Numerical methods for inextensible slender fibers in Stokes flow

Ondrej Maxian, Brennan Sprinkle, Alex Mogilner, Aleksandar Donev

Courant Institute, New York University

Applied Math Seminar
October 2020
Outline

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
Motivation

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
Motivation

Fibers involved in cell mechanics

- **microtubules** (Ø ≈ 24 nm)
- **actin filaments** (Ø ≈ 7-9 nm)
- **intermediate filaments** (Ø ≈ 10 nm)

Stiff rods \((L_p \gg L) \)

Semiflexible \((L_p \approx L) \)

Flexible \((L_p \ll L) \)

\(L_p \) = persistence length, \(L \) = fiber length, \(a = \epsilon L \) = fiber radius, \(\epsilon \) = slenderness ratio

Pawlizak and Käs, University of Leipzig
Cytoskeleton rheology

Motivation

Ahmed and Betz. PNAS. (2015)

Transient crosslinks (control mechanical properties)

Myosin motors (internal force generators)

Viscoelastic contractile network

Elastic ($t_b \to \infty$)

Viscoelastic

Viscous ($t_b \to 0$)

Ahmed and Betz. PNAS. (2015)
Motivation

Cross-linked actin gels

- Very **slender semi-flexible fibers** (aspect ratio $10^2 - 10^4$) suspended in a **viscous solvent**.
- For now **cross linkers** modeled as simple elastic springs.
- **Periodic cyclically sheared** unit cell: **viscoelastic moduli**.
Motivation

Does nonlocal hydrodynamics matter?

Does nonlocal hydrodynamics matter?

- Sometimes flows created by individual fibers add up constructively to produce **large-scale flows**, which advect network.
- For example, cytoplasmic streaming on previous slide or contraction of a myosin-actin gel (must expel liquid out).
- Flow is generated at scales of fiber thickness: **multiscale problem**.
- Role of **long-ranged (nonlocal) hydrodynamics** unclear for rheology of cross-linked actin gels.
- For background consult:
Outline

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
Fiber Representation

Simple approach is to represent a fiber as a **discrete chain** of beads/blobs: **multiblob model**

More efficient approach is to represent a fibers as **continuum curve**

An integral-based spectral method for inextensible slender fibers in Stokes flow [1]
Inextensible multiblob chains

- **Inextensibility:** $\|X_{j+1} - X_j\| = l \sim a$ (e.g., a or $2a$).
- **Tangent vectors:**
 $$\tau_{j+1/2} = (X_{j+1} - X_j)/l$$
- **Bending angles:**
 $$\cos \alpha_j = \tau_{j+1/2} \cdot \tau_{j-1/2}$$
- **Elastic energy (bending modulus κ_b)**
 $$E_b = \frac{2\kappa_b}{l} \sum_{j=1}^{N-1} \sin^2 \left(\frac{\alpha_j}{2} \right)$$
Persistence length due to thermal fluctuations $\xi = \frac{2\kappa_b}{k_B T} \gg l$ gives us a continuum limit, $\alpha_j \ll 1$.

Fiber centerline $X(s)$ where the arc length $0 \leq s \leq L$.

The tangent vector is $\tau = \partial X / \partial s = X_s$, and the fibers are inextensible,

$$\tau(s, t) \cdot \tau(s, t) = 1 \quad \forall (s, t).$$

Bending energy functional is integral of inverse curvature squared:

$$E_b(X) = \frac{2\kappa_b}{l} \sum_{j=1}^{N-1} \left(\frac{\alpha_j}{2} \right)^2 \Rightarrow E_b[X(\cdot)] = \frac{\kappa_b}{2} \int ds \|X_{ss}(s)\|^2$$
Bending elasticity

- Bending force $\mathbf{F}_j^{(b)}$ on each blob j in the interior gives us elastic force density $\mathbf{f}_b(s, t)$

\[
\mathbf{F}_j^{(b)} = \frac{-\partial E_b}{\partial \mathbf{X}_j} = \frac{\kappa_b}{l^3} \left(-\mathbf{X}_{j-2} + 4\mathbf{X}_{j-1} - 6\mathbf{X}_j + 4\mathbf{X}_{j+1} - \mathbf{X}_{j+2}\right)
\]

\[
\mathbf{F}_b \approx -l\kappa_b D^4 \mathbf{X} \quad \Rightarrow \quad \mathbf{f}_b = -\frac{\delta E_{\text{bend}}}{\delta \mathbf{X}} = -\kappa_b \mathbf{X}_{ssss}
\]

- Endpoints naturally handled discretely, giving in continuum natural BCs for free fibers:

\[
\mathbf{X}_{ss}(0/L) = 0, \quad \mathbf{X}_{sss}(0/L) = 0.
\]

- Tensions $T_{j+1/2} \rightarrow T(s)$ are unknown and resist stretching,

\[
\Lambda_i = T_{i+1/2} \tau_{i+1/2} - T_{i-1/2} \tau_{i-1/2} \quad \Rightarrow \quad \lambda = (T \tau)_s.
\]
For multiblob chains in **Stokes flow**, fluid velocity $v(r, t)$ satisfies $\nabla \cdot v = 0$ and

$$
\nabla \pi = \eta \nabla^2 v + \sum_j F_j \delta_a (X_j - r),
$$

where δ_a is a **regularized delta/blob function** whose width is proportional to a, and

$$
F = -l \kappa_b D^4 X + \Lambda
$$

Blobs/fiber are advected by fluid

$$
U_j = dX_j/dt = \int dr \ v(r, t) \delta_a (X_j - r).
$$

Continuum limit is obvious

$$
\nabla \pi (r, t) = \eta \nabla^2 v (r, t) + \int_0^L ds \ f(s, t) \delta_a (X(s, t) - r)
$$

$$
U (s, t) = \partial_t X (s, t) = \int dr \ v(r, t) \delta_a (X(s, t) - r)
$$

$$
f = -\kappa_b X_{ssss} + \lambda$$
We can (temporarily) eliminate the fluid velocity to write an equation for fiber only.

Define the positive semi-definite hydrodynamic kernel

\[\mathcal{R}(r_1, r_2) = \int \delta_a (r_1 - r') \mathcal{G}(r', r'') \delta_a (r_2 - r'') \, dr' \, dr'', \]

where \(\mathcal{G} \) is the Green’s function for (periodic) Stokes flow.

Define \(\mathbf{M}(\mathbf{X}) \succeq \mathbf{0} \) to be the symmetric positive semidefinite (SPD) mobility matrix with blocks

\[M_{ij}(X_i, X_j) = \mathcal{R}(X_i, X_j) = \mathcal{R}(X_i - X_j). \]

Discrete dynamics = inextensibility +

\[\mathbf{U} = d\mathbf{X}/dt = \mathbf{M}(\mathbf{X}) \mathbf{F}(\mathbf{X}) = \mathbf{M} \left(-I_{\kappa_b} D^4 \mathbf{X} + \Lambda \right) \]
Inextensible fibers in Stokes flow

- Define a positive semidefinite **mobility operator**
 \[
 (\mathcal{M} [X(\cdot)] f(\cdot))(s) = \int_0^L ds' \mathcal{R}(X(s), X(s')) f(s')
 \]

- Continuum dynamics is a **non-local PDE**
 \[
 U = X_t = \mathcal{M} [X] (-\kappa_b X_{ssss} + \lambda)
 \]
 \[
 \tau(s, t) \cdot \tau(s, t) = 1 \quad \forall (s, t).
 \]

- Is this PDE well-posed (weak, strong)? Since \(\lambda \) only appears inside spatial integrals, this is a sort of first-kind integral equation.

- Recent work by Ohm and Mori defines a “**slender-body PDE**” that is **probably** well-posed (not proven yet for inextensible fibers or for cylindrical fibers with free ends) but too difficult for computation.
\[\mathcal{R} (r_1, r_2) = \int \delta_a (r_1 - r') \mathcal{G} (r', r'') \delta_a (r_2 - r'') \ dr' dr'' \]

- Taking the regularization kernel and unbounded Stokes flow
 \[\delta_a (r) = (4\pi a^2)^{-1} \delta (r - a) \]
 gives the Rotne-Prager-Yamakawa (RPY) kernel

\[\mathcal{R} (r) = \begin{cases}
(8\pi \eta)^{-1} \left(\mathcal{S} (r) + \frac{2a^2}{3} \mathcal{D} (r) \right), & r > 2a \\
(6\pi a \eta)^{-1} \left[\left(1 - \frac{9r}{32a} \right) I + \left(\frac{3r}{32a} \right) \frac{r \otimes r}{r^2} \right], & r \leq 2a
\end{cases} \]

\[\mathcal{S} (r) = \frac{1}{8\pi \eta r} \left(I + \hat{r} \hat{r}^T \right) \equiv \mathcal{G}, \quad \text{and} \quad \mathcal{D} (r) = \frac{1}{8\pi \eta r^3} \left(I - \hat{r} \hat{r}^T \right) \]
Matched asymptotics

\[(\mathcal{M} \left[\mathbf{X}(\cdot) \right] \mathbf{f}(\cdot))(s) = \int_0^L ds' \mathcal{R}(\mathbf{X}(s) - \mathbf{X}(s')) \mathbf{f}(s') \]

- **Matched asymptotics** gives (away from endpoints)
 \[(\mathcal{M} \mathbf{f})(s) \approx (\mathcal{M}_{\text{SBT}} \mathbf{f})(s) = (\mathcal{M}_{\text{loc}} \mathbf{f})(s) + (\mathcal{M}_{\text{FP}} \mathbf{f})(s) = \]
 \[= \frac{1}{8\pi\mu} \left(\log \left(\frac{(L - s)s}{4a^2} \right) \left(\mathbf{I} + \mathbf{\tau}(s)\mathbf{\tau}(s)^T \right) + 4\mathbf{I} \right) \mathbf{f}(s) \]
 \[+ \frac{1}{8\pi\mu} \int_0^L ds' \left(\mathcal{S}(\mathbf{X}(s) - \mathbf{X}(s')) \mathbf{f}(s') - \left(\frac{\mathbf{I} + \mathbf{\tau}(s)\mathbf{\tau}(s)^T}{|s - s'|} \right) \mathbf{f}(s) \right) \]

- For a special choice of blob radius \(a = (e^{3/2}/4) \epsilon L = 1.12\epsilon L \), this formula matches the widely-used **Slender Body Theory** (SBT).

- Our approach automatically works for **multiple fibers**, and also gives us a natural **regularization of the endpoints** (not shown).
Fibers in Stokes flow

Slender body theory

\[\mathcal{M} = \mathcal{M}_{\text{loc}} + \mathcal{M}_{\text{FP}} = \mathcal{O} \left(\log \left(\frac{(L - s)s}{a^2} \right) \right) + \mathcal{O}(1) \]

- SBT is great for numerics since it involves quadratures that can be computed accurately for smooth \(f \) to spectral accuracy.
- Problem 1: The local drag term is logarithmically singular at endpoints for cylindrical fibers. Many use (unphysical) ellipsoidal fibers: \(\mathcal{M}_{\text{loc}} = \mathcal{O} \left(\log \left(\frac{L}{a} \right) \right) \).
- Problem 2: The finite-part mobility \(\mathcal{M}_{\text{FP}} \) has spurious negative eigenvalues for high spatial frequencies, so \(\mathcal{M}_{\text{SBT}} \) is not SPD, and equations are definitely not well posed. Previous works starting with Tornberg+Shelley [2] use artificial regularization of the integrand in \(\mathcal{M}_{\text{FP}} \).
Limitations of slender body theory

- Problem 1 compounds problem 2, and for fibers of slenderness $\epsilon \sim 10^{-2}$ all of SBT seems to break down.

- Problem 2 solution: One can avoid matched asymptotics entirely by constructing **special quadrature methods** for the RPY kernel (using ideas of af Klinteberg, Barnett, Tornberg).

- Problem 1 temporary “solution”:
 Make fibers **tapered near the endpoints** ($\delta \sim 0.05 - 0.1 \gg \epsilon$)
\((\mathcal{M}_{\text{loc}} f)(s) \sim c(s) \left(I + \tau(s)\tau(s)^T \right) f(s), \) where \(c(s) \sim \log \left(\frac{(L - s)s}{a(s)^2} \right) \)

Note: For ellipsoidal fibers \(c(s) \) is constant (= 1 in this plot).
Velocity at $t = 0$ for fiber with $\epsilon = 10^{-3}$ relaxing due to bending elasticity.
Lack of smoothness in the solution near the endpoints – our endpoint regularization removes that problem.
Outline

1 Motivation

2 Fibers in Stokes flow

3 Inextensibility

4 Numerical Methods

5 Actin gels

6 Future Challenges
 • Adding twist
 • Adding Brownian motion
\[\mathbf{X}_t = \mathcal{M} [\mathbf{X}] \left(-\kappa_b \mathbf{X}_{ssss} + \lambda \right) \quad \text{and} \quad \lambda = (T \tau)_s \]

- Traditional approach (Tornberg+Shelley) is to solve tension equation
 \[\tau \cdot \tau = \mathbf{X}_s \cdot \mathbf{X}_s = 1 \quad \Rightarrow \quad (\mathbf{X}_t)_s \cdot \mathbf{X}_s = 0 \quad \text{non-local BVP} \]

- Tension equation is linear in \(T(s) \) but very nonlinear in \(\mathbf{X} \) and its derivatives, causing aliasing issues.

- Method does not strictly enforce inextensibility numerically, requiring adding a penalty for stretching.

- To solve these problems, let us first go back to multiblobs for simplicity, and then take continuum limits.
Inextensible motions

\[
\frac{U_i - U_{i-1}}{\Delta s} = \Omega_{j+1/2} \times \tau_{j+1/2} \quad \Rightarrow
\]

\[
U = K\Omega^\perp = \left[U_0, \ldots, U_0 + \Delta s \sum_{j=0}^{i-1} \Omega_{j+1/2}^\perp \times \tau_{j+1/2}, \ldots \right] \rightarrow
\]

\[
(K [X (\cdot)] \Omega^\perp (\cdot)) (s) = U (s) = U (0) + \int_0^s ds' \left(\Omega^\perp (s') \times \tau (s') \right).
\]
Principle of virtual work: Constraint forces should do no work for any inextensible motion of the fiber:

\[\Lambda^T U = (K^T \Lambda)^T \Omega^\perp = 0 \quad \forall \Omega^\perp \implies K^T \Lambda = 0 \]

\[K^T \Lambda = \left[\sum_{j=0}^{N} \Lambda_j, \cdots, \Delta s \left(\sum_{j=i}^{N} \Lambda_j \right) \times \tau_{i+1/2}, \cdots \right] \rightarrow \]

\[(K^* [X (\cdot)] \Lambda (\cdot))(s) = \left[\int_0^L ds' \lambda (s') , \left(\int_s^L ds' \lambda (s') \right) \times \tau(s) \right] = 0 \forall s. \]

We can express this in terms of tension

\[\forall s \int_s^L ds' \lambda (s') = -T(s) \tau(s) \implies \lambda = (T \tau)_s \]

but the principle of virtual work is an **integral constraint** rather than a pointwise constraint.
New **weak formulation of inextensibility** constraint:

\[
X_t = \mathcal{K}[X] \Omega^\perp = \mathcal{M}[X] (-\kappa_b X_{ssss} + \lambda)
\]

\[
\mathcal{K}^* [X] \lambda = 0
\]

\[
\partial_t \tau = \Omega^\perp \times \tau
\]

\[
X(s, t) = X(0, t) + \int_0^s ds' \tau(ds', t)
\]

Two improvements:

- Evolve tangent vector \(\tau \) rather than \(X \): **strictly inextensible**.
- Impose tension equation **weakly** rather than pointwise.
Outline

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
Choose normal vectors $n_{1/2} \perp \tau$ (arbitrary):

$$\partial_t \tau = \Omega \perp \times \tau = g_1(s)n_1(s) + g_2(s)n_2(s)$$

Expand all functions into a **truncated Chebyshev series** on a grid of N nodes using $T_k(s)$ as a basis for L_2:

$$g_1(s) = \sum_{j=0}^{N-1} \alpha_1 j T_j(s) \text{ kinematic vars } \alpha = \{U(0), \alpha_1 j, \alpha_2 j\}$$

Simple change of integration vars gives

$$U = \mathcal{K} [X] \alpha = U(0) + \sum_{j=0}^{N-1} \int_0^s ds' \left(\alpha_1 j T_j(s')n_1(s') + \alpha_2 j T_j(s')n_2(s') \right)$$
Chebyshev discretization contd.

- Principle of virtual work says $\forall j$
 \[\mathcal{K}^*[X] \lambda = \left(\int_0^L \lambda(s) \, ds \right) \left(\int_0^L ds \, \lambda(s) \cdot \int_0^s ds' \, T_j(s') n_{1/2}(s') \right) := 0 \]

- **Collocation discretization** of mobility equation gives a saddle point system for λ and α,
 \[
 \begin{pmatrix}
 -M(X) & K(X) \\
 K^*(X) & 0
 \end{pmatrix}
 \begin{pmatrix}
 \lambda \\
 \alpha
 \end{pmatrix} =
 \begin{pmatrix}
 M(X)(-\kappa_b D_{BC}^4 X) \\
 0
 \end{pmatrix}
 \]

 but should try Galerkin in the future.

- Bending elasticity + BCs discretized using **rectangular collocation**

Temporal discretization

- Use multistep \textit{extrapolation} for nonlinear terms:
 \[
 X^{n+1/2,p} = \frac{3}{2} X^n - \frac{1}{2} X^{n-1}
 \]
 \[
 \lambda^{n+1/2,p} = 2 \lambda^{n-1/2} - \lambda^{n-3/2}.
 \]

- \textbf{Split} mobility into \textit{local and non-local} parts, \(M = M_L + M_{NL} \):
 \[
 K^{n+1/2,p} \alpha^{n+1/2} = M_L^{n+1/2,p} \left(-\frac{\kappa_b}{2} D_{BC}^4 \left(X^n + X^{n+1,*}_n \right) + \lambda^{n+1/2} \right) + M_{NL}^{n+1/2,p} \left(-\kappa_b D_{BC}^4 X^{n+1/2,p} + \lambda^{n+1/2,p} \right)
 \]
 \[
 (K^*)^{n+1/2,p} \lambda^{n+1/2} = 0,
 \]
 where \(X^{n+1,*} = X^n + \Delta t K^{n+1/2,*} \alpha^{n+1/2} \).

- Actual fiber update is \textit{strictly inextensible}
 \[
 \tau^{n+1} = \text{rotate} \left(\tau^n, \Delta t \Omega^{n+1/2,p} \right).
 \]
For dense suspensions, supplement 2nd order temporal method with additional 1-5 GMRES iterations for stability.

Evaluate long-ranged hydrodynamic interactions between Chebyshev nodes in linear time using Positively Split Ewald (PSE) method (FFT based for triply periodic), also works for deformed/sheared unit cell (Fiore et al. J. Chem. Phys. (2017) [3]).

Future work: Ewald methods with other BCs.

For nearby fibers, use specialized near-singular quadrature (af Klinteberg and Barnett. BIT Num. Math. 2020 [4]) to get 2-3 digits.

For finite-part self interaction of one fiber with itself use specialized quadrature with singularity-removal by Anna Karin-Tornberg.

Future work: Develop fast accurate quadratures for RPY kernel to avoid matched asymptotics (SBT).
Outline

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
Actin network/gel
Cross Linkers

- Cross linker (CL) between $X^{(i)}(s^*_i)$ and $X^{(j)}(s^*_j)$, with
 \[R = \|X^{(i)}(s^*_i) - X^{(j)}(s^*_j)\| \]

- Model cross-linker as just a spring with **Gaussian smoothing** to preserve spectral accuracy (std= $\sigma \sim 0.1L$):
 \[
 f^{(CL,i)}(s) = -K_c \left(1 - \frac{l}{R}\right) \delta_\sigma(s - s^*_i) \int_0^L ds' \left(X^{(i)}(s) - X^{(j)}(s')\right) \delta_\sigma(s' - s^*_j)
 \]

- Cross linker is force and torque-free.

- Randomly generated dense network of CLs (16 attachment sites per site) to give about 12 CLs per fiber (elastic network).

- Future work: Allow for dynamic binding/unbinding of CLs, reduce smoothing σ, treat CL elasticity implicitly.
Rheology

Apply linear shear flow $v_0(x, y, z) = \dot{\gamma}_0 \cos(\omega t)y$ and measure the visco-elastic stress induced by the fibers and cross links:

$$\sigma^{(i)} = \frac{1}{V} \sum_{\text{fibers}} \int_0^L ds X^i(s) (f_b(s) + \lambda(s))^T$$

$$\sigma^{(\text{CL})} = \frac{1}{V} \sum_{\text{CLs}=(i,j)} \int_0^L ds \left(X^i(s)f^{(\text{CL},i)}(s) + X^j(s)f^{(\text{CL},j)}(s) \right)$$

$$\frac{\sigma_{21}}{\dot{\gamma}_0} = G' \sin(\omega t) + G'' \cos(\omega t) = \text{elastic+viscous.}$$

$$G' = \frac{2}{\gamma_0 T} \int_0^T \sigma_{21} \sin(\omega t) \, dt \quad G'' = \frac{2}{\gamma_0 T} \int_0^T \sigma_{21} \cos(\omega t) \, dt.$$
Elastic modulus G' and viscous modulus G'' for 700 fibers + 8400 CLs
Nonlocal hydrodynamics

Reduction in viscoelastic moduli with **only local drag** or **only inter-fiber nonlocal hydrodynamics**.
Rheology summary

- Network relaxation time $\tau_c \approx 0.5 - 1\text{s}$
- For $\omega^{-1} \gg \tau_c$
 - Quasi-steady; elastic solid
 - Small effect of nonlocal hydrodynamics ($\sim 10\%$)
- For $\omega^{-1} \approx \tau_c$,
 - $G'' \approx G$
 - Max change in G' due to *inter-fiber* hydro
- For $\omega^{-1} \ll \tau_c$.
 - Fibers and CLs “frozen”; network behaves like a viscous fluid
 - $G'' \gg G'$; up to 25% change due to *intra-fiber* hydro.
Outline

1. Motivation
2. Fibers in Stokes flow
3. Inextensibility
4. Numerical Methods
5. Actin gels
6. Future Challenges
 - Adding twist
 - Adding Brownian motion
For given force densities \(f(s, t) \) and **parallel torque** densities \(m(s, t) \) along the fiber centerlines,

\[
\nabla \pi = \eta \nabla^2 v + \int_0^L ds \left[f(s) + m(s)\tau(s)\frac{\nabla}{2} \times \right] \delta_a (X(s) - r),
\]

\[
\Omega^\parallel(s) = \tau(s) \cdot \int dr \frac{\nabla}{2} \times v(r, t) \delta_a (X(s) - r)
\]

- Open question: Should fiber exert **perpendicular torques** on the fluid (and vice versa)?
- Previous work using multiblob-type methods makes \(m \) a 3D vector (Peskin, Lim, Olson, Keaveny) and uses **Kirchhoff rod theory** (triad based) but we use scalar twist angle (inspired by work in group of Jorn Dunkel).
Bishop frame

- To each point along the fiber we attach an orthonormal triad $\mathbf{B}(s) = [\mathbf{r}(s), \mathbf{a}(s), \mathbf{b}(s)]$ called the Bishop frame, which satisfies the no-twist condition:
 \[\mathbf{a}_s \cdot \mathbf{b} = 0 \quad \Rightarrow \quad \partial_s \mathbf{a} = (\mathbf{r} \times \mathbf{r}_s) \times \mathbf{a} \]
- Represent the twist of the i-th fiber by the angle $\theta(s)$ between the material frame of the cross section of the fiber and the Bishop cross section.
 \[\mathbf{f} = -\kappa_b \mathbf{X}_{ssss} + \kappa_t \left(\theta_s (\mathbf{r} \times \mathbf{r}_s) \right)_s + \lambda, \]
 \[m = \kappa \mathbf{r} \theta_{ss} \]
- Bishop frame evolves even if $\Omega^\parallel = 0$,
 \[\partial_t \theta(s, t) = \partial_t \theta(s = 0, t) + \int_0^s ds' \Omega_s (s', t) \cdot \mathbf{r} (s', t). \]
Why twist is hard

- Can we solve Bishop frame ODE efficiently with spectral methods?
- Temporal integration is challenging because of **extreme stiffness**: twist relaxation much faster than bend relaxation. Maybe twist is always in **quasi-equilibrium**?
- When **does twist matter**?
 Flagella, formins twisting growing actin filaments, macroscopic chirality in cells, and ?
Fluctuating hydrodynamics gives the fluctuating Stokes equations
\[\rho \partial_t v + \nabla \pi = \eta \nabla^2 v + \nabla \cdot \left(\sqrt{2\eta k_B T} \mathcal{W} \right) \]
\[+ \int_0^L ds \, f(s, t) \delta_a (X(s, t) - r). \]

The thermal fluctuations (Brownian motion of fiber) are driven by a white-noise stochastic stress tensor \(\mathcal{W}(r, t) \).

Open mathematical question:
- What is the overdamped limit \(\eta/\rho \to \infty \) (steady Stokes)?
- Can one even write a multiplicative noise SPDE for the fiber motion that makes mathematical sense?
For **Brownian multiblob chains** there are no mathematical issues so start there!
Multiblob chains: Linear Algebra

Since multiblobs have lots of DOFs per fiber, LA matters

GMRES convergence for implicit solver for a curved fiber, using \texttt{local-drag SBT} as a preconditioner (from B. Sprinkle).
References

Ondrej Maxian, Alex Mogilner, and Aleksandar Donev.
An integral-based spectral method for inextensible slender fibers in Stokes flow.

Anna-Karin Tornberg and Michael J Shelley.
Simulating the dynamics and interactions of flexible fibers in stokes flows.

Rapid sampling of stochastic displacements in brownian dynamics simulations.
Software available at https://github.com/stochasticHydroTools/PSE.

Ludvig af Klinteberg and Alex H Barnett.
Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping.