobtain
D(1)(a0) =

1

∆t

∫ ∆t

0

dt

∫

dz
δ(A(T−tz)− a0)

Ω(a0)
iLA(z) (2.32)Now 
onsider the identity, similar to (2.30)

A(T−tz) = A(z) +

∫ 0

−t

dt′iLA(Tt′) (2.33)
D(1)(a0) =

1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∫

dzδ

(

A(z) +

∫ 0

−t

dt′iLA(Tt′z)− a0

)

iLA(z) (2.34)We 
an now formally expand the Dira
 delta fun
tion around A(z)− a0

δ

(

A(z) +

∫ 0

−t

dt′iLA(Tt′z)− a0

)

= δ (A(z)− a0)−
∂

∂a0
δ (A(z)− a0)

∫ 0

−t

dt′iLA(Tt′(z)) + · · · (2.35)By inserting this formal expansion into (2.34) we have
D(1)(a0) = 〈iLA〉

a0

+
1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∂

∂a0

∫ 0

−t

dt′
∫

dzδ (A(z)− a0) iLA(Tt′(z))iLA(z)

+
1

∆t

∫ ∆t

0

dt
1

Ω(a0)

∂2

∂a0∂a0

∫ 0

−t

dt′
∫ 0

−t

dt′′
∫

dzδ (A(z)− a0) iLA(Tt′′(z))iLA(Tt′(z))iLA(z)

+ · · · (2.36)This expression 
an be written in a more 
ompa
t form as
D(1)(a0) = 〈iLA〉

a0

+
1

Ω(a0)

∂

∂a0
Ω(a0)

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0

+
1

Ω(a0)

∂2

∂a0∂a0
Ω(a0)

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′
∫ 0

−t

dt′′ 〈iLA(t′′)iLA(t′)iLA〉
a0

+ · · · (2.37)



2.3 Green's view of 
oarse-graining 27By retaining all the terms in this expression we have an expression that is mathemati
al equivalent to(2.25). We observe, therefore, that, in addition to the naive term 〈iLA〉a0 we have additional 
ontributionsthat are time integrals of 
orrelation fun
tions. The task now is to evaluate whether these 
ontributionss
ale as (∆t)0 or with a higher power of ∆t. Let us 
onsider the �rst 
orrelation matrix
1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0 =

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′′ 〈iLA(−t′′)iLA〉
a0

=
1

∆t

∫ ∆t

0

dt′′
∫ ∆t

t′′
dt 〈iLA(−t′′)iLA〉

a0

=
1

∆t

∫ ∆t

0

dt′′(∆t− t′′) 〈iLA(−t′′)iLA〉
a0 (2.38)where we have performed a 
hange of variables. Next we add and substra
t the term 〈iLA〉a0〈iLA〉a0 inorder to have a proper 
orrelation that de
ays to zero

1

∆t

∫ ∆t

0

dt

∫ 0

−t

dt′ 〈iLA(t′)iLA〉
a0 =

∫ ∆t

0

dt′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0

−
1

∆t

∫ ∆t

0

dt′′t′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0

+
∆t

2
〈iLA〉a0〈iLA〉a0 (2.39)We expe
t that the matrix of 
orrelations 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉

a0 de
ays to zero as
|t′′| in
reases and that the integral then 
onverges to a term whi
h is independent of ∆t, for su�
ientlylarge ∆t. We denote with D(a0) the resulting matrix

D(a0) ≡

∫ ∆t

0

dt′′ 〈(iLA(−t′′)− 〈iLA〉a0)(iLA− 〈iLA〉a0)〉
a0 (2.40)On the other hand, we also expe
t that the se
ond integral in Eq. (2.39) also 
onverges, but due tothe prefa
tor 1/∆t, this se
ond integral will de
ay as 1/∆t1. Therefore, if ∆t is slightly larger than the
orrelation time in whi
h the velo
ity �u
tuations of the relevant variables de
ay, we may negle
t these
ond integral. Finally, the last term in Eq. (2.39) is of order ∆t.The analysis of the third and higher order terms in Eq. (2.37) be
omes readily very 
ompli
ated. Wewill assume, though, that these terms are �small� and that 
an be negle
ted. This approximation is notrigorous and one has to judge the resulting expression a posteriori. Therefore, we obtain the followingform for the drift term

D(1)(a0) = 〈iLA〉
a0 +

1

Ω(a0)

∂

∂a0
Ω(a0)D(a0) +O(∆t) (2.41)where the expli
itly displayed terms in this equation are independent of ∆t. Note that, as 
ompared withthe naive result (2.29), we have an additional term in the drift. This term arises due to the fa
t that thetime ∆t is large 
ompared with the 
orrelation of the �u
tuations of the velo
ity of the relevant variables.At the same time, ∆t needs to be short in 
omparison with the evolution of the relevant variablesthemselves, otherwise, we are not allowed to use the Gaussian form for the transition probability onwhi
h the whole pro
edure is bases. The existen
e of su
h time ∆t is based on the fa
t that there mustbe a separation of time s
ales between the relevant variables and the �u
tuations of their velo
ities.1One may 
onsider a simple example in whi
h the 
orrelation de
ay as exponentials to get a feeling for this behaviour.
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opi
 Dynami
sWe may obtain an expression for the di�usion tensor (2.27) by expanding again in the small time ∆t.In order to have the proper orders in ∆t, substitute just one of the terms (A(T∆tz)− a0) by using (2.28),this is
D(2)(a0) =

〈

[iLA−D(1)(a0)][A(∆t) −A(0)]
〉a0

+O(∆t) (2.42)This expression is equivalent to (2.27) up to small terms of order ∆t and 
an also be used to obtain thedi�usion tensor by mi
ros
opi
 means. This se
ond form of the di�usion tensor has no spe
i�
 nameasso
iated to it.Still, a third way to express the di�usion tensor is by using the identity (2.30) in (2.42). Then wehave
D(2)(a0) =

∫ ∆t

0

dt
〈

[iLA−D(1)(a0)]iLA(t)
〉a0

+O(∆t) (2.43)We may symmetrize this expression by substra
ting D(1)(a0) to the last iLA(Ttz) term
D(2)(a0) =

∫ ∆t

0

dt
〈

[iLA−D(1)(a0)][iLA(t)−D(1)(a0)]
〉a0

+O(∆t) (2.44)This is theGreen-Kubo formula for the di�usion tensor. The three expressions (2.27),(2.42) and (2.44)are equivalent forms for the di�usion tensor in mi
ros
opi
 terms.We may now ask about the value of ∆t. We have used the form (2.21) for the transition probabilityunder the assumption that ∆t is �small�. However, we 
annot take the mathemati
al limit ∆t → 0be
ause the above mi
ros
opi
 expressions give the result D(2)(a) = 0. Clearly ∆t has to be a timewhi
h is large enough for the 
orrelations of the �u
tuations iLA−D(1) of the �velo
ity� to have de
ayedor, equivalently, for the square of the �displa
ement� A(∆t) − a0 − D(1)(a0)∆t in the Einstein-Helfandexpression to have rea
hed a behaviour linear in time. At the same time, it has to be short enough forbeing able to use the Gaussian approximation for the transition probability. As this Gaussian behaviouris related to the fa
t that we 
ould make the substitution D(1)(a), D(2)(a) with D(1)(a0), D
(2)(a0), weexpe
t that the time ∆t has to be short in front of the typi
al s
ale of evolution of the relevant variables.In summary, one obvious requirement for the validity of the above expressions is that there exists a 
learseparation of time s
ales between the relevant variables and the the �u
tuations of the velo
ity of therelevant variables. In other words, the relevant variables need to be slow variables (in the time s
aleof its velo
ity �u
tuations). It is obvious that one needs to in
lude in the set of relevant variables athe dynami
 invariants, in parti
ular the Hamiltonian, of the system as they are the slowest possiblevariables. This is, the �rst 
omponent of the ve
tor A(z) needs to be the Hamiltonian. In this way the
onditional expe
tations (2.26) do, in fa
t, 
ontain a Dira
 delta fun
tion over the Hamiltonian whi
h isnothing else that the equilibrium mi
ro
anoni
al ensemble.In this se
tion, we have presented the theory of 
oarse-graining as was given by Green. In prin
iple,and quite often in pra
ti
e, this is all what we would need to know about the theory of 
oarse-graining.Of 
ourse, the whole 
onstru
tion is based on the assumption that the sto
hasti
 pro
ess of relevantvariables has the Markov property. We have seen that this assumption is equivalent to postulate thatthe one-time and transition probabilities obey the Fokker-Plan
k equation. If this is true, then we haveexpli
it mole
ular expressions for the dynami
s of the relevant variables. Of 
ourse, in the pro
ess ofobtaining these mole
ular expressions we have followed a number of non-rigorous approximations thatmay leave us with an un
onfortable feeling.In order to get some more insight into the problem, in the next se
tions, we will not postulate theFokker-Plan
k equation but rather will derive it from the mi
ros
opi
 Hamilton's equations. We hopethat in this way, we will have some more light into the problem.



2.4 Zwanzig view of 
oarse-graining 292.4 Zwanzig view of 
oarse-graining2.4.1 Exa
t equation for P (a, t)The evolution of the mi
ros
opi
 ensemlbe ρ(z, t) a

ording to the Liouville equation indu
es an evolutionof the mesos
opi
 distribution P (a, t), be
ause both are related a

ording to
P (a, t) =

∫

δ(A(z)− a)ρ(z, t)dz. (2.45)Of 
ourse, we would like to have a 
losed dynami
al equation for P (a, t) that makes no referen
e to theunderlying dynami
s given by ρ(z, t). This 
losed equation 
an be obtained with the help of a proje
tionoperator te
hnique. Following Zwanzig [?℄, we introdu
e a proje
tion operator P that applies to anyfun
tion F (z) of phase spa
e Γ
PF (z) = 〈F 〉A(z), (2.46)where we have introdu
ed the 
onditional average 〈F 〉a by

〈F 〉a =
1

Ω(a)

∫

dzρ0Nδ(A(z)− a)F (z), (2.47)Note that the e�e
t of the operator P on an arbitrary fun
tion of phase spa
e is to transform it into afun
tion of the relevant variables A(z). The operator P satis�es the proje
tion property P2 = P . Weintrodu
e also the 
omplementary proje
tion operator Q = 1 − P whi
h satis�es PQ = 0 and Q2 = Q.The operators P ,Q satisfy
∫

dzρ0NA(z)PB(z) =

∫

dzρ0NB(z)PA(z), (2.48)for arbitrary fun
tions A(z), B(z). It is 
onvenient to introdu
e the following notation
Ψa(z) = δ(A(z)− a), (2.49)and 
onsider the Dira
's delta fun
tion as an ordinary phase fun
tion with a 
ontinuum index a. A

ordingto the formal solution (1.15) this phase fun
tion will evolve a

ording to

Ψa(Ttz) = exp{iLt}Ψa(z), (2.50)and, therefore,
∂tΨa(Ttz) = exp{iLt}iLΨa(z). (2.51)Now we introdu
e a mathemati
al identity between operators

exp{iLt} = exp{iLt}P +

∫ t

0

dt′ exp{iLt′}PiLQ exp{iLQ(t− t′)}+Q exp{iLQt}. (2.52)This identity 
an be proved by taking the time derivative on both sides. If two operators have the samederivative and 
oin
ide at t = 0 then they are the same operator. We now apply this identity (2.52) tothe left hand side of (2.51). After some algebra, whi
h uses the expli
it form of the operators P ,Q, theproperties (2.48), and the 
hain rule in the form
iLΨa(z) = iLAµ

∂

∂aµ
Ψa(z), (2.53)
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opi
 Dynami
swhere summation over repeated indi
es is implied, one obtains,
∂tΨa(Ttz) = −

∂

∂aµ
·vµ(a)Ψa(Ttz)

+

∫ t

0

dt′
∫

da′Ω(a′)
∂

∂aµ
·Dµν(a, a

′, t− t′)·
∂

∂a′j

Ψa′(Tt′z)

Ω(a′)

+ Q exp{iLQt}QiLΨa(Ttz). (2.54)We have de�ned the drift vµ(a) and the di�usion tensor Dµν(a, a
′, t) through

vµ(a) = 〈iLAµ〉
a,

Dµν(a, a
′, t) = 〈(iLAν − 〈iLAν〉

a′

) exp{iLQt}Ψa(iLAµ − 〈iLAµ〉
a)〉a

′

. (2.55)If we multiply (2.54) by ρ(z, 0), integrate over z, and use (??), we obtain a �nal exa
t and 
losed equationfor P (a, t)

∂tP (a, t) = −
∂

∂aµ
·vµ(a)P (a, t) +

∫ t

0

dt′
∫

da′Ω(a′)
∂

∂aµ
·Dµν(a, a

′, t− t′)·
∂

∂a′ν

P (a′, t′)

Ω(a′)
, (2.56)where we have used that the initial ensemble (2.8) is a fun
tion of A(z) and, therefore,

∫

dzρ(z, 0)Q exp{iLQt}QiLΨa(Ttz) = 0, (2.57)where we have used the hermiti
ity (2.48) as well as the proje
tion property Qf(A) = 0.2.4.2 The Markovian approximation and the Fokker-Plan
k EquationEquation (2.56) is an exa
t an rigorous 
losed equation governing the distribution fun
tion P (a, t). Noapproximations have been made and, essentially, it is another way of rewriting the Liouville equation.In prin
iple, it is as di�
ult to solve as the original Liouville equation. However, as it happens oftenin Physi
s, just by rewriting the same thing in a di�erent form, it is possible to perform suitable ap-proximations that allow for an advan
e in the understanding of the problem. In the 
ase of (2.56), theapproximation is 
alled the Markovian approximation and transforms the integro-di�erential equationinto a simple Fokker-Plan
k equation.The Markovian assumption is one about separation of time s
ales between the time s
ale of evolutionof the phase fun
tion A(z) and the rest of variables of the system. If this separation of time s
ales existsthen, in the time s
ale in whi
h the tensorDµν(a, a
′, t−t′) de
ays, the probability P (a, t′) has not 
hangedappre
iably. S
hemati
ally, we write the memory term in (2.56) as

∫ t

0

dt′D(t− t′)P (t′) ≈ P (t)

∫ ∆t

0

D(t′)dt′. (2.58)This approximation is depi
ted in Fig. 2.1. We have extended in (2.58) the upper limit of integrationto a time ∆t su�
iently large for the memory kernel D(t) to have de
ayed . Note that the tensor
Dµν(a, a

′, t − t′) is a quantity of order (iLA)2, i.e. se
ond order in the time derivatives of the relevantvariables. The time s
ale of evolution of P (a, t) is the same as the time s
ale of the variables A(z). Theapproximation (2.58) amounts, therefore, to negle
t third order time derivatives of the relevant variablesin front of se
ond order terms. We, therefore, 
onsistently perform a formal expansion of the tensor
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t

D(t)
P(t’)

D(t−t’)

P(t)

t’=0 t t’Figure 2.1: The Markovian approximation.
Dµν(a, a

′, t− t′) in (2.55) in terms of iLA and keep only se
ond order terms. Then,
exp{iLQt}ΨaQiLA = Ψa exp{iLQt}QiLA+O(iLA)2. (2.59)Therefore, up to terms of order O(iLA3) we have

Dµν(a, a
′, t) = δ(a− a′)〈(iLAν − 〈iLAν〉

a) exp{iLQt}(iLAµ − 〈iLAµ〉
a)〉a, (2.60)and the tensor be
omes diagonal in a, a′. By substitution of the approximate form (2.60) into the exa
tequation (2.56) and using (2.58) we obtain

∂tP (a, t) = −
∂

∂aµ
vµ(a)P (a, t) +

∂

∂aµ
Ω(a)Dµν(a)

∂

∂aν

P (a, t)

Ω(a)
, (2.61)where we have de�ned the di�usion tensor

Dµν(a) =

∫ ∆t

0

dt′〈(iLAν − 〈iLAν〉
a) exp{iLQt′}(iLAµ − 〈iLAµ〉

a)〉a, (2.62)Note that within the negle
t of third order terms, we 
an also substitute the proje
ted dynami
s withthe real dynami
s, this is
Dµν(a) =

∫ ∆t

0

dτ 〈(iLAν − Vν(a))) exp {−iLτ} (iLAµ − Vµ(a))〉
Ea (2.63)We summarize for 
ompleteness the rest of quantities appearing in (2.61)

vµ(a) = 〈iLAµ〉
a,

〈. . .〉a =
1

Ω(a)

∫

dzρ0Nδ(A(z)− a) . . . ,

Ω(a) =

∫

dzρ0Nδ(A(z)− a). (2.64)As we in
lude in the set A(z) the total energy as a relevant variable, it is 
onvenient to single out its
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se�e
t. Let us write expli
itly
vµ(a,E) = 〈iLAµ〉

a,E ,

〈. . .〉a =
1

Ω(a,E)

∫

dzρ0Nδ(H(z)− E)δ(A(z)− a) . . . ,

Ω(a,E) =

∫

dzρ0Nδ(H(z)− E)δ(A(z) − a). (2.65)It is 
onvenient to multiply the numerator and denominator of the 
onditional averages with
Ω(E) ≡

∫

dzδ(H(z)− E) (2.66)whi
h is the measure of the number of mi
rostates of a given energy. In this way, we obtain the 
onditionalaverages as
〈 · 〉a,E =

1

Pmic(a)

∫

dzρmic(z)δ(A(z)− a) · · · (2.67)where we have introdu
ed the usual mi
ro
anoni
al ensemble ρmic(z) and the equilibrium probability ofthe relevant variables as
ρmic(z) =

1

Ω(E)
δ(H(z)− E)

P eq(a) =

∫

dzρmic(z)δ(A(z)− a) (2.68)at the same time we have
Ω(a,E) = Ω(E)P eq(a) (2.69)Be
ause iLH = 0, many of the terms in the FPE vanish, pre
isely those involving derivatives with respe
to the total energy. For this reason, we may write (2.61) as

∂tP (a, t) = −
∂

∂aµ
Vµ(a)P (a, t) +

∂

∂aµ
P eq(a)Dµν(a)

∂

∂aν

P (a, t)

P eq(a)
, (2.70)whi
h may also be written in the equivalent form

∂tP (a, t) = −
∂

∂aµ

[

Vµ(a) +Dµν(a)
∂S

∂a
(a)

]

P (a, t) +
∂

∂aµ
Dµν(a)

∂

∂aν
P (a, t) (2.71)where we have introdu
ed the entropy fun
tion S(a) throught the 
elebrated Einstein's formula for �u
-tuations

P eq(a) = exp{S(a)/kB} (2.72)We 
an 
he
k that P eq(a) is the equilibrium solution. By substituting P eq(a) into (2.61) we have that
P eq(a) will be a stationary solution of the FPE (2.61) if and only if

∑

µ

∂

∂aµ
vµ(a)P

eq(a) = 0. (2.73)
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oarse-graining 33By using the de�nition (2.55), the 
onstrained average (2.47), and the 
hain rule we have
∂

∂aµ
vµ(a)P

eq(a) =

∫

dzρmic(z)
∂

∂aµ
δ(A(z)− a)iLAµ(z) = −

∫

dzρmic(z)iLδ(A(z)− a) = 0, (2.74)where we have integrated by parts the Liouville operator and used that iLH = 0.Equation (2.61) is the desired Fokker-Plan
k equation for the dynami
s at the mesos
opi
 
oarse-grained level of des
ription. This equation is one of the 
ornerstones of non-equilibrium statisti
al me-
hani
s and was obtained by Zwanzig in 1961 [?℄ following the path pioneered by Green in [?℄. In thisequation, all the obje
ts vµ(a), Dµν(a, t) and Ω(a) have a de�nite mi
ros
opi
 de�nition. In parti
ular,(2.62) is a general form of the well-known Green-Kubo formulae that relates the transport 
oe�
ients
Dµν(a) with a time integral of a 
orrelation fun
tion of mi
ros
opi
 variables. The FPE (2.61) is validwhenever there is a 
lear separation of time s
ales su
h that the Markovian approximation is valid.Clearly, the FPE will des
ribe 
orre
tly the evolution of P (a, t) only for times whi
h are larger thanthe typi
al time s
ales of de
ay of the 
orrelation involved in Dµν(a). We 
annot investigate with thisequation shorter time s
ales. For this short time s
ales, the transport 
oe�
ients start to depend ontime.



34 The Mesos
opi
 Dynami
s



3Example: Di�using intera
ting 
olloidalparti
lesAt the most mi
ros
opi
 level, we 
an model the 
olloidal suspension by assuming that the solid suspendedobje
ts are spheri
al and we need only 6 degrees of freedom for des
ribing the state of the obje
t, theposition Qi and the momentum Pi of its 
enter of mass. For irregular obje
ts we would need also to
onsider orientation, angular velo
ities, et
. The �uid in whi
h these solid 
olloidal parti
les are suspendedwill be des
ribed at the most mi
ros
opi
 level by the positions qi and momenta pi of the 
enter of massof the mole
ules that 
onstitute the �uid. Again, we assume spheri
al mole
ules for simpli
ity. Themi
ros
opi
 state will be denoted by z = {qi,pi,Qi,Pi}. The evolution of the mi
rostate is governed byHamilton's equations,
q̇i =

∂H(z)

∂pi
, Q̇i =

∂H(z)

∂Pi
,

ṗi = −
∂H(z)

∂qi
, Ṗi = −

∂H(z)

∂Qi
, (3.1)where the Hamiltonian is given by

H(z) =
∑

i

(

p2i
2mi

+
P 2
i

2Mi

)

+
1

2

∑

ij

(

V SS
ij (q) + V SC

ij (q,Q) + V CC
ij (Q)

)

. (3.2)Here, mi is the mass of a solvent mole
ule, Mi the mass of a 
olloidal parti
le, and V SS , V SC , V CCare the potential of the for
es between solvent mole
ules, solvent and 
olloidal parti
les, and 
olloidalparti
les, respe
tively.In prin
iple, the di�erential equations (3.1) 
an be solved numeri
ally with a 
omputer. The te
hniqueis known as mole
ular dynami
s and allows us to keep tra
k of all the mi
ros
opi
 dynami
s of the system[?℄. The smallest typi
al time s
ale is a 
ollision time in the range of pi
ose
onds and, 
onsistently, we willneed to use a time step for the numeri
al solution whi
h is mu
h smaller than this time s
ale. However,if the mass of the 
olloidal parti
les is mu
h larger than the mass of the solvent parti
les, as it o

urs inreality, the evolution of the 
olloidal parti
les will be very slow in 
omparison with the evolution of thesolvent mole
ules. If we are interested in the motion of the 
olloidal parti
les, then we would need anenormous number of time steps (and, therefore, of 
omputer time) to observe an appre
iable motion ofthe 
olloidal parti
les. To study these large time s
ales in a 
olloidal suspension, mole
ular dynami
s isabsolutely impra
ti
able.



36 Example: Di�using intera
ting 
olloidal parti
lesWe illustrate now how the general formalism developed in the previous se
tion 
an be applied to the
ase of a 
olloidal suspension in order to derive the FPE. The idea is simply to translate to our system thedi�erent obje
ts de�ned in (2.62), (2.65) that appear in the FPE (2.61). The mi
ros
opi
 Hamiltonian isgiven in (3.2). We sele
t as relevant variables A(z) = x the positions of the 
olloidal parti
les Qi whi
htake numeri
al values Qi. Let us 
onsider the equilibrium probability for these variables. It is given by
Pmic(Q) =

∫

dzρmic(z)
∏

i

δ(Qi −Qi) (3.3)As we know from equilibrium statisti
al me
hani
s, we may use the 
anoni
al ensemble instead of themi
ro
anoni
al ensemble in order to 
ompute averages. The 
anoni
al ensemble is given
ρeq(z) =

1

Z
exp{−βH(z)}, (3.4)where β = (kBT )

−1 is proportional to the inverse of the temperature T . The parti
ular value of T is�xed in order to give an average energy given by E. By using the 
anoni
al ensemble, we may write theequilibrium distribution of the positions of the 
olloidal parti
les as
Pmic(Q) ∝ exp{−βV CC(Q)}

∫

dq exp{−β
(

V CS(Q, q) + V SS(q)
)

}

≡ exp{−βV
eff
(Q)}, (3.5)where ∫ dq is a 
ondensed notation for the integral over solvent positions. We have introdu
ed the e�e
tivepotential as

V
eff
(Q) = V CC(Q)− kBT ln

∫

dq exp{−β
(

V CS(Q, q) + V SS(q)
)

}. (3.6)The e�e
tive potential has a 
ontribution V CC(Q) 
oming from the dire
t intera
tion potential and anadditional 
ontribution that represents the e�e
t of the stati
 and equilibrium averaged solvent mediatedintera
tion between 
olloidal parti
les.After performing the integrals over the Dira
 delta fun
tions, the 
onstrained average in (2.65) nowtakes the form
〈· · · 〉Q =

1

Ω(Q)

∫

dqρeq(q,Q) · · · . (3.7)Note that this 
onstrained average is simply an equilibrium average over the solvent degrees of freedom,in whi
h the 
olloidal parti
les are assumed to be �xed at the values Q. It is, therefore, an equilibriumensemble average in whi
h the 
olloidal parti
les a
t as external stati
 for
e �elds.Be
ause the time derivatives iLA are simply Pi/Mi, the drift term v(a) = 〈iLA〉a de�ned in (2.65)is now the 
onstrained equilibrium average of the momentum of the 
olloidal parti
les, whi
h is zero byisotropy of the equilibrium ensemble. The di�usion tensor (2.62) be
omes
Dij(Q) =

∫ ∆t

0

dt′〈Vj exp{iLt
′}Vi〉

Q. (3.8)The �nal FPE (2.61) takes now the form
∂tP (Q, t) =

∂

∂Qi

[

βDij(Q)
∂V

eff
(Q)

∂Qj

]

P (Q, t) +
∂

∂Qi
Dij(Q)·

∂

∂Qj
P (Q, t), (3.9)In this example, we observe how the general Fokker-Plan
k des
ription 
an be applied to a spe
i�
 level



37of des
ription of a given system. The essential bene�ts of this approa
h are that it is very simple toget the stru
ture of the 
oarse-grained equation. Also, we obtain expli
it mi
ros
opi
 expressions for allthe obje
ts in the FPE. In parti
ular, the di�usion tensor whi
h des
ribes the mutual, solvent-mediatedin�uen
e of the 
olloidal parti
les is given in terms of the auto and 
ross-
orrelations of the velo
itiesof the 
olloidal parti
les, where the averages are taken over the solvent degrees of freedom whi
h aredistributed a

ording to an equilibrium ensemble in the presen
e of the external �elds due to the stati

olloidal parti
les. The FPE that governs now the probability density P (Q, t) is 
alled the Smolu
howskyequation.


