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1 Fluctuating Hydrodynamics

We illustrate the general formalism by showing how isothermal compressible fluctuating hydrody-
namics for a single-component fluid can be written in the augmented Langevin form. A similar
calculation is presented in Ref. [1] though in indicial form and also the Hamiltonian part of the fluid
dynamics is not discussed. The case of an incompressible fluid is substantially more complicated to
fit into a Hamiltonian framework [2, 3] and not much is gained in the process for our purposes, so we
do not discuss it here. The case when the total energy is included as a coarse-grained variable and
one considers an isolated instead of a system in contact with a thermal bath is discussed extensively
in the book [4]. In particular, it is demonstrated there that fluctuating hydrodynamics can be put
in a Hamiltonian framework that fits in the GENERIC formalism.

1.1 Single-Component Fluid

For an Eulerian description of an isothermal compressible fluid x (t) = (ρ(r, t), v(r, t)), or, if an
incompressibility constraint is added (ρ = const.), then the degrees of freedom are further reduced
to just the velocity. Of course one can use the conserved momentum density j = ρv fields as
variable instead of velocity, though it does not seem crucial here. The equations that we want to
obtain in the end are the usual Landau-Lifshitz equations,

∂tρ = −∇ · (ρv)

ρ (∂tv) = −ρv ·∇v −∇P + ∇ · (η∇v) + ∇ · [(2kBTη)W (t)] . (1)

The Hamiltonian (total energy) is

H =

ˆ [
ρ
v2

2
+ ε (ρ)

]
dr, (2)

where ε (ρ) is the internal energy of the fluid (at constant temperature), with

∂H

∂ρ
=
v2

2
+
dε

dρ
and

∂H

∂v
= ρv. (3)

Note the thermodynamic relation [5]

ρ
dε

dρ
= ρε′ = ε+ P,

where P is the pressure, relating gradients of ∂H/∂ρ to gradients of pressure via

∇ε′ = ρ−1∇P. (4)
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1.1.1 Dissipative and Fluctuating Dynamics: Diffusion

We will assume the usual form of the viscous dissipation. Ignoring for a moment the bulk viscosity
terms, one suitable form of the operator B in (??) is

B =

[
0

ρ−1 ∇ · η1/2

]
=

[
0
Bv

]
, (5)

where in general the fourth-order positive-definite viscosity tensor η may depend on density. This
gives the well-known viscous term in the velocity equation,

(BvB
?
v)
∂H

∂v
= ρ−1∇ · (η∇v) = ρ−1∇ ·

[
η
(
∇v + ∇Tv

)
+

(
κ− 2

d
η

)
(∇ · v) I

]
along with a corresponding divergence of a stochastic stress contribution ala Landau-Lifshitz for the
fluctuating part. Since η does not depend on velocity (for Newtonian fluids), there is no additional
drift term,

∂

∂x
·M = 0.

1.1.2 Non-dissipative Dynamics: Advection

For a compressible fluid with periodic boundaries, the reversible generator of the Navier-Stokes
equations is given in Ottinger’s book [4] [to get this form certain integrations by part are carried
out by ignoring boundary terms, see (7.150)],

L =

[
0 −∇·
−∇ ωρ−1

]
. (6)

For more general boundary conditions one should be more careful with the boundary conditions.
The skew-adjointess of L is evident because the vorticity tensor

ωjk =
∂vk
∂rj
− ∂vj
∂rk

is antisymmetric, and it is well-known that the divergence and gradient operators are negative
adjoints of each other. Also note that the reciprocity relation (??) is obeyed because the velocity-
velocity coupling (εkεj = 1) involves ω and thus changes sign upon time reversal, while the velocity-
density coupling (εkεj = −1) does not change sign.

For the density equation, L · ∂H∂x gives the familiar −∇ · (ρv) term. From equations (3) and (4)
we get the familiar pressure-gradient term in the velocity equation. The advective term −v ·∇v
in the velocity equation comes from ωv = − (∇× v)× v and the vector identity

v ·∇v = ∇
(
v2

2

)
+ (∇× v)× v.

The only remaining part is to look at the divergence of L, that is, the compressibility of ideal
fluid flow in (Eulerian) phase space. The only possible contribution comes because the vorticity
tensor ω depends on velocity. However, because this dependence is linear in the spatial derivatives
of velocity, the functional derivative [5] vanishes,

δω[v(r)]

δv
= 0 giving

∂

∂x
·L = 0,
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again ignoring boundary terms. These are however rather formal arguments, since even defining an
equilibrium distribution requires an appropriate measure of phase space volume, and the familiar
Lebesque measure does not generalize to infinite-dimensional spaces. The usual argument out of
this fundamental difficulty is to first apply a truncation (e.g., a cutoff wavenumber) or discretization
(e.g., finite-volume averaging) procedure to the SPDEs and then study the resulting semi-discrete
system of SDEs. Such an approach requires introducing a discrete free-energy function and ensuring
that the discretization/truncation preserves the Hamiltonian structure of the reversible dynamics,
which is usually rather non-trivial.

1.1.3 Conserved Variables

In discretizations it is preferred to use conserved variables, specifically, the momentum density
g = ρv instead of velocity. Using the coarse-grained variables x (t) = (ρ(r, t), g(r, t)), the reversible
part of the dynamics is generated by [see (2.60) in [4], and also [5]],

L =

[
0 − ∂

∂r · ρ
−ρ ∂

∂r Lg

]
,

where we use the notation ∂/∂r ≡ ∇ to make it easier to distinguish differential operators acting
on everything to the left versus those acting on a particular field. In these variables the counterpart
of the vorticity tensor is defined by

Lg · v = −∇ · (vg)− (∇v) · g or (Lg)jk = − ∂

∂rk
gj − gk

∂

∂rj
. (7)

In these variables the dissipative/fluctuating dynamics is generated by

B =

[
0

∇ · η1/2

]
=

[
0
Bg

]
. (8)

Since Lg depends on g there may be a nonzero compressibility in phase space ∂
∂x ·L and thus

an additional drift. In order to calculate ∂
∂g ·Lg we write Lg in integral form, without carrying out

an integration by parts to convert it into a local differential operator as done in (7),

(Lg)jk =

ˆ
dr′

[
∂δ (r − r′)

∂rj
gk (r)− gj

(
r′
) ∂δ (r − r′)

∂r′k

]

From this representation we see that there is no additional drift term necessary since [c.f. (2.13) in
[6]],

∂

∂g
·Lg = 0.

Putting the pieces together gives the stochastic conservation laws suggested by Landau and Lifshitz,

∂tρ = −∇ · g
∂tg = −∇ · (vg)−∇P + ∇ · (η∇v) + ∇ ·

[
(2kBTη)1/2 W

]
. (9)

As discussed in Section (??), the choice of variables matters. One has to decide whether the
coarse-grained Hamiltonian is (2) or

H =

ˆ [
g2

2ρ
+ ε (ρ)

]
dr. (10)
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The transformation from x = (ρ, g) to x̃ = (ρ, v) has a non-constant Jacobian due to the nonlin-
earity,

J =

[
I 0

−ρ−1v ρ−1

]
, so that ln |J | = −∆V −1

ˆ
ln ρ dr,

where ∆V −1 is a coarse-graining volume, making it clear that the free-energy correction due to
curvature is non-extensive. If we assume that the “natural” variable is g and the coarse-grained
free energy functional is (10), then (??) says that the transformed free energy functional is

H̃ [ρ,v] =

ˆ [
ρ
v2

2
+ ε (ρ)−∆V −1kBT ln ρ

]
dr.

It is not hard to show that the transformed L is exactly (6) and the transformed B is exactly (5).
The transformed equations have an extra forcing term due to the non-constant Jacobian,

∂tρ = −∇ · (ρv)

ρ (∂tv) = −ρv ·∇v −∇
(
P +

kBT

∆V
ln ρ

)
+ ∇ · (η∇v) + ∇ · [(2kBTη)W (t)] , (11)

which can be interpreted as a modification of the thermodynamic pressure. Conversely, if we
assumed that the “natural” variable is v, then the momentum equation (9) would have an extra
forcing term.

Note, however, that this term can be seen to be of the order of N−1
p , where Np = ρ∆V/m

is the number of particles in a representative (coarse-graining) volume. For an ideal gas ∇P =

(kBT/m)∇ρ while the new term gives N−1
p (kBT/m)∇ρ, which is of O

(
N−1
p

)
. Note that the free-

energy functional is usually only known to this order anyway. For example, for an ideal gas, the
equilibrium distribution of Np should be a Poisson distribution, whereas the free-energy functional
usually written already makes a Gaussian approximation. If we define ε (ρ) based on the knowledge
that the distribution of Np when g = 0 is Poisson, and analytically extend Np! ≡ Γ(Np + 1) to
non-integers,

exp

[
− ε̃ (ρ)

kBT

]
∼ N̄

Np
p exp

(
−N̄p

)
Γ(Np + 1)

,

then the forcing term in the momentum equation would obtain a leading order correction

ρ∇ε̃′ = ∇P̃ , where P̃ = P − kBT

2∆V
ln ρ,

which is of the same order as the correction in (11). This suggests that omitting the Jacobian terms
will lead to a somewhat modified equilibrium distribution, but the correction is a “finite-coarse-
graining” effect and thus expected to be small.

1.2 Fluid Mixtures

It is useful in applications to include at least one additional “advected” scalar field c(r, t), which
we will call concentration but which can more appropriately be thought of as an order parameter.
For example, c = ρ1/ρ could be the mass fraction in a two-component fluid, then it is more
appropriate to use ρ1 as a variable. As was discussed above, the choice of variables is an important
and nontrivial issue, especially when writing the free energy functional. Here we assume that the
functional derivatives of the free energy with respect to the hydrodynamic variables are not affected
by the order parameter.
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Using the coarse-grained variables x (t) = (ρ(r, t), g(r, t), c(r, t)), the reversible part of the
dynamics is generated by [see (2.60) in [4], and also [5]],

L =

 0 − ∂
∂r · ρ 0

−ρ ∂
∂r Lg (∇c)

0 − (∇c) 0

 ,
Note that the reversible dynamics now includes a body force F = µ∇c in the concentration equa-
tion. For a mixture of dynamically identical species the difference in chemical potential between
the species is µ = 0 and the concentration does not affect the hydrodynamic variables.

1.2.1 Order Parameter is Conserved

If the order parameter c is conserved, then we denote

∂H

∂c
= µ (ρ, c) (12)

as the chemical potential of the mixture, where H is the coarse-grained free energy functional. The
dissipative dynamics that ensures strict local decrease in the free energy (more precisely, positive
entropy production) is

B =

 0 0
Bv 0

0 ∂
∂r · χ̃

1/2

 =

 0 0
Bv 0
0 Bc

 ,
giving the familiar advection-diffusion equation for concentration,

∂tc+ v ·∇c = ∇ · (χ̃∇µ) + ∇ ·
[
(2kBT χ̃)1/2 W̃

]
,

where W̃ is a stochastic white-noise flux associated with order parameter fluctuations. Assuming
that µ depends only on c, we get

χ̃∇µ =

(
χ̃
∂µ

∂c

)
∇c = χ∇c, (13)

relating the usual diffusion coefficient χ = χ̃ (∂µ/∂c) to the coefficient that determines the covari-
ance of the stochastic flux.

1.2.2 Order Parameter is a Scalar

If the conserved quantity is ρc (that is, c is a ratio of densities), then the appropriate definition of
the chemical potential is [It does not look like there is a consistent unit of µ]

∂H

∂c
= µρ, (14)

and the dissipative generator is

Bc = ρ−1 ∂

∂r
· χ̃1/2,

leading to the relation χ = ρ−1χ̃ (∂µ/∂c) and the concentration equation [7]

ρ (∂tc+ v ·∇c) = ∇ · (ρχ∇c) + ∇ ·
[(

2kBTχρ

(∂µ/∂c)

)1/2

W̃
]
.
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1.2.3 Isothermal Multicomponent Mixtures

When there are more than two fluid components, using the concentrations ci = ρi/ρ becomes
cumbersome and it is better to use the conserved partial densities ρi as variables [3]. For the two
component fluid, we can start from the equations above and convert to the new variables to see
what the appropriate form of the equations is. We should, however, keep in mind that a good
approximation to the free energy functional requires selecting “natural” variables and in some cases
the appropriate choice may be ρ1 and ρ2 and not ρ and c. This is the case, for example, for a
mixture of two non-interacting colored random walkers (each color representing a species). Because
the transformation from densities to concentrations is nonlinear, the Jacobian is not constant and
needs to be taken into account.

We consider an isothermal mixture of n species and choose as our variables x = (ρ, v) where
ρ = {ρ1, . . . , ρn}. Denoting the chemical potential of species i with µi [Donev: Not sure about how
consistent this is with stat mech books...], we have

∂H

∂ρi
=
v2

2
+ µi, and

∂H

∂v
= ρv,

where the total density is ρ =
∑n
i=1 ρi, the generator of the fluctuating hydrodynamic equations

can be written as

N =

 ∂
∂r ·Λ

∂
∂r

{
− ∂
∂r ·

ρi
ρ

}{
−ρi

ρ
∂
∂r

}
ωρ−1

 ,
where the notation

{
− ∂
∂r ·

ρi
ρ

}
denotes a column vector of differential operators, one per species.

Here Λ is a symmetric positive-semidefinite matrix of diffusion coefficients whose rows and columns
sum to zero, giving a total of n(n− 1)/2 independent diffusion coefficients.

That this choice gives the usual velocity equation can be seen from the Gibbs-Duhem relation
for an isothermal system [Donev: Also not sure this is right ],

n∑
i=1

ρi∇µi = ∇P. (15)

For the individual species, using the fact that the rows of Λ add to zero we see that there is no
contribution from ∇

(
v2
)
, and so we get the advection-diffusion equation

∂tρ =
∂

∂r
· {−ρv + Λ · (∇µ)} .

By adding these equations together and noting that the columns of Λ add to zero we get the
expected density equation without any diffusive terms.

1.2.4 Thermo-Diffusion in Multicomponent Mixtures

For mixtures there is an additional complication due to the coupling between concentration and
temperature due to the Soret/Dufour effect, especially when there are more then two species.
We therefore consider a mixture of n species and include the internal energy density ε(r, t) as a
variable, x = (ρ, g, ε), where ρ = {ρ1, . . . , ρn}. In numerical implementations the total energy
e = ε + g2/ (2ρ) would be used to ensure strict energy conservation, but this does not change the
form of the equations except for the advective terms. An isothermal description is not appropriate
when energy is included and one should use the two-generator GENERIC equation (??). Here we
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focus on the dissipative part of the dynamics, i.e., diffusion and thermo-diffusion, responsible for a
non-decreasing entropy.

Since the momentum does not enter in the dissipative part, we focus on the variable x = (ρ, ε)
for the remainder of this section. For ideal fluid mixtures, we define the chemical potential via [3]

∂S

∂ρi
= −µi

T
,

and for the energy we have the usual thermodynamic relation

∂S

∂ε
=

1

T
, so that

∂

∂r

(
∂S

∂ε

)
= − 1

T 2

∂T

∂r
.

It is possible to relate the gradient of the chemical potentials to concentrations as in (13) [7] but
for more than two components this obscures the form of the equations and it is better to work with
chemical potentials directly.

The dissipative part of the dynamics is given by

M = −
[

∂
∂r ·Λ

∂
∂r

∂
∂r · (Λλ) ∂

∂r
∂
∂r ·

(
λTΛ

)
∂
∂r

∂
∂r ·

(
λTΛλ

)
∂
∂r

]
,

where we omit dots for the matrix-vector products to simplify the notation and Λ was introduced
in the previous section. Here λ is vector of n thermo-diffusion coefficients, but because the product
Λ · λ is not affected by adding a constant to λ, there are only n − 1 thermo-diffusion coefficients
(for two species the familiar Soret coefficient is proportional to λ1 − λ2). The above M leads to
the contribution to the dynamics due to diffusion

(∂tρ)diff =
∂

∂r
·
{

Λ

[
∂

∂r

(
µ

T

)
+
λ

T 2

∂T

∂r

]}
(∂tε)diff =

∂

∂r
·
{
λTΛ

[
∂

∂r

(
µ

T

)
+
λ

T 2

∂T

∂r

]}
.

In order to obtain B, we need to factorize M . This can be done explicitly, assuming that we
have first performed a Cholesky decomposition

Λ = χχT ,

where χ is an n × (n− 1) lower-triangular matrix whose columns sum to zero [containing the
n(n− 1)/2 “diffusion coefficients”, which need not be positive]. The special properties of Λ ensure
that one of its eigenvalues is zero and such a decomposition exists [Donev: One hopes that the
formulae for gas mixtures from kinetic theory ensure all but one zero eigenvalues are positive but
this should be checked numerically if nothing else.]. It is not hard to show that we can factorize

M = −
[ {

∂
∂r ·
}

0

0 ∂
∂r ·

]
·C ·CT ·

[ {
∂
∂r

}
0

0 ∂
∂r

]
= BB?,

where the notation
{
∂
∂r ·
}

denotes a diagonal matrix of n diverence operators, and

C =

[
χ

λTχ

]
.
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The above gives us the desired form of the stochastic forcing terms as a divergence of stochastic
fluxes,

B ·W =

[
∂
∂r · (χW )

∂
∂r ·

(
λTχW

) ] ,
where W is a vector of (n− 1) white-noise processes (stochastic diffusion fluxes). The property
that the columns of χ add up to zero ensures that there is no stochastic flux in the equation for the
total density ρ =

∑n
i=1 ρi. The above construction shows that the Soret coefficients do not enter in

the covariance of the stochastic fluxes, instead, they give the coefficients with which the stochastic
diffusive fluxes are weighted in the energy equation, just like the deterministic fluxes (as expected,
a physical system should not be able to separate the influence of the fluctuations from the mean).

2 Particle-Fluid Coupling

The basic problem we consider is coupling a fluctuating fluid solver with immersed particles that
have some mass (inertia). Ultimately the goal is to develop accurate methods for modeling the
Brownian motion of the immersed structures, driven by the thermal velocity fluctuations. Ideally,
we would like the equations to take the form (??), thus ensuring the coupled particle-fluid system
that have the right statistical mechanics (notably fluctuation-dissipation balance). One could try
to derive the coarse-grained equations from a more detailed model in which the coarse-grained
variables are chosen to be the position of the immersed particle and the hydrodynamic fields of
the fluid. Here we simply write equations that include a postulated no-slip constraint, which states
that the velocity of the immersed particle matches the local velocity of the fluid. There will appear
operators in our formulation which should have some relation to the microscopic dynamics, but
here they are simply taken for granted.

2.1 No-Slip Constraint

Let us just consider one particle of physical mass m and radius a immersed in an isothermal fluid
at temperature T . The position of the particle is q(t) and its apparent velocity u = q̇, and the
velocity field for the fluid is v(r, t). The coupling between the fluid and the particle is captured
by the requirement (here a postulate, though of course one can justify it in various ways) that the
particle follow the local velocity of the fluid. In the deterministic setting, the terminology “point
particle” is often used and the particle is thought of as a Lagrangian marker, u = v(q(t), t). This
“point particle” picture is not only hard to implement numerically, but is also not appropriate in
the stochastic setting. Namely, in fluctuating hydrodynamics the fluid velocity is a distribution and
cannot be evaluated pointwise, therefore, to give a well-defined meaning to the concept of advection
by a local velocity spatial averaging over a region of size a must be used. Then the diffusion
coefficient is inversely proportional to the size of the particle, as it should based on Einstein’s
relation. Here we consider the fluid to cover the whole domain instead of being excluded by the
particle, to avoid complications in implementing the resulting model numerically. It should however
be easy to extend the model to account for the repulsion between the Brownian particle and the
fluid particles.

Given these considerations, we postulate a no-slip condition of the form

u = q̇ = Jv, (16)

which simply states that the particle and the local fluid move together. Here the local averaging
operator J(q) averages a (scalar, vector, or tensor) field inside the particle to approximate the field
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at the position of the particle,

Jv =

ˆ
δa (‖q − r‖)v (r, t) dr, (17)

where δa (r) is a smooth kernel with compact support of size a that integrates to unity,ˆ
δa (r) dr =

ˆ (
4πr2

)
δa (r) dr = 1. (18)

The reverse local spreading operator S(q) takes a (scalar, vector or tensor) value at the position of
the particle and returns a smooth density field,

Su = δa (‖q − r‖)u. (19)

The two operators are adjoint, S = J?, i.e., the natural dot products in the particle (Lagrangian)
and fluid (Eulerian) domains are related via

(Jv) · u =

ˆ
v · (Su) dr =

ˆ
δa (‖q − r‖) (v · u) dr. (20)

Note that J is dimensionless, but S has dimensions of inverse volume. In particular, we can identify
the volume of the particle ∆V with the volume under the kernel,

∆V = (JS)−1 =

[ˆ
δ2
a (r) dr

]−1

. (21)

2.1.1 Some Generalizations

The kernel in the definition of the fluid-particle coupling operators does not need to be isotropic,
that is, only a function of distance. More generally, we can consider a tensor kernel δa (q − r), and
define

Jv =

ˆ
δa (q − r) · v (r, t) dr,

Su = δa (q − r) · u.

A Mori-Zwanzig calculation by Pep Espanol suggested the form

δa (r) = β−1Ka (r)

[
1 + α

rrT

r2

]
,

where α is some parameter (B/A in his notes), while

β =

ˆ
Ka (r)

[
1 + α

rrT

r2

]
dr =

(
1 +

2

3
α

)
I

is a normalization prefactor. Here Ka (r) is a normalized kernel similar to δa(r) in (18), and for a
rigid-like sphere it is expected that

K(r) ≈
(
4πa2

)−1
δ (r − a)

is localized on the surface of the particle. The adjoint condition (20) still holds. In discretizations,
one may use a kernel that is not spherically symmetric but rather has cubic symmetry, such as the
diagonal tensor

[δa (r)]ij = δa (qi − ri) δij .
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2.2 Postulated Equations

The equations of motion are postulated to be

ρ (∂tv + v ·∇v) = −∇ · σ − Sλ (22)

meu̇ = F + λ (23)

s.t. u = Jv, (24)

where the fluid-particle force λ is a Lagrange multiplier that enforces the no-slip constraint (24).
Here the fluid stress tensor

σ = −PI + η∇v

and the density is assumed to follow the usual continuity equation. In particular, if the Brownian
particle were not present, λ = 0, the fluid would obey the fluctuating Navier-Stokes equations
(1). The equations (23,22) obey certain physical requirements, notably, momentum is conserved.
Furthermore, in the case of a neutrally-boyant particle, me = 0, λ = −F and the fluid follows
the usual fluctuating Navier-Stokes equation under the influence of an external force SF , as in the
stochastic immersed-boundary method [8, 9].

We can in fact easily eliminate λ from the equations of motion by simply adding them, and also
eliminate u by using the no-slip constraint, to get the effective equation of motion,

ρeff∂tv = −ρv ·∇v −∇ · σ + SF −meS

(
u · ∂J

∂q

)
v. (25)

This equation shows that the excess mass of the particle is distributed back onto the fluid to give
a fluid equation where the scalar density field is replaced by an the effective density matrix

ρeff = ρI +meSJ , (26)

which is positive-definite if the effective mass of the particle m = me + ρ∆V > 0.

2.3 Fluctuations

The coarse-grained variables are x (t) = (ρ(r, t), v(r, t), q (t)), and we postulate a coarse-grained
free energy of the form

H (x) = U (q) +me
u2

2
+

ˆ [
ρ
v2

2
+ ε (ρ)

]
dr, (27)

where ε (ρ) is the internal energy of the fluid (at constant temperature), and U is an applied external
potential, with associated force

F (q) = −∂U
∂q

.

The way to justify this choice by first including the true velocity w of the Brownian particle as a
variable, and then split it into a slow “apparent” velocity and a fast “fluctuating” velocity,

w = Jv + ∆u = u+ ∆u.

We can then convert from the variables y = (ρ, v, q,w) to the variables ỹ = (ρ, v, q, ∆u), and
also convert the natural coarse-grained free energy

H (y) = U (q) +me
w2

2
+

ˆ [
ρ
v2

2
+ ε (ρ)

]
dr
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using the fact that the Jacobian of the transformation is unity (see Section ??),

H̃ (ỹ) = H̃ (x, ∆u) = H (x) +me (∆u)2 +me (u ·∆u) .

If we then assume that ∆u is a fast variable that is uncorrelated with u, we can average over
the equilibrium distribution keeping x fixed, and obtain the coarse-grained free energy (27) in the
reduced set of variables,

H (x) = −kBT ln

〈
exp

[
−H̃ (x, ∆u)

kBT

]〉
x

.

2.3.1 Langevin Equations

In order to avoid having to deal with constrained dynamics, we can eliminate the particle velocity
from the Hamiltonian,

me
u2

2
= me

u · u
2

= me
(Jv) · u

2
=
me

2

ˆ
v · (Su) dr =

me

2

ˆ
vT (SJ)v dr

by using the adjoint condition (20), leading to the effective Hamiltonian

H (x) = U (q) +

ˆ
vTρeffv

2
dr +

ˆ
ε (ρ) dr. (28)

The (functional or partial) derivatives (thermodynamic driving forces) are

∂H

∂ρ
=

v2

2
+
dε

dρ
and

∂H

∂v
= ρeffv and (29)

∂H

∂q
= −F (q) + v ·

(
S
∂J

∂q

)
v = −F (q) +

(
u · ∂J

∂q

)
v, (30)

We can now generalize the generators given in Section (1.1) to include the additional degrees
of freedom q. We can write the conservative part of the dynamics as

L =


0 − ∂

∂r ·
(
ρρ−1

eff

)
0

−
(
ρ−1

eff ρ
)

∂
∂r

(
ρ−1

eff ρ
)
ωρ−1

eff −ρ−1
eff S

0 Jρ−1
eff 0

 . (31)

In general there may survive some dissipative/fluctuating contributions from eliminating ∆u (the
particle velocity fluctuations around the mean flow) as a degree of freedom, but here we assume
that the dissipative dynamics consists only of viscous dissipation,

B =

 0

ρ−1
eff ∇ · η1/2

0

 .
It is not hard to see by the special way we placed ρ−1

eff in the generators that the equation of motion

∂tx = (L−BB?) · ∂H
∂x

+ (2kBT )1/2B ·W (t)
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is exactly our postulated (25).
The remaining term that needs to be added to the right hand side of (25) to ensure fluctuation-

dissipation balance is the term

(kBT )
∂

∂x
· (L−BB?)? = − (kBT )

∂

∂x
·L.

This term is not zero for velocity, since the second entry in the third column/row of L depends on
q. For the simpler case me = 0, ρeff = ρI, the extra forcing term needed in the fluid equation due
to phase-space compressibility of the dynamics can be written in the form

− (kBT )

(
∂

∂x
·L
)
v

= ρ−1∇S (kBT ) .

This is consistent with a contribution S (kBT ) being added to the pressure due to the thermal
motion of the particle around the mean flow. For the case of a neutrally-buoyant particle Atzberger
obtained this term through a careful reduction of the stochastic dynamics with a Stokes coupling
[9]. For the case of non-zero me there is additional dependence on q due to ρeff, and the calculation

of ∂
∂q ·

(
ρ−1

eff S
)

is somewhat more involved...My preliminary calculation indicates that the term

ρ−1
eff ∇S (kBT ) is needed in this case, but I need to repeat more carefully. Physically it makes sense

since this term comes because of the Kirkwood stress〈
me (∆u) (∆u)T

〉
x

= (kBT ) I,

which is independent of me. So the corrected fluid equation seems to be

ρeff∂tv = −ρv ·∇v −∇ · σ + ∇S (kBT ) + SF −meS

(
u · ∂J

∂q

)
v.
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