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Motivation

Fibers involved in cell mechanics

Pawlizak and Käs, University of Leipzig

Lp =persistence length, L =fiber length, a = εL =fiber radius,
ε =slenderness ratio
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Motivation

Cytoskeleton rheology

Ahmed and Betz. PNAS. (2015)
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Motivation

Cross-linked actin gels

Very slender semi-flexible fibers (aspect ratio 102 − 104) suspended
in a viscous solvent.

For now cross linkers modeled as simple elastic springs.

Periodic cyclically sheared unit cell: viscoelastic moduli.
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Motivation

Does nonlocal hydrodynamics matter?

Monteith et al. Biophysics Journal. (2016)
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Motivation

Does nonlocal hydrodynamics matter?

Sometimes flows created by individual fibers add up constructively to
produce large-scale flows, which advect network.

For example, cytoplasmic streaming on previous slide or contraction
of a myosin-actin gel (must expel liquid out).

Flow is generated at scales of fiber thickness: multiscale problem.

Role of long-ranged (nonlocal) hydrodynamics unclear for
rheology of cross-linked actin gels.

Dynamics of Flexible Fibers in Viscous Flows and Fluids, Ann. Rev. Fluid Mech. 51:539,
du Roure, Lindner, Nazockdast, Shelley [1]
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Fibers in Stokes flow

Fiber Representation

Simple approach is to represent a fiber as a discrete chain of
beads/blobs: multiblob model

More efficient approach is to represent a fibers as continuum curve
O. Maxian et al. ArXiv:2201.04187
An integral-based spectral method for inextensible slender fibers in Stokes flow [2]
The hydrodynamics of a twisting, bending, inextensible fiber in Stokes flow [3]
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Fibers in Stokes flow

Inextensible multiblob chains

Worm-like polymer chain

Inextensibility:‖Xj+1 − Xj‖ = l ∼ a
(e.g., a or 2a).

Tangent vectors:
τj+1/2 = (Xj+1 − Xj) /l

Bending angles:
cosαj = τj+1/2 · τj−1/2

Elastic energy (bending modulus κb)

Eb =
2κb

l

N−1∑
j=1

sin2
(αj

2

)
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Fibers in Stokes flow

Inextensible continuum fibers

Persistence length due to thermal fluctuations ξ = 2κb/ (kBT )� l
gives us a continuum limit, αj � 1.

Fiber centerline X (s) where the arc length 0 ≤ s ≤ L.

The tangent vector is τ = ∂X/∂s = Xs , and the fibers are
inextensible,

τ (s, t) · τ (s, t) = 1 ∀(s, t).

Bending energy functional is integral of curvature squared:

Eb (X) =
2κb

l

N−1∑
j=1

(αj

2

)2
⇒ Eb [X (·)] =

κb
2

∫
ds ‖Xss (s)‖2
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Fibers in Stokes flow

Bending elasticity

Bending force F
(b)
j on interior blob j gives us elastic force density

F
(b)
j = −∂Eb

∂Xj
=
κb
l3

(−Xj−2 + 4Xj−1 − 6Xj + 4Xj+1 − Xj+2)

Fb ≈ −lκb D4X ⇒ fb = −δEbend

δX
= −κbXssss

Endpoints naturally handled discretely, giving in continuum natural
BCs for free fibers:

Xss (0/L) = 0, Xsss (0/L) = 0.

Tensions Tj+1/2 → T (s) are unknown and resist stretching,

Λi = Ti+1/2τi+1/2 − Ti−1/2τi−1/2 ⇒ λ = (Tτ )s .
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Fibers in Stokes flow Hydrodynamics

Fluid dynamics

For multiblob chains in Stokes flow, fluid velocity v (r, t) satisfies
∇ · v = 0 and

∇π = η∇2v +
∑
j

Fj δa (Xj − r),

where δa (r) is a blob kernel of width ∼ a, and

F = −lκb D4X + Λ

Blobs/fiber are advected by fluid

Uj = dXj/dt =

∫
dr v (r, t) δa (Xj − r) .

Continuum limit is obvious (without Brownian fluctuations)

∇π (r, t) =η∇2v (r, t) +

∫ L

0
ds f(s, t)δa (X(s, t)− r)

U (s, t) = ∂tX (s, t) =

∫
dr v (r, t) δa (X(s, t)− r)

f = −κbXssss + λ
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Fibers in Stokes flow Hydrodynamics

Multiblob chains in Stokes flow

We can (temporarily) eliminate the fluid velocity to write an equation
for fiber only.

Define the positive semi-definite hydrodynamic kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′,

where G is the Green’s function for (periodic) Stokes flow.

Define M (X) � 0 to be the symmetric positive semidefinite (SPD)
mobility matrix with blocks

Mij (Xi ,Xj) = R (Xi ,Xj) = R (Xi − Xj) .

Discrete dynamics = inextensibility +

U = dX/dt = M (X) F (X) = M
(
−lκb D4X + Λ

)
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Fibers in Stokes flow Hydrodynamics

Inextensible fibers in Stokes flow

Define a positive semidefinite mobility operator

(M [X (·)] f (·)) (s) =

∫ L

0
ds ′ R

(
X(s),X(s ′)

)
f(s ′)

Continuum dynamics is a non-local PDE

U = Xt = M [X] (−κbXssss + λ)

τ (s, t) · τ (s, t) = 1 ∀(s, t).

Is this PDE well-posed? We have shown numerically that

Fiber velocity converges pointwise (strongly) up to the endpoints.
Moments of λ converge, e.g., stress tensor (weak convergence).
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Fibers in Stokes flow Hydrodynamics

Rotne-Prager-Yamakawa kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′

Taking the regularization kernel and unbounded Stokes flow

δa (r) =
(
4πa2

)−1
δ (r − a)

gives the Rotne-Prager-Yamakawa (RPY) kernel

R (r) =


(8πη)−1

(
S (r) +

2a2

3
D (r)

)
, r > 2a

(6πaη)−1

[(
1− 9r

32a

)
I +

(
3r

32a

)
r ⊗ r

r 2

]
, r ≤ 2a

S (r) =
1

8πηr

(
I + r̂r̂T

)
≡ G, and D (r) =

1

8πηr 3

(
I− r̂r̂T

)
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Fibers in Stokes flow Hydrodynamics

Slender Body Theory

(M [X (·)] f (·)) (s) =

∫ L

0
ds ′ R

(
X(s)− X(s ′)

)
f(s ′)

Matched asymptotics gives (away from endpoints)

(M f) (s) ≈ (MSBT f) (s) = (ML f) (s) + (MNL f) (s) =

=
1

8πη

(
log

(
(L− s)s

4a2

)(
I + τ (s)τ (s)T

)
+ 4I

)
f(s)

+
1

8πη

∫ L

0
ds ′
(
S
(
X(s)− X(s ′)

)
f
(
s ′
)
−
(

I + τ (s)τ (s)T

|s − s ′|

)
f(s)

)
For a special choice of blob radius a =

(
e3/2/4

)
εL = 1.12εL, this

formula matches the widely-used Slender Body Theory (SBT).

Our approach automatically works for multiple fibers, and also gives
us a natural regularization of the endpoints (not shown).
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Fibers in Stokes flow Hydrodynamics

Slender body theory

MSBT = ML + MNL = O
(

log

(
(L− s)s

a2

))
+O(1)

SBT is great for numerics since it involves quadratures that can be
computed accurately for smooth f to spectral accuracy (starting
with Tornberg+Shelley = TS).

The local drag term is logarithmically singular at endpoints for
cylindrical fibers.
TS use (unphysical) ellipsoidal fibers: ML = O (log (L/a)).

ML has spurious negative eigenvalues for high spatial frequencies,
so MSBT is not SPD and equations are definitely not well-posed.
TS use artificial regularization.
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Fibers in Stokes flow Adding twist

Twisting Fibers

How to represent twist (Bishop frame)?

Hydrodynamics with twist? (no slender-body theory exists)

(When) does twist matter?
Flagella, formins twisting growing actin filaments, macroscopic
chirality in cells, and ?
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Fibers in Stokes flow Adding twist

Twist

For given force densities f(s, t) and parallel torque densities n(s, t)
along the fiber centerlines,

∇π = η∇2v +

∫ L

0
ds

[
f(s) + n(s)

∇
2
× τ (s)

]
δa (X(s)− r),

Ω‖(s) = τ (s) ·
∫

dr
∇
2
× v (r, t) δa (X(s)− r)

Should fiber exert perpendicular torques on the fluid?
Not for sufficiently slender fibers (ArXiv:2201.04187) [3].
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Fibers in Stokes flow Adding twist

Bishop frame

To each point along the fiber we attach an orthonormal triad
B(s) = [τ (s), a(s),b(s)] called the Bishop frame, which satisfies the
no-twist condition:

as · b = 0 ⇒ ∂sa = (τ × τs)× a

Configuration represented by twist angle θ(s) between the material
frame of the fiber cross section and the Bishop cross section.

Elastic force has bend-twist coupling (belt trick):

f = −κbXssss + κt (θs (τ × τs))s + λ,

n = κtθss .

Evolve twist density in time via

∂tθs (s, t) = ∂sΩ‖ −
(
Ω⊥ · τs

)
.
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Fibers in Stokes flow Inextensibility

Tension equation

Xt = M [X] (−κbXssss + λ) and λ = (Tτ )s

Traditional approach (Tornberg+Shelley) is to solve tension equation

τ · τ = Xs · Xs = 1 ⇒ (Xt)s · Xs = 0 non-local BVP

Tension equation is linear in T (s) but very nonlinear in X and its
derivatives, causing aliasing issues.

Method does not strictly enforce inextensibility numerically, requiring
adding a penalty for stretching.

To solve these problems, let us first go back to multiblobs for
simplicity, and then take a continuum limit.
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Fibers in Stokes flow Inextensibility

Inextensible motions

Ui −Ui−1

∆s
= Ωj+1/2 × τj+1/2 ⇒

U = KΩ⊥ =

U0, · · · ,U0 + ∆s
i−1∑
j=0

Ω⊥j+1/2 × τj+1/2, · · ·

→
(
K [X (·)]Ω⊥ (·)

)
(s) = U (s) = U (0) +

∫ s

0
ds ′
(
Ω⊥

(
s ′
)
× τ

(
s ′
))
.
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Fibers in Stokes flow Inextensibility

Principle of virtual work

Principle of virtual work: Constraint forces should do no work for
any inextensible motion of the fiber:

ΛTU =
(
KTΛ

)T
Ω⊥ = 0 ∀Ω⊥ ⇒ KTΛ = 0

KTΛ =

 N∑
j=0

Λj , · · · ,∆s

 N∑
j=i

Λj

× τi+1/2, · · ·

→
(K? [X (·)]λ (·))(s) =

[∫ L

0
ds ′ λ

(
s ′
)
, ∀s

(∫ L

s
ds ′ λ

(
s ′
))
× τ (s)

]
= 0.

We can express this in terms of tension

∀s

∫ L

s
ds ′ λ

(
s ′
)

= −T (s)τ (s) ⇒ λ = (Tτ )s

but the principle of virtual work is an integral constraint.
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Fibers in Stokes flow Inextensibility

Continuum equations

New weak formulation of inextensibility constraint:

Xt = K [X]Ω⊥= M [X] (−κbXssss + λ)

K? [X]λ= 0

∂tτ = Ω⊥ × τ

X(s, t) = X(0, t) +

∫ s

0
ds ′ τ

(
ds ′, t

)
Two improvements:

Evolve tangent vector τ rather than X: strictly inextensible.
Expose saddle-point structure of problem (energy conservation).
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Numerical Methods

Outline

1 Motivation

2 Fibers in Stokes flow
Hydrodynamics
Adding twist
Inextensibility

3 Numerical Methods

4 Actin gels

5 Adding Brownian motion

A. Donev (CIMS) Fibers 3/2022 27 / 47



Numerical Methods

Slender-Body Quadrature

Recall slender body theory (SBT) MSBT = ML+MNL.

We avoid SBT via slender body quadrature for RPY

U(s) =

∫
D(s):|s−s′|>2a

(
S
(
X(s),X(s ′)

)
+

2a2

3
D
(
X(s),X(s ′)

))
f
(
s ′
)

ds ′

+

∫ s+2a

s−2a
(. . .RPY . . . ) f(s ′) ds ′.

Apply singularity subtraction even though not technically singular:∫
D(s)

S
(
X(s),X(s ′)

)
f
(
s ′
)

ds ′ =
1

8πη

∫
D(s)

(
I + τ (s)τ (s)

|s − s ′|

)
f(s) ds ′

+

∫
D(s)

(
S
(
X(s),X(s ′)

)
f
(
s ′
)
− 1

8πη

(
I + τ (s)τ (s)

|s − s ′|

)
f(s)

)
ds ′

Taking the domain D(s) to be [0, L] in the second gives the finite part
integral from SBT!

A. Donev (CIMS) Fibers 3/2022 28 / 47



Numerical Methods

Spatial Discretization

We develop a spectral discretization in space, based on representing
all functions using Chebyshev polynomials, with anti-aliasing.

Collocation discretization of mobility equation gives a saddle-point
system (

−M(X) K(X)

K∗(X) 0

)(
λ

Ω

)
=

(
M(X)(−κbD4

BCX)

0

)
which we solve iteratively using a block-diagonal preconditioner.

We only use O(16− 32) Chebyshev points per fiber so doing dense
LA for individual fibers is OK.

Bending elasticity can either be discretized using rectangular
collocation (more accurate, needs BCs) or by discretizing bending
energy functional (more robust, natural BCs).

A. Donev (CIMS) Fibers 3/2022 29 / 47



Numerical Methods

Temporal discretization

Backward Euler is the most stable since it ensures strict energy
dissipation; also for dense suspensions.

Split mobility into local (e.g., intra-fiber) and non-local (e.g.,
inter-fiber) parts, M = ML + MNL:

KnΩn =Mn
L

(
−κbD4

BCXn+1,? + λn+1
)

+Mn
NL

(
−κbD4

BCXn + λn
)

+ Mfn

(K?)n λn+1 =0,

where Xn+1,? = Xn + ∆tKn+1/2,∗Ωn+1/2.

Actual fiber update is strictly inextensible

τ n+1 = rotate (τ n,∆tΩn) .

fn contains other forces such as cross-linkers (can be stiff).
Flow is easy to add to the rhs.
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Numerical Methods

The gory details

1 For dense suspensions, supplement L+NL splitting with additional 1-5
GMRES iterations for stability.

2 Evaluate long-ranged hydrodynamic interactions between Chebyshev
nodes in linear time using Positively Split Ewald (PSE) method (FFT
based for triply periodic), also works for deformed/sheared unit cell
(Fiore et al. J. Chem. Phys. (2017)).

3 For nearby fibers, use specialized near-singular quadrature (af

Klinteberg and Barnett. BIT Num. Math. 2020 [4]) to get 2-3 digits.

4 For intra-fiber hydro use specialized slender-body quadrature ala
Anna Karin-Tornberg.
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Actin gels

Actin network/gel
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Actin gels

Cross Linkers

Cross linker (CL) between X(i)(s∗i ) and X(j)(s∗j ), with

R =
∥∥∥X(i)(s∗i )− X(j)(s∗j )

∥∥∥
Model cross-linker as just a spring with Gaussian smoothing to
preserve spectral accuracy (std= σ ∼ 0.1L):

f(CL,i)(s) = −Kc

(
1− `

R

)
δσ(s − s∗i )

∫ L

0

ds ′
(

X(i) (s)− X(j)(s ′)
)
δσ(s ′ − s∗j )

Cross linker is force and torque-free.

Randomly generated dense network of CLs (16 attachment sites per
site) to give about 12 CLs per fiber (elastic network).
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Actin gels

Cross-linked network
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Actin gels

Rheology

Apply linear shear flow v0(x , y , z) = γ̇0 cos(ωt)y and measure the
visco-elastic stress induced by the fibers and cross links:

σ(i) =
1

V

∑
fibers

∫ L

0
ds Xi (s) (fb(s) + λ(s))T

σ(CL) =
1

V

∑
CLs=(i ,j)

∫ L

0
ds
(

Xi (s)f(CL,i)(s) + Xj(s)f(CL,j)(s)
)

σ21

γ0
= G ′ sin(ωt) + G ′′ cos(ωt) = elastic+viscous.

G ′ =
2

γ0T

∫ T

0
σ21 sin(ωt) dt G ′′ =

2

γ0T

∫ T

0
σ21 cos(ωt) dt.
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Actin gels

Viscoelastic moduli: Maxwell fluid
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Elastic modulus G ′ and viscous modulus G ′′ for 700 fibers + 8400 CLs
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Actin gels

Nonlocal hydrodynamics
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Reduction in viscoelastic moduli with only local drag or
only inter-fiber nonlocal hydrodynamics.
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Actin gels

Rheology permanent CLs

Network relaxation time τc ≈ 0.5− 1s

For ω−1 � τc
Quasi-steady; elastic solid
Small effect of nonlocal hydrodynamics (∼ 10%)

For ω−1 ≈ τc .

G ′′ ≈ G
Max change in G ′ due to inter-fiber hydro

For ω−1 � τc .

Fibers and CLs “frozen”; network behaves like a viscous fluid
G ′′ � G ′; up to 25% change due to intra-fiber hydro.
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Actin gels

Dynamic cross linking

Kinetic Monte Carlo algorithm for cross linking:

Discrete set of binding sites on each fiber (for efficiency).

Doubly-bound CLs act as simple elastic springs.

Assumptions behind linking algorithm

Diffusion of cross-linkers is fast (diffusion-limited binding)

Four reactions between fibers and CL reservoir obey detailed balance

Fiber turnover
Single end (un)binding Second end (un)binding

ℓ" ± 𝛿ℓ

1/𝜏(

𝑘*+

𝑘*,, 𝑘*,,,.

𝑘*+,.

”Simulations of dynamically cross-linked actin networks...,”O. Maxian et al, PLOS
Comp. Bio., 17(12): e1009240, 2021 [bioRxiv:2021.07.07.451453] [5]
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Actin gels

Temporal integrator

We use a time splitting approach:

1 Turnover filaments over time ∆t (rarely happens).

2 Update cross linkers over time ∆t.

3 Calculate f(CL) (X) and solve
∂X

∂t
= M (X)

[
f(κ) (X) + f(CL) (X) + λ

]
and update X over time ∆t.

4 Translational and rotational diffusion of rigid filaments over time
∆t (sometimes).

”Interplay between Brownian motion and cross-linking kinetics controls bundling
dynamics in actin networks”by O. Maxian et al, in press Biophysical J., 2022
[bioRxiv:021.09.17.460819] [6]
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Actin gels

Dynamically cross-linked network
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Actin gels

Rheology transient CLs

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

0.6

0.8

1

1.2

1.4

1.6

1.8

Meshwork

B-In-M

Measured viscoelastic moduli of dynamically cross-linked networks
without Brownian motion.

For bundled networks, elastic modulus overestimated by ≈ 50%
without inter-fiber hydro, esp. long timescales.

Fibers in bundles closer together: stress is reduced because
entrainment flows in bundle make straining easier.
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Adding Brownian motion
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Adding Brownian motion

Thermal fluctuations (Brownian Motion)

Rigid fibers are “easy” [7] though so far we have only implemented
without inter-fiber hydro [6].

Fluctuating hydrodynamics gives the fluctuating Stokes equations

ρ∂tv +∇π =η∇2v +∇ ·
(√

2ηkBT W
)

+

∫ L

0
ds f(s, t)δa (X(s, t)− r) .

The thermal fluctuations (Brownian motion of fiber) are driven by a
white-noise stochastic stress tensor W (r, t).

Must first answer deep mathematical questions:

Can one make sense of the (multiplicative noise) overdamped SPDE
for a Brownian curve?
Does the Brownian stress of the fiber converge in the continuum
limit? (bending energy does not)
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Adding Brownian motion

Brownian multiblob chains

For Brownian blob-link chains there are no mathematical issues so start
there!

Fast constrained BD-HI for blob-link chains based on rotating unit link
vectors including Brownian stress (Brennan Sprinkle, in progress)
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Adding Brownian motion
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