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Introduction

Non-Spherical Colloids near Boundaries

Figure: (Left) Cross-linked spheres; Kraft et al.. (Right) Lithographed
boomerangs; Chakrabarty et al..
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Introduction

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley
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Introduction

Thermal Fluctuation Flips

QuickTime
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Introduction

RigidMultiBlob Models

Figure: Blob or “raspberry”models of a spherical colloid.

The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a.

Standard is stiff springs but we want rigid multiblobs [1].

Can we do this efficiently for 104 − 105 particles?
Yes, if we use iterative linear solvers!
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Brownian Motion in a Liquid

Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in an unbounded fluctuating fluid.
In the fluid domain

−∇ · σ =∇π − η∇2v − (2kBTη)
1
2 ∇ ·Z = 0

∇ · v = 0,

where the fluid stress tensor

σ = −πI + η
(
∇v +∇Tv

)
+ (2kBTη)

1
2 Z (1)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Brownian Motion in a Liquid

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + q× ω + ŭ (q) for all q ∈ ∂Ω, (2)

with the force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (3)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we add active slip ŭ due to active boundary layers.
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Brownian Motion in a Liquid

Steady Stokes Flow (Re→ 0, Sc→∞)

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions [2]).

For viscous-dominated flows we can assume steady Stokes flow and
define the body mobility matrix N (Q),

dQ(t)

dt
= U =NF− M̆ŭ + (2kBT N )

1
2 �W (t) ,

where U = {u, ω} collects the linear and angular velocities
F (Q) = {f, τ} collects the applied forces and torques

How to compute (the action of) N and N
1
2 and simulate the

Brownian motion of the bodies?
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Brownian Motion in a Liquid

Difficulties/Goals

Stochastic drift It is crucial to handle stochastic calculus issues carefully
for overdamped Langevin dynamics. Since diffusion is slow
we also want to be able to take large time step sizes.

Complex shapes We want to stay away from analytical approximations
that only work for spherical particles.

Boundary conditions Whenever observed experimentally there are
microscope slips (glass plates) that modify the
hydrodynamics strongly. It is preferred to use no Green’s
functions but rather work in complex geometry.

Gravity Observe that in all of the examples above there is gravity and
the particles sediment toward the bottom wall, often very
close to the wall (∼ 100nm). This is a general feature of all
active suspensions but this is almost always neglected in
theoretical models.

Many-body Want to be able to scale the algorithms to suspensions of
many particles–nontrivial numerical linear algebra.
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Minimally-Resolved Blob Model

Blobs in Stokes Flow

The blob-blob mobility matrixM describes the hydrodynamic
relations between the blobs, accounting for the influence of the
boundaries:

v (r) ≈ w =Mλ. (4)

The 3× 3 block Mij maps a force on blob j to a velocity of blob i .

For well-separated spheres of radius a we have the Faxen expressions

Mij ≈ η−1

(
I +

a2

6
∇2

r′

)(
I +

a2

6
∇2

r′′

)
G(r′, r′′)

∣∣r′=rj
r′′=ri

(5)

where G is the Green’s function for steady Stokes flow, given the
appropriate boundary conditions.
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Minimally-Resolved Blob Model

Rotne-Prager-Yamakawa tensor

For homogeneous and isotropic systems (no boundaries!),

Mij = f (rij)I + g (rij) r̂ij ⊗ r̂ij , (6)

For a three dimensional unbounded domain, the Green’s function is
the Oseen tensor,

G(r, r′) ≡ O(r − r′) =
1

8πr

(
I +

r ⊗ r

r2

)
. (7)

This gives the well-known Rotne-Prager-Yamakawa tensor for the
mobility of pairs of blobs,

f (r) =
1

6πηa

{
3a
4r + a3

2r3 , rij > 2a

1− 9r
32a , rij ≤ 2a
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Minimally-Resolved Blob Model

Confined Geometries

The Green’s function is only known explicitly in some very special
circumstances, e.g., for a single no-slip boundary G is the
Oseen-Blake tensor.

A generic procedure for how to generalize RPY has been proposed
[3], but to my knowledge there is no simple analytical formula even
for a single wall.

For non-overlapping blobs next to a wall the Rotne-Prager-Blake
tensor has been computed [4] and we will use it here.

General requirements for a proper RPY tensor:

Asymptotically converge to the Faxen expression for large distances
from particles and walls.
Be non-singular and continuous for all configurations including
overlaps of blobs and blobs with walls.
Mobility must vanish identically when a blob is exactly on the
boundary (no motion next to wall).
Mobility must be symmetric positive semidefinite (SPD) for all
configurations.
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Minimally-Resolved Blob Model

How to Approximate the Mobility

In order to make this method work we need a way to compute the
(action of the) blob-blob mobilityM.

It all depends on boundary conditions:

In unbounded domains we can just use the RPY tensor (always SPD!).
For single wall we can use the Rotne-Prager-Blake tensor [4].
For periodic domains we can use the spectral Ewald method [5, 6].
In more general cases we can use a FD/FE/FV fluid Stokes solver [1]
To compute the (action of the) Green’s functions on the fly [7, 8]
In the grid-based approach adding thermal fluctuations (Brownian
motion) can be done using fluctuating hydrodynamics (not discussed
here).
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Rigid Multiblob Method

Nonspherical Rigid Multiblobs

Figure: Rigid multiblob models of colloidal particles manufactured in recent
experimental work.
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Rigid Multiblob Method

Rigidly-Constrained Blobs

We add rigidity forces as Lagrange multipliers λ = {λ1, . . . ,λn} to
constrain a group of blobs forming body p to move rigidly,∑

j

Mijλj =up + ωp ×
(
ri − qp

)
+ ŭi (8)

∑
i∈Bp

λi =fp∑
i∈Bp

(ri − qp)× λi =τ p.

where u is the velocity of the tracking point q, ω is the angular
velocity of the body around q, f is the total force applied on the body,
τ is the total torque applied to the body about point q, and ri is the
position of blob i .
This can be a very large linear system for suspensions of many
bodies discretized with many blobs:
Use iterative solvers with a good preconditioner.
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Rigid Multiblob Method

Suspensions of Rigid Bodies

In matrix notation we have a saddle-point linear system of equations
for the rigidity forces λ and unknown motion U,[

M −K
−KT 0

] [
λ
U

]
=

[
ŭ
−F

]
. (9)

Solve formally using Schur complements

U =NF−
(
NKTM−1

)
ŭ =NF− M̆ŭ

The many-body mobility matrix N takes into account rigidity and
higher-order hydrodynamic interactions,

N =
(
KTM−1K

)−1
(10)
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Rigid Multiblob Method

Preconditioned Iterative Solver

So far everything I wrote is well-known and used by others as well.
But dense linear algebra does not scale!

To get a fast and scalable method we need an iterative method:

1 A fast method for performing the matrix-vector product, i.e.,
computingMλ.

2 A suitable preconditioner, which is an approximate solver for (9), to
bound the number of GMRES iterations.

How to do the fastMλ depends on the geometry (boundary
conditions) and number of blobs Nb:

fast-multipole method (FMM), spectral Ewald (FFT), both
O (NB logNb), or
a direct summation on the GPU of O

(
N2

b

)
but with very small

prefactor!
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Rigid Multiblob Method

Block-Diagonal Preconditioner

We have had great success with the indefinite block-diagonal
preconditioner [1]

P =

[
M̃ −K
−KT 0

]
(11)

where we neglect all hydrodynamic interactions between blobs on
distinct bodies in the preconditioner,

M̃
(pq)

= δpqM(pp). (12)

Note that the complete hydrodynamic interactions are taken into
account by the Krylov iterative solver.

For the mobility problem, we find a constant number of GMRES
iterations independent of the number of particles (rigid multiblobs),
growing only weakly with density.

But the resistance problem is harder (but fortunately less

important to us!), we get O
(
N

4/3
b

)
in 3D.
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Rigid Multiblob Method

Example: Dimer of sedimented rollers
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Fully Confined Suspensions

Rigidly-Constrained Stokes Flow

We choose a regularized delta function kernel δa (r) to couple the blobs
to the fluid, to get the (semi-continuum) extended mobility problem

∇π = η∇2v +

Nb∑
i=1

λiδa (ri − r) ,

∇·v = 0,∫
δa
(
ri − r′

)
v
(
r′, t
)
dr′ = up + ωp ×

(
ri − qp

)
+ ŭi ,∑

i∈Bp

λi = fp, ∀p

∑
i∈Bp

(ri − qp)× λi = τ p. ∀p.
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Fully Confined Suspensions

Regularized On-the-Fly Green’s Function

The above extended system of equations can easily be shown to be
identical to what we wrote earlier, taking

Mij (ri , rj) = η−1

∫
δa(ri − r′)G(r′, r′′)δa(rj − r′′) dr′dr′′ (13)

which is an RPY-like tensor that with suitable modifications of δa
next to a boundary has all of the desired properties I wrote earlier!

This is consistent with the Faxen formula for far-away blobs,∫
δa(ri − r)v(r)dr ≈

(
I +

a2
F

6
∇2

)
v (r)

∣∣
r=ri

,

with a Faxen blob radius aF ≡
(
3
∫
x2δa(x) dx

)1/2
.

The effective hydrodynamic blob radius a ≈ aF is

Mii =
1

6πηa
I = η−1

∫
δa(r′)O(r′ − r′′)δa(r′′) dr′dr′′
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Fully Confined Suspensions

Discrete Mobility Problem

After spatial discretization of the Stokes equations on a regular
staggered grid, we get the symmetric constrained Stokes
saddle-point problem,

A G −S 0
−D 0 0 0
−J 0 0 K

0 0 KT 0




v
π
λ
U

 =


g

h = 0
w = −ŭ
z = F

 . (14)

We have a number of simple finite-difference operators

G is the discrete (vector) gradient operator
D = −GT is the discrete (vector) divergence operator
A = −ηLv where Lv � 0 is a discrete (vector) Laplacian
J is a local averaging (interpolation) operator
S ∼ J T is a local spreading operator
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Fully Confined Suspensions

Relation to Green’s Functions

This is equivalent to[
M −K
−KT 0

] [
λ
U

]
=

[
ŭ
−F

]
. (15)

For the discrete blob-blob mobility matrix

M = JL−1S � 0, (16)

L−1 = A−1 −A−1G
(
DA−1G

)−1DA−1, (17)

which is a discretization of

Mij (ri , rj) = η−1

∫
δa(ri − r′)G(r′, r′′)δa(rj − r′′) dr′dr′′ (18)
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Fully Confined Suspensions

Iterative Solver

We have designed an iterative solver for the discrete mobility
problem that converges in a bounded number of iterations in practice.

Matrix-vector product here is cheap, O (Nc + Nb).

Key element is our preconditioner [1]:

Use a couple of cycles of geometric multigrid for the fluid equations.
Use the block-diagonal preconditioner for the rigid multiblob
equations with the RPY tensor to approximateM
Preconditioner completely neglects boundary conditions and
hydrodynamic interactions of the particles with other particles or
with the boundaries.
Outer GMRES solver takes care of boundary conditions!
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Results

How to pack the blobs?
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Figure: Hydrodynamic coupling between two identical spheres with 162 blobs as a
function of the center to center distance d .
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Results

To lubricate or not?
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Figure: Lubrication forces between two identical colliding spheres.
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Results

Sphere next to single wall
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Figure: (Left) Translational mobility µ⊥
tt for a force applied perpendicular to the

wall. (Right) Translational mobility µ
‖
tt for a force parallel to the wall.
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Results

Sphere in a slit channel
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Figure: Translational mobility of a sphere in a slit channel of width 19.2Rh
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Results

Ladd benchmark: φ = 0.05 random

0 27 54 81 108
sphere number

-60

-40

-20

0

20

40

60

80

f x

1-blob
12-blobs
42-blobs
162-blobs
Multipole (L=8)

SD

Figure: Ladd’s benchmark resistance problem for a periodic suspension of 108
spheres. The x-component of the force on each sphere in a random suspension at
a low volume fraction φ = 0.05 for each sphere.
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Results

Ladd benchmark: φ = 0.45 FCC
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Figure: Ladd’s benchmark resistance problem for a periodic suspension of 108

spheres. The normalized error
∣∣∣fx − f

(ref)
x

∣∣∣ /〈∣∣∣f (ref)
x

∣∣∣〉 in the x-component of the

force for an FCC lattice at the high volume fraction φ = 0.45. The
HYDROMULTIPOLE code with L = 15 moments is used as a high-accuracy
reference calculation.
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Results

Suspension of rods (cylinders) next to wall

φa Resolution Wall-corrected Unbounded

0.01
21 12 17
98 16 28

0.1
21 19 23
98 22 32

0.2
21 20 25
98 23 34

0.4
21 25 29
98 27 33

0.6
21 30 33
98 31 43

Table: Suspension of cylinders sedimented against a no-slip boundary. Number of
GMRES iterations required to reduce the residual by a factor of 108 for several
surface packing fractions and two different resolutions (number of blobs per rod),
for H/D = 0.75 and Nr = 1000 rods.
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Results

Suspension of rods (cylinders) next to wall

Nr Resolution H/D = 0.75 H/D = 2

10
21 7 7
98 8 9

100
21 14 13
98 19 18

1000
21 19 16
98 22 20

5000
21 18 16
98 23 22

10000
21 20 17
98 23 21

Table: Suspension of cylinders sedimented against a no-slip boundary. (Right)
Number of GMRES iterations required to reduce the residual by a factor of 108

for φa = 0.1 and different number of rods.
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Results

Active dimer

Figure: Active flow around a pair of extensile three-segment nanorods (Au-Pt-Au)
sedimented on top of a no-slip boundary (the plane of the image) and viewed
from above. The dimers are rotating together at ≈ 0.7Hz in the
counter-clockwise direction, consistent with recent experimental observations [9].
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Results
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