Third Order Upwind scheme

Aleksandar Donev, Courant Institute

[> restart:
[Formula for extrapolation from cell centers to cell faces for third-order upwind scheme:

$$
\begin{equation*}
w_{-} j p h:=(w, j) \mapsto-\frac{w(j-1)}{6}+\frac{5 w(j)}{6}+\frac{w(j+1)}{3} \tag{1}
\end{equation*}
$$

Finite Difference Interpretation

[Finite difference interpretation of what $w(j)$ is is just function evaluation:
[> w_FD:=(j)->u(j*h);

$$
\begin{equation*}
w_{-} F D:=j \mapsto u(j h) \tag{2}
\end{equation*}
$$

Confirm that if advection is constant the finite difference is third order, so for constant advection ths is a third order scheme
> w_x_FD:=(w_jph(w_FD,0)-w_jph(w_FD,-1))/h;

$$
\begin{equation*}
w_{-} x_{-} F D:=\frac{-u(-h)+\frac{u(0)}{2}+\frac{u(h)}{3}+\frac{u(-2 h)}{6}}{h} \tag{3}
\end{equation*}
$$

> series(w_x_FD, h, 5); \# Third order

$$
\begin{equation*}
\mathrm{D}(u)(0)+\frac{1}{12} \mathrm{D}^{(4)}(u)(0) h^{3}+\mathrm{O}\left(h^{4}\right) \tag{4}
\end{equation*}
$$

[Now consider space-dependent advection and write down the rhs of the ODEs in the spatial discretization:
[> aw_x_FD:=(a((1/2)*h)*w_jph(w_FD,0)-a((-1/2)*h)*w_jph(w_FD,-1))/h; $a w_{-} x_{-} F D:=$

$$
\begin{align*}
& \frac{1}{h}\left(a\left(\frac{h}{2}\right)\left(-\frac{u(-h)}{6}+\frac{5 u(0)}{6}+\frac{u(h)}{3}\right)-a\left(-\frac{h}{2}\right)\left(-\frac{u(-2 h)}{6}+\frac{5 u(-h)}{6}\right.\right. \tag{5}\\
& \left.\left.+\frac{u(0)}{3}\right)\right)
\end{align*}
$$

[Performing a Taylor series now shows an $\mathrm{O}\left(\mathrm{h}^{\wedge} 2\right)$ term:
> series(aw_x_FD, h, 4); \# Only second order
$a(0) \mathrm{D}(u)(0)+\mathrm{D}(a)(0) u(0)+\left(\frac{\mathrm{D}(a)(0) \mathrm{D}^{(2)}(u)(0)}{12}+\frac{\mathrm{D}^{(2)}(a)(0) \mathrm{D}(u)(0)}{8}\right.$

$$
\begin{equation*}
\left.+\frac{\mathrm{D}^{(3)}(a)(0) u(0)}{24}\right) h^{2}+\mathrm{O}\left(h^{3}\right) \tag{6}
\end{equation*}
$$

Finite Volume Interpretation

ENow the interpretation of w is that it is an integral:
> w_FV:=(j)->Int(u(x), x=(j-1/2)*h..(j+1/2)*h)/h;

$$
\begin{equation*}
w_{-} F V:=j \mapsto \frac{\int_{\left(j-\frac{1}{2}\right) h}^{\left(j+\frac{1}{2}\right) h} u(x) \mathrm{d} x}{h} \tag{7}
\end{equation*}
$$

ENow write down the rhs of the ODE for FV:
[> aw_x_FV:=(a((1/2)*h)*w_jph(w_FV,0)-a((-1/2)*h)*w_jph(w_FV,-1))/h;
$a w_{_} x_{-} F V:=\frac{1}{h}\left(a\left(\frac{h}{2}\right)\left(\begin{array}{c}\int_{-\frac{3 h}{2}}^{-\frac{h}{2}} u(x) \mathrm{d} x \\ \left.-\frac{-\frac{1}{2}}{6 h}+\frac{5\left(\int_{-\frac{h}{2}}^{\frac{h}{2}} u(x) \mathrm{d} x\right.}{6 h}+\frac{\int_{\frac{h}{2}}^{\frac{3 h}{2}} u(x) \mathrm{d} x}{3 h}\right)-a(1) .\end{array}\right.\right.$

$$
\begin{equation*}
\left.\left.-\frac{h}{2}\right)\left(-\frac{\int_{-\frac{5 h}{2}}^{-\frac{3 h}{2}} u(x) \mathrm{d} x}{6 h}+\frac{5\left(\int_{-\frac{3 h}{2}}^{-\frac{h}{2}} u(x) \mathrm{d} x\right)}{6 h}+\frac{\int_{-\frac{h}{2}}^{\frac{h}{2}} u(x) \mathrm{d} x}{3 h}\right)\right) \tag{8}
\end{equation*}
$$

[Perform a series expansion of dw[0]/dt:
[> dw0_dt_numerics:=convert(series(aw_x_FV, h, 6), polynom);
$d w 0 _d t$ _numerics $:=a(0) \mathrm{D}(u)(0)+\mathrm{D}(a)(0) u(0)+\left(\frac{a(0) \mathrm{D}^{(3)}(u)(0)}{24}\right.$
$\left.+\frac{\mathrm{D}(a)(0) \mathrm{D}^{(2)}(u)(0)}{8}+\frac{\mathrm{D}^{(2)}(a)(0) \mathrm{D}(u)(0)}{8}+\frac{\mathrm{D}^{(3)}(a)(0) u(0)}{24}\right) h^{2}$
$+\left(\frac{a(0) \mathrm{D}^{(4)}(u)(0)}{12}+\frac{\mathrm{D}(a)(0) \mathrm{D}^{(3)}(u)(0)}{12}\right) h^{3}$
[Now we need to compare this to the correct answer, which is itself an integral:
[> dwo_dt:=Int(diff(a(x)*u(x), x), $x=-h / 2 . . h / 2) / h ;$

$$
d w 0_{-} d t:=\frac{\int_{-\frac{h}{2}}^{\frac{h}{2}}\left(\left(\frac{\mathrm{~d}}{\mathrm{~d} x} a(x)\right) u(x)+a(x)\left(\frac{\mathrm{d}}{\mathrm{~d} x} u(x)\right)\right) \mathrm{d} x}{h}
$$

[> dw0_dt_theory:=convert(series(dwo_dt,h,5), polynom); \# Series expansion
$d w 0 _$dt_theory $:=a(0) \mathrm{D}(u)(0)+\mathrm{D}(a)(0) u(0)+\left(\frac{a(0) \mathrm{D}^{(3)}(u)(0)}{24}\right.$
$\left.\quad+\frac{\mathrm{D}(a)(0) \mathrm{D}^{(2)}(u)(0)}{8}+\frac{\mathrm{D}^{(2)}(a)(0) \mathrm{D}(u)(0)}{8}+\frac{\mathrm{D}^{(3)}(a)(0) u(0)}{24}\right) h^{2}$
Now compute the truncation error, and see that it is now $O\left(h^{\wedge} 3\right)$, so this is third-order accurate as a FV scheme!
[> simplify(dw0_dt_numerics-dw0_dt_theory); \# Third order accurate!

$$
\begin{equation*}
\frac{\left(a(0) \mathrm{D}^{(4)}(u)(0)+\mathrm{D}(a)(0) \mathrm{D}^{(3)}(u)(0)\right) h^{3}}{12} \tag{12}
\end{equation*}
$$

