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Sphere Packings

Consider packing of N spheres with configuration
R = (r1, . . . , rN ):

P (R) =
{
ri ∈ <d : ‖ri − rj‖ ≥ D ∀j 6= i

}

An unjamming motion ∆R(t), t ∈ [0, 1], is a continuous
displacement of the spheres along the path R + ∆R(t),
∆R(0) = 0, such that all relevant constraints are observed
∀t and some of the particle contacts are lost for t > 0.
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Local Jamming

No unjamming motions ⇒ jammed packing.

From
Torquato & Stillinger:

Locally jammed Each particle in the system is locally
trapped by its neighbors, i.e., it cannot be translated
while fixing the positions of all other particles.
Compare to 1-stable in Connelly.

Easy to test for! Each sphere has to have at least d+ 1

contacts with neighboring spheres, not all in the same
d-dimensional hemisphere.
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Collective Jamming

Collectively jammed Any locally jammed configuration in
which no subset of particles can simultaneously be
displaced so that its members move out of contact with
one another and with the remainder set.

Compare to
finitely stable in Connelly, or rigid for finite packings.

Not trivial to test for!

Example: Graphics/Honeycomb.2.1.collective.unjamming.wrl
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Strict Jamming

Strictly jammed Any collectively jammed configuration that
disallows all globally uniform volume-nonincreasing
deformations of the system boundary (container for
hard-wall and unit cell for periodic BCs).

Compare to
periodically stable in Connelly.

What about uniformly stable in Connelly?

Deformable spheres

Distance to infeasibility vs. subpacking size

ε as function of wavelength for periodic systems

Example: Graphics/Honeycomb.1.1.strict.unjamming.wrl
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Rigidity Theory

A periodic packing P̂ (R) is generated by replicating a finite
generating packing P (R̂) on a lattice Λ = {λ1, . . . ,λd}:

r

�

i(nc)
= r̂i + Λnc , nc ∈ Zd

∆r �

i(nc)
= ∆r̂i + (∆Λ)nc

Ideal (gapless) packings: A packing is rigid if and only if it
is infinitesimally rigid, for packings in a concave hard-wall
container or for periodic BCs (Connelly).
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ASD

Approximation of small displacements for a feasible
displacement ∆R:

‖r̃i − r̃j‖ = ‖(ri − rj) + (∆ri − ∆rj)‖ ≥ D

(∆ri − ∆rj)
T
ui,j ≤ ∆li,j for all {i, j}

{i, j} represents a potential contact

∆li,j = ‖ri − rj‖ −D is the interparticle gap, and

uij =
rj−ri

‖ri−rj‖
is the unit contact vector
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Validity of ASD

Q1: How to deal with finite gaps?

Compare our geometrical definitions to dynamical
concepts like rearrangement and caging?
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Rigidity Matrix

Rigidity Matrix:
A =

{i, j}

↓

i→

j →




...

uij

...

−uij

...




Also known as the equilibrium matrix or the transpose of
the compatibility matrix.
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Contact Network

System of linear inequality impenetrability constraints:

A
T ∆R ≤ ∆l

Contact network of the packing is a tensegrity framework,
namely a strut framework (Connelly).

Examples:

1. Graphics/LS.10.2D.contact.wrl

2. Graphics/LS.100.2D.contact.wrl

3. Graphics/LS.500.2D.contact.wrl
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Jamming as Feasibility Problem

Gapless packings (excluding trivial motions):

min∆R

∑
{i,j}(A

T∆R)i,j = min (Ae)T ∆R

such that A
T ∆R ≤ 0

and also look at contact network as a bar framework.

Packings with gaps:

A
T ∆R ≤ ∆l

∃ {i, j} :
∣∣∣
(
A

T∆R
)
{i,j}

∣∣∣ ≥ ∆llarge � ∆l
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Randomized LP Test

Displacement formulation:

max∆R b
T ∆R for virtual work

such that A
T ∆R ≤ ∆l for impenetrability

|∆R| ≤ ∆Rmax for boundedness

for random loads b.
Example: Graphics/LS.1000.2D.dilute.collective.unjamming.wrl
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Strict Jamming with PBC

det
[
Λ̃ = Λ + ∆Λ(t)

]
≤ detΛ for t > 0

Tr[(∆Λ)Λ−1] ≤ 0

Strain ε = ε
T = (∆Λ)Λ−1

Lattice deformation models macroscopic non-expansive
strain.
Example: Graphics/LS.1000.2D.dense.strict.unjamming.wrl
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Heuristic Tests

Shrink-and-Bump heuristic (modified LS):
Pinned Honeycomb:

LP-based unjamming: Graphics/Honeycomb.unjamming.LP.LS.wrl

Heuristic unjamming: Graphics/Honeycomb.unjamming.LS.wrl

Pinned Kagome:

Success of heuristic: Graphics/Kagome.non-unjamming.LS.wrl

Failure: Graphics/Kagome.unjamming.LS.wrl

Not rigorous and reliable; But it is very fast!
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Order Metrics

A scalar order metric 0 ≤ ψ ≤ 1 is needed to replace
correlation functions.

Examples:

Bond-orientation order ψ ≡ Q6 =
1

m

∑ ∣∣e6iθ
∣∣

Information (entropy) contents of configuration?
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The MRJ State

0.0 0.2 0.4 0.6
φ

0.0

0.5

1.0

ψ Jammed
Structures

A

B

MRJ

(Torquato,Truskett & Debenedetti) The jammed subspace
in the order (ψ)-density (φ) plane
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Random Packings

Random packings in 3D near MRJ typically have ϕ ≈ 64%

(Graphics/LS.500.3D.packing.wrl), and cannot be further
densified from this with a variety of algorithms.

All of the 3D random packings we tested were strictly
jammed.

Random packings in 2D near MRJ typically have ϕ ≈ 83%,
but they can be densified further to ϕ ≈ 91%.

None of the 2D packings were strictly jammed, though
some were collectively jammed.

Why?
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Packing Algorithms

Hard particles

Dynamical (Lubachevsky-Stillinger
Graphics/LS.100.3D.compression.wrl)

Contact-network building (Zinchenko
Graphics/Zinchenko.3D.500.packing.wrl)

Soft particles

Molecular dynamics (annealing)

Monte Carlo with stiff potentials

Hardening elastic springs
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Challenging Packing Algorithms

Including the (periodic) cell in the algorithm

Lattice velocity in LS (computational challenge)
Compare to Parinello-Rahman MD. All collisions
implicitly involve the lattice.

Lattice spring constants

Polydisperse packings

Standard LS has problems with large polydispersity
Shrink some, grow other particles and shrink the
container?

Adaptive molecular dynamics?
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continued...

Packings of ellipsoids (Graphics/Ellipses_MMs.jpg)

Rotation is new degree of freedom (counting)

LS for ellipses (collision time calculation)

Ellipsoidal interaction potentials (e.g., based on
overlap volume)

Generating jammed packings

Local jamming is the usual (easy criterion)

Need for generating nearby jammed states for
Monte Carlo (e.g., search for the MRJ)
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Jammed Subpackings

Modified definition: A packing is jammed iff there is a
jammed subpacking.

How to find jammed subpackings (sensitivity analysis,
recursive LP)?

Are exceptions of measure zero for MRJ?

Randomly diluting jammed packings:
How to efficiently test whether a sphere can be removed or
not (sensitivity analysis)?
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Jammed Backbones

Special jammed subpackings:

Infeasible :
(Ae)T ∆R ≤ −ε < 0

A
T ∆R ≤ 0

(Minimal) Irreducible Infeasible Subsystem (minimally
jammed subpacking)

(Maximum) Feasible Subsystem (NP hard) (critical
clusters)

Compare to backbones in framework rigidity: What is the
analog?
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Low-Density Jamming

There are locally jammed packings of vanishing density
(covering fraction) (K. Baroczky)

What is the lowest density saturated packing?

How about point A for collectively and strictly jammed (with
PBC)?

Subpackings of the triangular lattice: No divacancies!

Braced Kagome lattice: Graphics/Kagome.reinforced.contact.wrl

Subpackings of the FCC lattice: No trivancies!
FCC random dilution φ = 0.52: Graphics/Fcc.348_500.packing.wrl
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Stress-Strain Relations

Physicists focus on macroscopic (averaged)
displacements (strains) and forces (stresses).

Typical definition of a glass is “disordered material that can
resist shear”.

Kagome lattice can support any global loading, but is not
jammed (Graphics/Kagome.1.1.strict.unjamming.wrl).

Do rearrangements (dynamics) play a critical role?
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continued...

Static view: For perfect packings, we have a cone of
feasible strains and a cone of unsupported loads (but
note non-uniqueness). Describing these in full is NP
complete.

Settle for reduced information? Approximate polyhedral
with ellipsoidal cones:

Will give us a “stiffness” matrix for networks of stiff springs
(uniqueness).
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The End...and Beginning

Jamming is important and interesting, particularly in
random packings.

Future directions (to do):

Improve LS packing algorithm: deforming cell,
polydisperse packings, ellipses, etc.

Design packing algorithms based on networks of stiff
elastic springs.

Design algorithms to find jammed subpackings,
backbones and critical clusters.
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continued...

Explore statistical geometry of random packings
such as Voronoi cells, particularly for the MRJ state.

Make amorphous strictly jammed 2D packing.

Future directions (to think about):

How to make dilute jammed packings.

Unambiguous identification of the MRJ.

Jamming, caging, rearrangement, and reality.

Macroscopic stress-strain relations in jammed
packings.
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