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1 Introduction

Recall the augmented Langevin equation in the canonical (isother-
mal) ensemble,
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which preserves the Gibbs-Boltzmann distribution
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The skew-adjoint operator
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generates the “conservative” part of the dynamics, and the self-adjoint
positive semi-definite operator
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generates the “dissipative” part of the dynamics. The operator B ()
is constrained by the fluctuation-dissipation balance condition
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2 Fluctuating Burgers Equation

We consider the fluctuating Burgers equation for the random field
u(x, ),
1
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where v is a diffusion coefficient and ¢ sets the scale for the advection

speed. An equivalent conservative form is
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This equation obeys a fluctuation-dissipation balance principle with
respect to the Gibbs-Boltzmann distribution with a Hamiltonian
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The dissipative and fluctuating dynamics in (3) are generated by

= u.

the constant operators,
M = —v9>, and B = V%8$,

which in higher dimensions become multiples of the Laplacian and
divergence operators, respectively. The conservative dynamics for the
Burgers equation is Hamiltonian and generated by the skew-adjoint
linear operator S (u) defined through its action on a field w (x, t) [1],

S (u) w = —g wdyw + 0, (uw)] . (5)

An important property of Hamiltonian dynamics is that it is incom-
pressible in phase space,
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This implies that the dynamics of the inviscid Burgers equation pre-
serves not just functions (such as the Hamiltonian itself) but also
phase-space measures (such as the Gibbs distribution), and thus any
probability density that is a function of H only is a candidate equi-
librium distribution.

We now discuss spatial discretization of the fluctuating Burgers
equation. The discretized w = {uy,...,ux} can be thought of as
a finite-volume representation of the field u(z,t) on a regular grid
with spacing Az, specifically, u; can be thought of as representing
the average value of u(x, t) over the interval (cell) [jAz, (j + 1)Az].
Similarly, the spatially-discretized collection of white noise processes
(Am)_l/ > W can formally be associated with the space-time white
noise 2.

We take the coarse-grained Hamiltonian function to be the natural
(local equilibrium [2]) discretization of (),

N Az ,

H (u) = P (7)

We will construct a spatial discretization that leads to a finite-dimensional
generic Langevin equation of the form
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Here W is a vector of IV, independent white-noise processes (for-
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mally, time derivatives of independent Wiener processes), D is a
matrix representing the spatial discretization of the divergence oper-
ator, such that Dy = — D1 D7 is a symmetric negative-semidefinite
discretization of the Laplacian operator. This system of SODEs has
as an invariant distribution the Gibbs distribution (2)) if S is an an-



tisymmetric matrix discretizing (j5|) that satisfies
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We now construct specific finite-difference operators for D and S.

= 0 for all k. (9)

A particularly simple choice that also generalizes to higher dimen-
sions [3] is to associate fluxes with the half-grid points (faces of the
grid in higher dimensions), and to define
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This construction gives the familiar three-point discrete Laplacian

D=

(2d + 1 points in dimension d),

Uj—1 — 2Uj + Uji1
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and is therefore an attractive choice that satisfies the discrete fluctuation-
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dissipation principle [3]. If periodic boundary conditions are imposed,
I (i.e., N, = N).
For Dirichlet boundary conditions we fix uy and uy,q at specified

we set up = uy and uyy = up and Wi = Wy,
2

values and do not need to impose any boundary conditions on W
(i.e., Ny =N +1).

A natural choice for S is formed by choosing a skew-adjoint dis-
cretization Dy = —EI of 0., in general different from D7, and
discretizing directly as

(Su); = _g [“J’ (Diu); - (T)W)j] N _g [uj (D), + <E1UQ>]1 |
where u? = {u?,...,u%}. We choose D; to be the second-order

centered difference operator
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leading to an explicit expression that makes it clear that Sw is a
discretization of —cuu,,
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It is important to note that one can write the nonlinear term in
conservative form,
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Due to the skew-symmetry, in the absence of viscosity the total “en-
ergy’ is conserved for periodic systems. It can also easily be
shown that that the condition ([]) is satisfied and therefore this par-
ticular discretization of the advective term preserves the Hamiltonian
structure of the equations [4].

Putting the pieces together we can write the semi-discrete fluctu-
ating Burgers equation as a system of SODEs, j =1,..., N,
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With periodic boundary conditions, this stochastic method of lines
15] discretization strictly conserves the total energy ([7)) and the total
momentum

N
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The equilibrium distribution is the discrete Gibbs-Boltzmann distri-



bution
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where my is the initial value for the total momentum.

3 Fluctuating Navier-Stokes Equation

The prototype stochastic partial differential equation (SPDE) of fluc-
tuating hydrodynamics is the fluctuating Navier-Stokes equation.
This equation approximates the dynamics of the velocity field v(r, t)
of a simple Newtonian fluid in the isothermal and incompressible ap-
proximation, V - v = 0,

p(Ow+v -Vv)=-Vr+nVv+ V. [(kBTn)l/2 (Z + ZTH
(13
where 7 is the non-thermodynamic pressure, p is the (constant) den-
sity, n = pv is the (constant) shear viscosity and v is the kinematic
viscosity, and f (7, t) is an additional force density such as gravity
[6]. The stochastic momentum flux is modeled using a white-noise
random Gaussian tensor field Z (7, t), that is, a tensor field whose
components are independent (space-time) white noise processes,

<Z¢j(’l", t)Zk;l(’l"/, t/)> = (52k5jl) 5(t — t,)é(’l" — ’l”/).

At thermodynamic equilibrium, the invariant measure (equilibrium
distribution) for the fluctuating velocities with periodic boundaries is
the Gibbs-Boltzmann distribution with a coarse-grained free energy
or Hamiltonian given by the kinetic energy of the fluid, formally,

_Ldrpv” 5(/drpv)5(v-’v).
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Eliminate pressure from ([13)) using a projector formalism,
1
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The divergence-free constraint is a constant linear constraint and
the projection restricts the velocity dynamics to the constant linear
subspace of divergence-free vector fields. The fluctuations in the
velocity are Gaussian, and have covariance

(v(r,t)v(r' t)) = P,

where the projection operator is defined via its action on w (r)

(Pw) (r) = /Pm/w (r") dr'.

Let us couple the fluctuating NS equation to a stochastic advection-
diffusion for the concentration or density ¢ (7, t) of a large collection
of non-interacting passive tracers. For illustration purposes we can
take a separable quadratic Hamiltonian (i.e., independent Gaussian
fluctuations in velocity and concentration),

kT
H (v, c):Hv(v)+HC(c)=g/02dr+B ¢ dr,
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and write the the model additive-noise tracer equation
dic = —v-Ve+ yVi+ V- [(2@()% 2. (15)

Note that is a conservation law because v - Ve = V - (cv) due
to incompressibility.

The coupled velocity-concentration system (14]]15]) can formally be
written in the form (). The chemical potential u (¢) = 0H/dc ~ c.
The mobility operator can be written as a sum of a skew-adjoint and



a self-adjoint part,

B B p v <’PV2'P) 0
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where w is the antisymmetric vorticity tensor, w;, = Ov;/0r; —
0v;/0ry, and we used the vector identity

2
wv——(va)xv——v-ijLV(vQ).
Even though by skew symmetry the top right sub-block of S is

nonzero, there is no coupling of concentration back in the velocity

oH dH,
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is a gradient of a scalar and is eliminated by the projection. The

equation because

velocity equation therefore remains of the form ((14)).
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