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Third Order Upwind scheme

Aleksandar Donev, Courant Institute

r e s t a r t :
Formula for extrapolation from cell centers to cell faces for third-order upwind scheme:

w _ j p h : = ( w , j ) - > 1 / 6 * ( - w ( j - 1 ) + 5 * w ( j ) + 2 * w ( j + 1 ) ) ;

Finite Difference Interpretation
Finite difference interpretation of what w(j) is is just function evaluation:

w _ F D : = ( j ) - > u ( j * h ) ;

Confirm that if advection is constant the finite difference is third order, so for constant advection ths is 
a third order scheme

w_x_FD:=(w_jph(w_FD,0)-w_jph(w_FD,-1))/h;

ser ies (w_x_FD,  h ,  5 ) ;  #  Th i rd  o rder

Now consider space-dependent advection and write down the rhs of the ODEs in the spatial 
discretization:

aw_x_FD:=(a((1/2)*h)*w_jph(w_FD,0)-a ( ( - 1 / 2 ) * h ) * w _ j p h ( w _ F D , - 1 ) ) / h ;

Performing a Taylor series now shows an O(h^2) term:
ser ies(aw_x_FD,  h ,  4) ;  #  Only second order

Finite Volume Interpretation
Now the interpretation of w is that it is an integral:

w _ F V : = ( j ) - > I n t ( u ( x ) , x = ( j - 1 / 2 ) * h . . ( j + 1 / 2 ) * h ) / h ;
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Now write down the rhs of the ODE for FV:
aw_x_FV:=(a( (1 /2 ) *h)*w_jph(w_FV,0) -a ( ( -1 /2 ) *h)*w_jph(w_FV, -1) ) /h;

Perform a series expansion of dw[0]/dt:
dw0_dt_numerics:=convert(series(aw_x_FV, h, 6),  polynom);

Now we need to compare this to the correct answer, which is itself an integral:
d w 0 _ d t : = I n t ( d i f f ( a ( x ) * u ( x ) , x ) , x = - h / 2 . . h / 2 ) / h ;

dw0_dt_theory:=convert(series(dw0_dt,h,5) ,polynom);  # Series 
expansion

Now compute the truncation error, and see that it is now O(h^3), so this is third-order accurate as a FV 
scheme!

simpli fy(dw0_dt_numerics-dw0_dt_theory);  # Third order accurate!
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