
Message Authentication Codes from

Unpredictable Block Ciphers

Yevgeniy Dodis∗ John Steinberger†

June 2, 2009

Abstract

We design an efficient mode of operation on block ciphers, SS-NMAC. Our mode has the following
properties, when instantiated with a block cipher f to yield a variable-length, keyed hash function
H:

(1) MAC Preservation. H is a secure message authentication code (MAC) with birthday security,
as long as f is unpredictable.

(2) PRF Preservation. H is a secure pseudorandom function (PRF) with birthday security, as
long as f is pseudorandom.

(3) Security against Side-Channels. As long as the block cipher f does not leak side-channel
information about its internals to the attacker, properties (1) and (2) hold even if the remaining
implementation of H is completely leaky. In particular, if the attacker can learn the transcript
of all block cipher calls and other auxiliary information needed to implement our mode of
operation.

Our mode is the first to satisfy the MAC preservation property (1) with birthday security, solving
the main open problem of Dodis et al. [8] from Eurocrypt 2008. Combined with the PRF preservation
(2), our mode provides a hedge against the case when the block cipher f is more secure as a MAC
than as a PRF: if it is false, as we hope, we get a secure variable-length PRF; however, even if true,
we still “salvage” a secure MAC, which might be enough for a given application.

We also remark that no prior mode of operation offered birthday security against side channel
attacks, even if the block cipher was assumed pseudorandom.

Although very efficient, our mode is three times slower than many of the prior modes, such as
CBC, which do not enjoy properties (1) and (3). Thus, our work motivates further research to
understand the gap between unpredictability and pseudorandomness of the existing block ciphers,
such as AES.
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1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers, such as AES. Typically,
one models the block cipher as a fixed-input-length (FIL) pseudorandom permutation (PRP), and then
builds a more complex variable-input-length (VIL) primitive under this assumption. For many such VIL
primitives, like pseudorandom functions (PRFs), this strong assumption on the block cipher is justifiable.
One exception here is the design of message authentication codes (MACs): since the resulting primitive
only needs to be unpredictable, it would be highly desirable to only assume that the block cipher is
unpredictable as well, as opposed to pseudorandom. Indeed, it seems that assuming the block cipher is
unpredictable is a much weaker assumption than assuming full pseudorandomness: to break the latter,
all one needs to do is to predict one bit of “random-looking” information about the block cipher with
probability just a little over 1/2, while the former requires one to fully compute the value of the block
cipher on a new point with non-trivial probability. Thus, it is natural to ask the following central
question of this work:

Question 1 Can one build an efficient variable-input-length MAC from a block cipher which is modeled
as an unpredictable permutation (UP) on n-bits?

We will argue that no existing constructions are really satisfactory for achieving this natural goal.
In order to discuss this precisely, we briefly recall some key quantities which determine the security of
a construction. In this paper we consider only two types of adversaries: distinguishers, whose goal is
to distinguish a function from an ideal primitive (as for PRFs and PRPs) and forgers, whose goal is
to predict the value of the function on an un-queried message (as for MACs and UPs). As there often
exist constant-query attacks using very long messages, the most important measure of an adversary’s
efficiency is the total length of messages that it queries. This upper bounds, among others, the number
of queries made by the adversary. For functions that are built from a smaller primitive (such as, in all
the cases we consider, a permutation), a more convenient efficiency measure is the number of queries
one must make to the smaller primitive in order to evaluate the adversary’s queries. In this section we
let q stand for the latter number, as opposed to the number of queries actually made by the adversary
to its oracle.

Let C be a function built from a block cipher f . The security1 ε = ε(q) of C is the maximum
advantage of an adversary for which the number of calls to f necessary to compute the adversary’s
queries to C does not exceed q. Thus, lower ε implies better security. We write εmac and εprf to
distinguish the security C as MAC and PRF, respectively. Likewise the block cipher has a security εup

and εprp as a UP and as PRP, respectively.2 The rate of a VIL-function C is the number of times the
block cipher has to be called on each input block, so it measures the efficiency of C. We can now
rephrase our goal as follows. Given a block cipher f with UP security εup, construct a VIL-MAC C
such that:

(a) C has small constant rate;

(b) the security εmac of C is as small as possible as a function of εup.

A good way to quantify the “goodness” of εmac is to assess the maximum q for which the achieved
bound is meaningful, assuming that the block cipher has ideal security εup ∼ 1/2n as an unpredictable
permutation. For example, if εmac = O(εup ·q

2), then the bound is meaningful for q up to ∼ 2n/2, which
matches the classical birthday bound typically achieved when one models the block cipher as a PRP. As

1Other parameters, such as the running time allowed to the adversary, may be relevant for the security, but these are
not important here.

2In fact εup = εmac for a block cipher, since these refer to the same notion, but we write εup to emphasize the difference
with C.
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argued by Preneel and van Oorschot [17], a simple extension attack shows that the birthday security is
the best security one may hope to achieve by natural “iterative” constructions. On a positive, several
elegant (iterative) constructions matching this bound are known, when modeling the block cipher as a
PRP. On a negative, no existing constructions, iterative or otherwise, come even close to the birthday
security when assuming UPs as opposed to PRPs. Thus, our “golden standard” to answer Question 1
will be to solve

Question 2 Build an (iterative) VIL-MAC from UPs, having constant efficiency rate and (nearly)
birthday security.

Jumping ahead, this will be our main result, therefore resolving the main open question of Dodis et al. [8]
from Eurocrypt 2008. But first, let us survey what is known, to better understand the difficulties we
will have to face, and also motivate our approach.

1.1 Inapplicability of Existing Solutions

There is a huge number of proposals for building a VIL-MAC out of a block cipher. Unfortunately, it
turns out that most of them are insecure when instantiated with unpredictable block ciphers, — often
despite having simple proofs of security when one models the block cipher as a PRP, — and the few
that are secure, achieve extremely poor rate and/or security. In order to keep the present discussion
focused, we give a detailed listing of many “failed” approaches in Appendix A, here concentrating only
on the highlights relevant to our actual approach.

In brief, the existing approaches in question include the following: (1) generic route from unpre-
dictability to pseudorandomness [11, 14]; (2) CBC-MAC [4, 15]; (3) HMAC/NMAC [3, 6]; (4) various
ad-hoc methods (e.g., iterating the truncated version of the block cipher); (5) hash-then-MAC using
(almost) universal hashing [3, 5]; (6) hash-then-MAC using collision-resistant hashing; (7) Feistel Net-
work [9, 12]; and (8) the current best method called “enhanced CBC” mode [8]. Of these, approaches
(2), (3), (4) and (5) are completely insecure when instantiated with generic UPs (as opposed to PRPs!).
This is simple to see for (3), (4) and (5), and was shown by An and Bellare [2] for the CBC-MAC
(approach (2)). The generic approach (1) is secure, but very inefficient, which is not surprising.

Approach (6), using a collision-resistant hash function (CRHF) H to hash the VIL message before
applying a FIL-MAC, also works in principle, but is not satisfactory. In theory, the assumption that
CRHFs exist is much stronger than the existence of UPs (or even PRPs); for example, there is a black-
box separation [20] between these assumptions. Even in practice, where many hash functions are built
from block ciphers (and analyzed in the ideal cipher model [7,16]), the resulting hash functions appear
to require a larger security parameter than the “stand-alone” block ciphers they are built from. For
example, while the industry standard AES has input length 128, no existing hash function with 128-bit
output is considered secure (e.g., MD5 and related functions are broken [21]); in fact, NIST does not
recommend using any hash function with output size below 256, including 160-bit SHA-1.
Weak Collision-Resistance. Thus, we would like to base security of the “hash-then-mac” approach
on weaker hash functions than CRHFs. As was demonstrated by [6], the precisely correct notion for
this task is that of Weak Collision Resistance (WCR). Such hash functions H are keyed, and their
key is part of the secret key for the resulting VIL-MAC. In terms of security, it should be infeasible
for the attacker to come up with distinct inputs x and y such that H(x) = H(y), even when given
oracle access to H. An and Bellare [2] then showed that WCR hash functions have similar properties to
CRHFs: in particular, the (strengthened) Merkle-Damgard transform gives a VIL-WCR hash function
from a FIL-WCR hash function, which can then be used in “hash-then-mac” approach. Moreover, both
security reductions are tight for our purposes.

Thus, to efficiently answer Question 1, it is sufficient to build a fixed-input-length sufficiently com-
pressing (say, two-to-one) WCR hash family. Indeed, this is the route of all existing solutions (e.g.,
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approaches (7) and (8)), as well as our solution. However, to also answer Question 2 would additionally
require a WCR hash with birthday security, which was not known prior to this work.
Building WCR from UP. This question appears to be non-trivial. In fact, many of the failed
approaches above, such as (2), (3), (4) and (5), not only fail to give a shrinking MAC already on
two-block messages, but also fail to yield a WCR hash. (Note, a shrinking MAC is also WCR [2].) In
particular, only two secure solutions were known prior to this work (approaches (7) and (8) above).
First, Dodis and Puniya [9] showed how to construct a two-to-one FIL-WCR from ω(log κ) independent
UPs, where κ is the security parameter. The construction applied ω(log κ) rounds of the Feistel Network
π(x‖y) = (y‖f(y) ⊕ x) to the 2n-bit input, each with a different UP f , and then truncated the last
output in half. Moreover, they showed that O(log κ) rounds are generally insufficient for this task
(extending the three-round counter-example of [2], and in sharp contrast to the setting of PRPs, where
three rounds are already enough [12]). This means that the resulting super-constant rate ω(log κ) of
this particular construction cannot be improved, making it somewhat inefficient for practice. More
significantly, the security of this construction proven by [9] was only O(εup · q

6), meaning that it can
only be secure for at most 2n/6 messages, which is unacceptable for n = 128.

The best current WCR construction from UPs comes from the work of Dodis et al. [8], who made the
surprisingly simple observation that the function h(x‖y) = f1(x) ⊕ f2(y) is a two-to-one, rate-2 WCR
hash function, assuming f1 and f2 are two independent UPs. This immediately gives a rate-2 VIL-MAC
from UPs, which is very efficient, and is the first (and only) constant-rate solution to Question 1 known
prior to this work. Unfortunately, the security of this WCR function (and the resulting VIL-MAC) is
O(εup · q

4). Moreover, it is easy to see that this bound is actually tight. Thus, the construction can
only be secure for at most 2n/4 messages, again making it fall short of our goal of obtaining security up
to 2n/2. In fact, this question of achieving “birthday security” 2n/2 (which is our Question 2) was the
main open question posed in [8].

1.2 Our Results

In this work we resolve this question in the affirmative. Concretely, we construct a VIL-MAC, called SS-
NMAC, from four independent UPs f1, . . . , f4, which achieves rate 3 and security εmac ≈ O(εupq

2 log2(q)),
meaning it can be secure for almost 2n/2 messages. This is the first constant-rate MAC with birthday
security built from an unpredictable block cipher. The construction of SS-NMAC is depicted in Figure 2,
where the message is x = x1 . . . xℓ.

Our construction uses the WCR approach mentioned earlier: namely, it uses the (strengthened)
Merkle-Damgard iteration of the 2n-bit to n-bit compression function F (x‖y) = f1(x) ⊕ f3(f1(x) ⊕
f2(y)), which is shown in Figure 1. This function was originally suggested by Shrimpton and Stam
[19], who argued that F is collision-resistant with birthday security, assuming that f1, f2, f3 are public
random functions (i.e., random oracles). In contrast, our main technical result (Theorem 1) shows that
this function is (weakly) collision-resistant (with birthday security), even if f1, f2, f3 are only (keyed)
unpredictable functions.

We note that since any FIL-MAC is FIL-WCR (Lemma 4.4 [2]) it would suffice to prove the
Shrimpton-Stam compression function is a good MAC in order to show it is WCR. However, as ex-
plained in Appendix C, the Shrimpton-Stam compression function is not a good enough MAC for our
purposes, showing the necessity of directly proving WCR security.
Comparison with [19]. On a technical level, both results appear similar. In both cases, assuming the
adversary A has oracle access to f1, f2, f3, one has to argue that A has low chance of finding a collision
to F . However, the key difference is that the fi’s are assumed truly random in [19], whereas we can only
assume unpredictable fi’s. In particular, while [19] could directly bound the probability of A finding the
collision in F using an information-theoretic argument, we have to build an efficient reduction from the
presumed collision-finding attacker A to a UP-forger B forging one of the MACs. It is well known that

3



such information-theoretic arguments often do not have direct analogs in the computational setting. To
illustrate this more concretely, let us only discuss the most interesting such difficulty we had to resolve.

The key argument of [19] was a technical calculation, using factorials, binomials and various prob-
ability manipulations, that A is unlikely to find an “n-way multi-collision” in the auxiliary function
h(x‖y) = f1(x)⊕ f2(y), when f1 and f2 are truly random functions. To adapt this (critical) part of the
argument to our computational setting, we would have to take an efficient attacker A′ capable of finding
such a multi-collision in h with probability ε, and turn it into a forger B′ for either f1 or f2, succeeding
with probability Ω(ε/q2). As far as we could see, the probability calculations in [19] give no guidance of
how to do such a reduction. And, indeed, finding such a reduction required a completely new approach,
relating to a natural “balls-and-bins” game that we analyzed (see Lemma 1), and resulting in a very
non-obvious construction of B. We discuss this construction in detail in Section 4.2, only mentioning
that it gave us a better understanding of the security of the Shrimpton-Stam compression function,
and even implicitly improved the probability calculations of [19] for the special case of truly random
functions (corresponding to ε = 2−n in our reduction). In particular, for the case of random functions
we get a convenient closed form of O(q2 log2(q)/2n) for the collision resistance of the Shrimpton-Stam
compression function, where, as per our convention for this section, q is the total number of block cipher
queries allowed (cf. Theorem 1).
Strong PRF preservation. We also notice that our new mode has the following desirable multi-
property preservation guarantee advocated by [8]: if the block cipher is unpredictable, we get a MAC
with message security roughly 2n/2, while if it happens to be pseudorandom, we get a PRF with message
security roughly 2n/2. In other words, we expect and hope that practical block ciphers (such as AES)
are in fact PRPs with good security. If our hope is correct, we would get a full-fledged pseudorandom
function with good security; however, even if the block cipher turns out to be a much better MAC than
it is a pseudorandom function, we still get a MAC with excellent security, which could be reassuring for
many applications. Details are sketched in Section 5.

More interestingly, even in the setting of PRPs, our SS-NMAC construction yields a more “leakage-
resilient” VIL-PRF H than the prior constructions. In particular, in Section 6 we show that the resulting
PRF is secure even in the so called oracle cipher model, first considered by Dodis et al. [9]. Recall, in
the standard model for PRFs, the attacker only learns the output H(x) of the PRF on input x, but does
not learn any of the intermediate values, such as the inputs/outputs to the block cipher or any of the
chaining variables. Indeed, this secrecy of the intermediate values is completely essential to the security
of most standard constructions, such as CBC-MAC or the standard Luby-Rackoff transformation [12].
In other words, these constructions are actually broken in the oracle cipher model, irrespective of the
strength of the block cipher used (e.g., even with AES). In contrast, our SS-NMAC construction is a
secure VIL-PRF — with (essentially) the same birthday security — even when the attacker learns all
the intermediate values needed to obtain H(x), except for what is done inside the actual block-cipher
computations. More precisely, even if the attacker learns all the computation history of our SS-NMAC
construction on a bunch of points (not including the internals of the block ciphers), the value of the
function at any set of non-queried points looks random to the attacker. Thus, as long as the block
cipher is implemented in a “leakage-resilient” way, the remaining implementation of SS-NMAC can be
completely insecure with respect to side-channel attacks! We believe that the security in the oracle
model is quite important, since we envision secure hardware-based implementation of block-ciphers,
later composed with much less secure software-based solutions, to yield various more advanced VIL
primitives. We also remark that none of the two previous PRF constructions in the oracle cipher
model [8, 9] achieved anything close to birthday security.
Summary. To summarize, in addition to yielding a more secure VIL-MAC than prior constructions
in the case when εup ≪ εprp, our construction gives a more “leakage-resilient” (and equally secure!)
VIL-PRF even when assuming εprp is nearly as good as εup. Moreover, we only pay a small constant
factor price in efficiency for these (significant) security enhancements. In Section 7, we briefly discuss
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whether this slowdown is justifiable in practice, which ultimately calls for more research to understand
the gap between unpredictability and pseudorandomness of the existing block ciphers, such as AES.

2 Security Definitions

We briefly recall the standard security notions for MACs and PRFs. In each case we are interested in
resistance to chosen message attacks. For a MAC, an adversary succeeds if it can forge the MAC on an
un-queried value. For a PRF, the adversary succeeds if it can distinguish the PRF from a truly random
oracle. To measure an adversary’s efficiency we count not only the number of oracle queries made but
also the time and the total length of queried messages (as the oracles accept variable length inputs). In
this section we use the variable q̃ to denote the number of queries made by the adversary to its oracle
in order to emphasize the distinction from the variable q used in Section 1, which was defined as the
(distinct) number of block cipher calls necessary to evaluate those queries (the adversary does not have
direct access to the block cipher). In later sections we maintain the spirit of this convention, using q̃
for queries made to VIL-functions and q for queries made to FIL-functions (usually block ciphers).

A function family is a map f : {0, 1}κ×Dom(f)→ {0, 1}n where Dom(f) ⊆ {0, 1}∗. The strings in
{0, 1}κ are the keys of f and we write fk(x) for f(k, x) for k ∈ {0, 1}κ and x ∈ Dom(f). The function
fk is called a member of f .

For MACs we consider the following game, where A is an adversary with oracle access to fk:

Game Forge(A, f):
k ← {0, 1}κ; (x, y)← Afk

If x ∈ Dom(f), fk(x) = y and x was not a query of A then A
wins, otherwise A looses.

Following An and Bellare [2] we define the insecurity of f as a MAC to be

InSecmac
f (t, q̃, µ) := max

A
Pr[A wins Forge(A, f)]

where the maximum is taken over all adversaries A making at most q̃ queries whose total combined
length is at most µ bits and of “running time” at most t. The “running time” is defined to be the total
running time of the experiment, including the time necessary to compute the answers to A’s queries.
(The advantage of this definition is that a simulator running A and computing the answer to A’s queries
from scratch has essentially the same running time t.)

For PRF security the game is modified by either giving A access to a random fk or to a random
oracle g : Dom(f) → {0, 1}n with probability 1

2 and A wins if it correctly identifies whether its oracle
is fk or g. Call this game ‘Identifies(A, f)’. Then

InSecprf
f (t, q̃, µ) := max

A
Pr[A wins Identifies(A, f)]−

1

2

where again the maximum is taken over all adversaries A making at most q̃ queries of total length µ
and of running time t, with the same convention concerning running time.

The proof finally uses the notion of “weak collision resistance” (WCR), which measures the collision
resistance of a function only available as an oracle to the adversary. In the weak collision resistance game
for the function family f , A is given oracle access to a random fk and wins if it succeeds in querying
fk on two distinct points x, y such that fk(x) = fk(y). Then InSecwcr

f (t, q̃, µ) is defined similarly with
respect to this game as InSecmac

f (t, q̃, µ) is defined with respect to the game Forge(A, f).
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Figure 2: The SS-NMAC mode of operation.

3 The SS-NMAC construction

The basic SS-NMAC scheme is shown in Figure 2. The scheme uses the Merkle-Damgard iteration of
the 2n-bit to n-bit compression function of Shrimpton and Stam [19] shown in Figure 1. We start by
describing this compression function.
The Shrimpton-Stam compression function. The Shrimpton-Stam compression function is a 2n-
bit to n-bit compression function that uses calls to three different n-bit to n-bit primitives f1, f2, f3. We
write the compression function as F [f1, f2, f3] to emphasize its dependence on f1, f2, f3. It is defined
by

F [f1, f2, f3](x‖y) = f1(x)⊕ f3(f1(x)⊕ f2(y))

for any pair of n-bit strings x, y.
Shrimpton and Stam [19] proved that F [f1, f2, f3] has optimal (i.e. birthday) collision resistance if

f1, f2, f3 are random functions. They also conjectured that the construction remains collision resistant
if fi(x) is replaced with πi(x) ⊕ x where π1, π2, π3 are random permutations, which would enable the
construction to be implemented with fixed key block ciphers. This conjecture was verified by Rogaway
and Steinberger [18].

For our purposes, the key property of F [f1, f2, f3] is that an adversary with oracle access to the fi’s
can only learn F [f1, f2, f3](x‖y) on roughly as many inputs x‖y as it makes queries. This should be
contrasted for example to the compression function h[f1](x‖y) = f1(x ⊕ y) of the CBC MAC or the
“xor compression function” g[f1, f2](x‖y) = f1(x)⊕f2(y) of the enciphered CBC construction of Dodis,
Pietrzak and Puniya [8], where f1, f2 are again n-bit to n-bit functions. An adversary querying h[f1]
can learn to evaluate h[f1] on 2n inputs x‖y in a single query; an adversary querying g[f1, f2] can learn
to evaluate g[f1, f2] on q2 inputs x‖y in q queries. Another compression function that could be used
equally well in place of F [f1, f2, f3] is the LP231 compression function of Rogaway and Steinberger [18],
which also uses three calls to n-bit to n-bit primitives. However we use F [f1, f2, f3] because it is simpler
and sufficient for our purposes.
Iteration and Padding. First we define PadAp(x) to be x10k〈ℓ〉 where k is the least integer such
that x10k has length a multiple of n, where ℓ is the number of n-bit blocks in x10k, and where 〈ℓ〉
is ℓ written as an n-bit binary integer (messages with maximum length 2n are sufficient for most
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applications). Appending 〈ℓ〉 amounts to using Merkle-Damgard strengthening, which we do in order
to keep our space of messages suffix-free. Any other suffix-free encoding of messages would do as well.

To iterate F [f1, f2, f3] we define the “SS-cascade” G[f1, f2, f3] of an nℓ-bit string x = x1‖· · · ‖xℓ

where each xi is an n-bit string by G[f1, f2, f3](x) = yℓ where y0 = 0n and yk = F [f1, f2, f3](xk‖yk−1) for
1 ≤ k ≤ ℓ. Finally, given an additional n-bit to n-bit function f4 we define the SS-NMAC H[f1, f2, f3, f4]
by

H[f1, f2, f3, f4](x) = f4(G[f1, f2, f3](x)).

for all x ∈ Dom(H) := {PadAp(y) : y ∈ {0, 1}∗}. See Figure 2, where x = x1‖· · · ‖xℓ‖〈ℓ〉. Note that
to query H[f1, f2, f3, f4] on its domain an adversary must pad the input itself before giving it to the
oracle. Thus queries must be at least n bits long and the number of queries made by an adversary is
upper bounded by µ/n where µ is the total length of messages queried by the adversary.

For the remainder of the paper we let f : {0, 1}κ × {0, 1}n → {0, 1}n be an arbitrary, fixed func-
tion family. We consider H as a function family of signature {0, 1}4κ × Dom(H) → {0, 1}n, where
Hk1k2k3k4(x) := H[fk1 , fk2 , fk3 , fk4 ](x). Likewise we consider F as a function family of signature
{0, 1}3κ × {0, 1}2n → {0, 1}n defined by Fk1k2k3(x‖y) = F [fk1 , fk2 , fk3 ](x‖y).

4 Security of SS-NMAC as a MAC

4.1 Overview

In this section we outline the proof that SS-NMAC is a secure MAC when f1, . . . , f4 are secure MACs.
The proof shows that H is a secure MAC family if f is a secure MAC family. In fact,

InSecmac
H (t, q̃, µ) ≤

(

1 + 30q2 log2(q)
)

· InSecmac
f (t + O(q2n), q, qn) (1)

where q = µ/n (q̃ is inconsequent, though one automatically has q̃ ≤ q). The O(q2n) difference in
running time is due to the overhead of a simulator.

Like Dodis, Pietrzak and Puniya [8], our security proof follows the approach developed by An and
Bellare [2], who reduce the VIL-MAC security to FIL-WCR security. In order to summarize their
method in a convenient way we refer to the members of a function family as being MAC-secure or
WCR-secure (see section 2 for the definition of WCR security) though security is really a property of
the function family. An and Bellare reduce the MAC security of a VIL function to the WCR security
of a FIL function in two steps:

Step 1: The composition of a secure FIL-MAC fk and a secure WCR function Gk′ is a secure VIL-
MAC fk(Gk′(·)) (Lemma 4.2 [2]). Applying this to the case where fk = fk4 and Gk′ = G[fk1 , fk2 , fk3 ]
it therefore suffices to show that G[fk1 , fk2 , fk3 ] is WCR-secure if f is a secure MAC family in order to
show that H[fk1 , fk2 , fk3 , fk4 ] = fk4(G[fk1 , fk2 , fk3 ]) is a secure MAC family.

Step 2: On a suffix-free domain of inputs the Merkle-Damgard iteration of a FIL-WCR compression
function gives a VIL-WCR function (Lemma 4.3 [2]). Thus, by step 1, it suffices to show that the
Shrimpton-Stam compression function F [fk1 , fk2 , fk3 ] is FIL-WCR when f is a secure MAC family.

Steps 1 and 2 give a qualitative description of An and Bellare’s approach. Quantitatively, their Lemmas
4.2 and 4.3 imply that

InSecmac
H (t, q̃, µ) ≤ InSecmac

f (t, q, qn) + InSecwcr
F (t, q, 2qn) (2)

where q = µ/n. Since InSecmac
f (t, q, qn) ≤ InSecmac

f (t + O(q2n), q, qn) it therefore suffices to prove

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn) (3)
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in order to prove (1). Inequality (3) is really the paper’s main result, and we state it as a theorem:

Theorem 1 Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let F : {0, 1}3κ × {0, 1}2n → {0, 1}n given by
Fk1k2k3(x‖y) = F [fk1 , fk2 , fk3 ](x‖y) = fk1(x)⊕ fk3(fk1(x)⊕ fk2(y)). Then

InSecwcr
F (t, q, 2qn) ≤ 30q2 log2(q) · InSecmac

f (t + O(q2n), q, qn).

The full proof of Theorem 1 is in Appendix B, but we give an outline in the next section.
Together with Lemmas 4.2 and 4.3 of [2], Theorem 1 implies inequality (3), which we restate as our

theorem characterizing the MAC security of SS-NMAC:

Theorem 2 Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let H : {0, 1}4κ × Dom(H) → {0, 1}n be the
SS-NMAC function family. Then, letting q = µ/n,

InSecmac
H (t, q̃, µ) ≤

(

1 + 30q2 log2(q)
)

· InSecmac
f (t + O(q2n), q, qn).

4.2 Proof Outline

In this section we give a proof of Theorem 1 under several simplifying assumptions, which make our
presentation considerably easier, while maintaining the key ideas of the full proof. Recall, we need
to upper bound the WCR-insecurity of the Shrimpton-Stam compression function F in terms of the
MAC-insecurity of f . Equivalently, we must lower bound the MAC-insecurity of f in terms of the
WCR-insecurity of F . To do the latter, we show how an ε-collision-finding adversary A for F can be
turned into a δ-MAC-forging adversary B for f , where B uses the same number of queries but has
chance of success δ = Ω(ε/q2 log2(q)).

First, instead of giving A oracle access to F [f1, f2, f3], we directly give it oracle access to f1, f2, f3,
with q queries allowed to each fi. Clearly, such an adversary can simulate q queries to F , so we only
made A more powerful. (Note, this strengthened attacker will be useful when we extend our argument
to the “oracle cipher” model in Section 6.) Let us generally denote the inputs to f1, f2, f3 by x, y, z,
respectively, and also denote by x1 . . . xq, y1 . . . yq and z1 . . . zq the ordered inputs to f1, f2, f3 supplied
by A. As expected, the forger B will simulate this adversary A when trying to forge one of the fi’s,
by using its own oracle to simulate the corresponding fi, and simulating the other fj ’s by picking their
secret keys by itself and answering honestly.
Simplifying Assumptions. Before proceeding further, we state our simplifying assumptions on the
behavior of A, which will make our construction of B much simpler, while retaining the key ingredients
of the general case.

• (No Collision in fi’s) For any distinct inputs xr and xs that A supplied to f1, f1(xr) 6= f1(xs).
Similar conditions also hold for f2 and f3.

• (Query Order) All the calls to f1 and f2 are made by A before any call to f3 is made.

Let us briefly comment on these assumptions. The first assumption regarding the collisions in the
fi’s is very minor, and is done for convenience only. Indeed, in the actual applications, the fi’s are
permutations, so the assumption is trivially true. And even if the fi’s are arbitrary length-preserving
MACs, the failure to satisfy our assumption with probability Ω(ε) trivially leads to a simple attacker B,
forging the corresponding fi with probability Ω(ε/q2), by simply guessing the indices r, s ∈ {1 . . . q} of
the colliding queries. So the only “real” assumption we make is the Query Order Assumption. This
assumption is provably impossible for the “initial” attacker who has oracle access to F [f1, f2, f3], as
opposed to f1, f2, f3 (since f3 will be called on the first call there), and is even more unreasonable for
the generalized attacker that can query the fi’s in any order it wants. However the assumption is used
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in a rather weak way in the proof sketch, as we will see, so that eliminating it only requires additional
casework, and no significant new ideas.
Notation and Terminology. A ball is a pair (x, y) where x, y ∈ {0, 1}n. A bin is a value z ∈ {0, 1}n.
It is instructive to associate balls (x, y) with the inputs to F , and the bins z with the inputs to f3. After
A makes q queries x1 . . . xq to f1 and y1 . . . yq to f2, we get Q = q2 potential balls (xr, ys) “thrown”
by A. In particular, we will say that such (xr, ys) is placed into the bin z = f1(xr) ⊕ f2(ys), and let
Bin(z) = {(xr, ys) : f1(xr)⊕ f2(ys) = z} denote the set of balls placed into bin z. Notice, each query xr

to f1 allows the attacker to simultaneously place j ≤ q balls (xr, y1), . . . , (xr, yj), where j is the number
of queries to f2 made so far. However, under our No Collision assumption of f2, all these j balls go to
distinct bins f1(xr)⊕ f2(ys), where 1 ≤ s ≤ j. Similar discussion holds for the calls to f2. Also, under
our Query Order Assumption, the attacker A places all Q balls into the appropriate bins in the first
stage, before making any of its queries z1 . . . zq to f3 in the second stage. And after each such query zt

to f3, A learns the value of F (x‖y) = f1(x)⊕ f3(zt) precisely for all (x, y) ∈ Bin(zt).
Back to Reduction. By our assumption, A will find a collision (x, y) 6= (x′, y′) to F with probability
ε. Without loss of generality, we assume that A makes the queries necessary to verify this collision.
Thus, x, x′ ∈ {x1, . . . , xq}, y, y′ ∈ {y1, . . . , yq}, and z, z′ ∈ {z1, . . . , zq}, where z = f1(x) ⊕ f2(y)
and z′ = f1(x

′) ⊕ f2(y
′). Notice, under our No Collision assumption on f1 and f2, we claim that

z 6= z′. Otherwise, f3(z) = f3(z
′) and f1(x) ⊕ f3(z) = F (x‖y) = F (x′‖y′) = f1(x

′) ⊕ f3(z
′) imply that

f1(x) = f1(x
′), meaning that x = x′. Then f2(y) = f1(x)⊕ z = f1(x

′)⊕ z′ = f2(y
′), so y = y′, meaning

that (x, y) = (x′, y′). Hence, the “colliding” bins z and z′ queried by A must be distinct.
We now define a key parameter which will determine the behavior of our forger B: the maximum bin

size m = maxz |Bin(z)| after the calls to f1 and f2 (the “filling” stage). We consider two complementary
cases: (1) A finds a collision and m ≤ log(q), meaning that every bin z contains at most log(q) balls
after the calls to f1 and f2 are finished; and (2) m > log(q), meaning that A managed to produce more
than log(q) pairs (xr, ys) resulting in the same value z = f1(xr)⊕ f2(ys).

(Interestingly, this parameter m corresponds to the largest “multi-collision” generated by A in
the “filling” stage. As argued by Shrimpton and Stam [19] for the case of truly random functions fi

and q ≈ 2n/2, the value m must be smaller than n1+o(1) ≈ log q with high probability, more or less
corresponding to saying that the attacker A must almost always be in case (1).)

By assumption that A succeeds to find a collision with probability ≥ ε, at least one of these com-
plementary cases happens with probability ≥ ε/2.

Case (1): A finds a collision and m ≤ log(q). This is the “easy” case. Intuitively, by querying at
most q bins z in the second stage, A learned the value of F in at most qm ≤ q log(q) points (x, y). As
we will see, it will allow B to guess the colliding points (x, y), (x′, y′) with probability 1/(q log(q))2, and
then forge the value f3(z

′) = f3(z) ⊕ f1(x) ⊕ f1(x
′). More formally, B starts by choosing two random

indices j < i between 1 and q. Let zi, zj be the i-th and j-th queries made to f3. When the query
f3(zi) is made, B chooses random elements (xi, yi) ∈ Bin(zi) and (xj , yj) ∈ Bin(zj) (assuming these sets
are nonempty, otherwise B gives up), and predicts that f3(zi) = f1(xi) ⊕ f1(xj) ⊕ f3(zj). Notice, this
corresponds to guessing that F (xi, yi) = F (xj , yj), which implies that A is about to find a collision.
This strategy cannot be successful unless A finds a collision (which we are assuming happens in this
case), and unless the colliding bins zi and zj are distinct, which we also argued earlier as following from
our No Collision assumption. But when A does find a collision, B’s chance of guessing the indices i, j
correctly is 1/

(

q
2

)

≥ 1/q2. Moreover if maxz |Bin(z)| ≤ log(q), B’s chance of guessing the right elements
(xi, yi) and (xj , yj) in Bin(zi) and Bin(zj) is at least 1/ log(q) each. Thus B’s chance of success with
this strategy is at least 1/q2 log2(q) when maxz |Bin(z)| ≤ log(q) and A finds a collision.

Case (2): A produces m > log(q). This is the “hard” case, where our balls-and-bins terminology
comes in handy. Intuitively, if A throws q2 balls with a guarantee that some bin will contain a lot of
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balls at the end, B should have a non-trivial chance (analyzed below) to guess the bin z corresponding
to some ball (x, y) before this ball is thrown. To effect such a guess, when A “throws” the ball (x, y) by
querying, say, f1(x) after previously querying f2(y), B can predict that f1(x) = z⊕ f2(y), or conversely
with f1 and f2 reversed if A queries f2(y) after querying f1(x). In other words, predicting the output
of f1 or f2 on a value queried by A is equivalent to predicting the bin where a particular ball (x, y) will
land at the point when the latest of the two queries f1(x), f2(y) is made. Thus, we may view B’s task
as consisting of observing a set of Q = q2 balls being placed by groups in 2n bins, and interrupting
the game at some point to predict the bin where a particular ball that is about to be placed. We model
this by a “balls-and-bins” game played by A and B, where A is incrementally throwing Q balls into
bins, trying to fill some bin with more than log(q) balls, and yet without having B be able to guess the
position of a ball before it is placed. Based on our discussion, the precise “rules” of this game are as
follows:
Balls-and-Bins Game:

• The game proceeds in 2q rounds, after which A is required to throw exactly Q = q2 balls.

• Before each round, A announces to B at most q balls b1, . . . , bt that it will be throwing into
(necessarily) distinct bins in this round. [Intuitively, a round corresponds to a query to f1(xr) (or
f2(ys)), and the balls are the corresponding values (xr, yj) (or (xi, ys)) for prior xi’s or yj ’s.]

• In turn, B can secretly “pass” or make a “guess” (ℓ, z) that the ball bℓ will be thrown into bin z
(where 1 ≤ ℓ ≤ t). [Intuitively, a successful guess will allow B to forge either f1 or f2, as outlined
earlier.]

• A announces to B the bins where b1 . . . bt are thrown. [Intuitively, B learns the value of f1 or f2

at the queried point, allowing it to learn the bin identities.]

• If B made a guess during this round, B wins the game if the guess is correct, and loses otherwise.
If B did not make a guess, proceed to the next round.

• B must make a guess at some round, while A must fill at least one bin with more than (log q)
balls.

Lemma 1 Irrespective of A’s strategy, there exists an efficient strategy for B to win the above game
with probability at least 1/4q2 whenever some bin contains more than log(q) balls at the end of the game.

Proof. B’s strategy is relatively simple:

1. Choose a random index i between 1 and q2, and a second random integer k between 1 and log(q).

2. Pass in all the rounds before the i-th overall ball is about to be thrown.

3. When the i-th ball is about to be thrown, make a secret guess that this ball will be thrown in a
random bin z chosen among those bins already containing at least k balls prior to this round (or
guess any bin if no such bin exists).

We argue that with this strategy, B’s chance of success is at least 1/4q2, provided that some bin contains
more than log(q) balls by the end of the game. Let cj be the total number of balls that are thrown into
bins that already have at least j balls in them right before the round when this ball is thrown. Thus
c0 = q2 and clog(q) ≥ 1 by assumption that a “heavy” bin exists at the end of the game. Also note that
cj is an upper bound for the number of bins that have j + 1 balls in them at the end of the game, since
for a bin to receive j + 1 balls, some ball has to be thrown into it when the bin already has j balls.
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For a fixed value of k, B’s chance of correctly guessing the bin is at least ck
q2 ·

1
ck−1

= 1
q2 ·

ck
ck−1

. This is

because B has chance at least ck
q2 of choosing a ball thrown into a bin with at least k balls, and then has

at least chance 1
ck−1

of choosing the bin correctly, given that there are at most ck−1 bins with k balls in

them even at the end of the game, let alone in some intermediate round. Summing over the different
values of k (which each have chance 1/ log(q) of being selected), we thus see that B’s chance of success
is

log(q)
∑

k=1

1

log(q)
·

1

q2
·

ck

ck−1
=

1

q2
ArithmeticMean

(

c1

c0
, . . . ,

clog(q)

clog(q)−1

)

≥
1

q2
GeometricMean

(

c1

c0
, . . . ,

clog(q)

clog(q)−1

)

=
1

q2

(

clog(q)

c0

)
1

log(q)

≥
1

q2

(

1

q2

)
1

log(q)

=
1

4q2

as claimed, where we used c0 = q2 and clog(q) ≥ 1. �

The above lemma immediately gives us a forger B for Case (2), which succeeds to forge either f1 or
f2 with probability at least 1/4q2 > 1/(q log(q))2 for that case. As B chooses randomly which strategy
to use and one of the two cases must occur with probability at least ε/2, B’s chance of success is at
least ε

2 min(1/(q log(q))2, 1/4q2) = ε/2(q log(q))2, completing the WCR proof under our two simplifying
assumptions.
General Case. Note that our (main) Query Order Assumption (namely that queries to f3 come
before queries to f1 and f2) is only used rather weakly, in the sense that A could make its queries
in any order as long as the query which completes the collision is a query to f3. Thus removing this
assumption amounts to handling two extra cases, in which collisions are completed with queries to f1

or f2 instead of f3. It turns out these cases can be handled fairly similarly to the f3 case. The details
are in Appendix B.

5 Security of SS-NMAC as a PRF

In this section we show that SS-NMAC is a secure PRF if f is a secure PRF. We will prove a stronger
property in Section 6; here we give a proof reducing to the security of encrypted CBC-MAC, which
gives a weaker result but a better security bound. The precise statement is the following theorem.

Theorem 3 Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let H be the SS-NMAC function family. Then,

letting q = µ/n and ε = InSecprf
f (t, q, qn), we have

InSecprf
H (t, q̃, µ) ≤ 5q2/2n + 4ε.

Proof. Let H∗ be the SS-NMAC construction where f1, f2, f3, f4 are random functions. Then
obviously InSecprf

H (t, q̃, µ) ≤ InSecprf
H∗(t, q̃, µ)+4ε, so it suffices to show that InSecprf

H∗(t, q̃, µ) ≤ 5q2/2n

where q = µ/n.

We show that InSecprf
H∗(t, q̃, µ) ≤ 5q2/2n by reducing to the security of the “original” encrypted

CBC-MAC, which is defined using a function family f of n-bit to n-bit functions by

C[f1, f2](x1‖. . . ‖xm) = f2(. . . f1(f1(x1)⊕ x2) . . . )
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Let C∗ be the instance of C where f1, f2 are random functions (namely, f is the set of all functions

{0, 1}n → {0, 1}n). It is known that InSecprf
C∗ (t, q̃, µ) ≤ q2/2n where still q = µ/n [15]. The security

proof in [15] is also easily seen to apply to the case of a three-keyed, “alternating” encrypted CBC-MAC
defined by

CA[f2, f3, f4](x1‖. . . ‖xm) = f4(. . . f2(f3(f2(x1)⊕ x2)⊕ x3) . . . )

in which encryptions by f2 and f3 alternate. Thus InSecprf
C∗

A
(t, q̃, µ) ≤ q2/2n where C∗

A is the random

function implementation of CA.
Note that CA becomes H if each block of input is repeated once and encrypted with a call to

f1. Thus a distinguisher D for H∗ can be used to obtain a distinguisher D′ for C∗
A: sample a key

k1 to simulate the function fk1 , then simulate a query x1‖· · · ‖xm of D to the oracle H∗ by passing
fk1(x1)‖fk1(x1)‖fk1(x2)‖fk1(x2) · · · fk1(xm)‖fk1(xm) to the oracle for C∗

A.
If the oracle is a true instance of C∗

A the answers returned to D look exactly as the answers of an
oracle to H∗, so D’s chance of distinguishing correctly is unaffected in that case. If on the other hand
the oracle is a random function the answers returned to D are independent random values except when
the same input is queried twice to the random oracle, which can happen because of collisions in fk1 . The
chance of a collision in fk1 when q = µ/n blocks of message are queried and fk1 is a random function is
at most q2/2n, however, so D and D′’s distinguishing advantages differ by at most q2/2n. Thus, since
D′ uses twice the message length, we get the desired

InSecprf
H∗(t, q̃, µ) ≤ InSecprf

C∗
A
(t, q̃, 2µ) + q2/2n ≤ 5q2/2n.

�

6 Enhanced PRF Security in the Oracle Cipher Model

In this section, we introduce (following [9]) a strictly stronger PRF security notion for block-cipher-based
PRFs in the so called oracle cipher model, and show that SS-NMAC has (nearly) birthday “oracle cipher
security” when instantiated with a secure PRP.

Let H be a function using a fixed-key block cipher f (or a small set of different fixed key block
ciphers). Essentially, the oracle cipher model is designed to allow the adversary to view computation
transcripts of H, but not including the internals of the block cipher calls. For example, one can imagine
that the adversary witnesses a trusted party’s computation of H on various inputs, where the trusted
party out-sources the block cipher calls to a smart-card, so that the secret keys remain hidden from
the adversary. We argue that H is a good random function if, subsequent to viewing a number of such
computations, the adversary is unable to distinguish H (queried on new values) from a truly random
function.

Let Mf be an oracle Turing machine implementing H. Before the game starts random keys are
chosen for the block ciphers, a random function h with same domain and range as H is sampled, and a
coin flipped to determine whether the adversary will be in the “real world” or “random world”. We allow
the adversary two types of queries: “transcript” queries and “oracle” queries. When the adversary A
makes a transcript query the transcript of the computation Mf (x) is returned to A. When the adversary
makes a oracle query (oracle queries must be distinct from transcript queries), the adversary either gets
Hf (x) or h(x) depending on whether it is in the real world or the random world. The adversary wins
if it can distinguish the two worlds.

We call the advantage of an adversary at winning this game the oracle cipher PRF security of H,
denoted εoprf . Clearly εoprf ≥ εprf for the same number of queries and the same computational resources,
since the adversary is free to play the oracle cipher game without making any transcript queries. Let
InSecoprf

H (t, q̃, µ) be the maximum εoprf over all adversaries running in time at most t, making at most q
queries of total (padded) length at most µ, where the running time includes the time necessary to run H
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and Mf . (Obviously, InSecoprf
H (t, q̃, µ) implicitly depends on the choice of M .) We have the following

theorem showing that the oracle cipher security of SS-NMAC is nearly equivalent to its standard PRF
security.

Theorem 4 Let f : {0, 1}κ×{0, 1}n → {0, 1}n, let H : {0, 1}4κ×Dom(H)→ {0, 1}n be the SS-NMAC
function family, and let Mf1,f2,f3,f4 be the natural oracle Turing implementation of SS-NMAC , which
makes 3ℓ+1 oracle calls to compute H(x) on a padded input of ℓ blocks. Then with respect to this oracle

Turing machine, and letting q = µ/n and ε = InSecprf
f (t, q, qn), we have

InSecoprf
H (t, q̃, µ) ≤ 30q2 log2(q)/2n + 4ε.

Proof. Let H∗ be the instantiation of H with a truly random function family instead of with f . We
clearly have InSecoprf

H (t, q̃, µ) ≤ InSecoprf
H∗ + 4ε, so it suffices to show InSecoprf

H∗ ≤ 30q2 log2(q)/2n.
We now modify the game like so: for each type of query (transcript and oracle), the adversary is

allowed to view the transcript of the computation of H∗(x) up to the application of f4. Then for a
transcript query the actual application of f4 is shown as part of the transcript to the adversary, whereas
for an oracle query the value of the oracle query is simply appended to the transcript (which will be the
value of f4 in the real world, or else simply the value of the random function h). Note the adversary
knows in either case which type of query it is witnessing, but cannot independently verify f4 for oracle
queries unless it happens to make another query later (either transcript or oracle) which results in the
same input to f4. In fact, if the adversary never makes two queries at least one of which is an oracle
query that result in the same input to f4, the two worlds look exactly alike (because f4 is uniformly
random) and the adversary has zero advantage.

Thus the adversary’s advantage is upper bounded by its probability of finding a collision at the input
to f4 with free oracle access to f1, f2, f3, which is in turn upper bounded by the collision resistance of
the Shrimpton-Stam compression function when instantiated with random functions. Thus Theorem 1
applied with MAC insecurity 1/2n gives InSecoprf

H∗ (t, q̃, µ) ≤ 30q2 log2(q)/2n, as desired. �

7 Unpredictability vs. Pseudorandomness

Given that our solution is three times slower than CBC-MAC, it is interesting to see if existing block
ciphers, such as AES, are indeed more unpredictable than pseudorandom. Notice, even if our n-bit block
cipher is completely ideal, it has security εprf ∼ q2/2n+1 as a one-block PRF, and a much better security
εmac ∼ 1/(2n − q) as a one-block MAC, where q is the number of input queries issued by the attacker.
Also, in theory is is trivial to construct artificial block ciphers which are much more unpredictable than
pseudorandom. Unfortunately, existing block ciphers are neither ideal nor artificial. For such “real”
block ciphers, to the best of our knowledge, this gap between unpredictability and pseudorandomness
has not been researched extensively. In part, this might be due to the cryptanalytic “culture” to call
the attack truly “successful” if it actually recovers the secret key, which, obviously, will not demonstrate
the gap we are seeking here.

We give a (rather weak) example to demonstrate this point. It is well known in complexity theory [22]
that no pseudorandom generator with κ-bit key can have security more than 2−κ/2 (against non-uniform
attackers), even against linear tests.3 This means that no non-trivial PRF with a κ-bit key can have
security εprf ≤ 2−κ/2, even for q = O(1) (e.g., AES cannot be more than 2−64 secure, even for q = 2!). In
contrast, no such limitation is known for unpredictability, even for exponentially high number of queries
q (e.g., for all we know, AES might be almost 2−128 secure, even for q = 260 or higher). However, the

3Since an ε-secure pseudorandom generator must also be an ε-biased set [13], and such sets must have seed length at
least 2 log(1/ε) (see [1]). Thus, κ < 2 log(1/ε).
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above theoretical “separation” is not considered a “real attack”, since the best known way to translate
this specific 2−κ/2 distinguishing attack to the key recovery attack takes time Ω(2κ), which is trivial.

We hope that our work will motivate further research to understand the gap between unpredictability
and pseudorandomness of existing block ciphers, such as AES. In particular, to answer the question
if existing modes, such as CBC-MAC or HMAC, should be replaced by slower, but more “resilient”
modes, such as SS-NMAC.
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A Inapplicability of Existing Solutions

Here survey some of the existing approaches, and explain why they do not appear to give a satisfactory
answer to our main question.
Reducing to PRF. Given a large number of proposals which are secure when the block cipher is pseu-
dorandom, such as (encrypted) CBC-MAC [4,15] and HMAC/NMAC [3,6], the most natural approach
is to first build a (fixed-input-length) PRF out of our block cipher, and then apply the existing machin-
ery. Unfortunately, such generic conversions from unpredictability to pseudorandomness, originating
with the revolutionary paper of Goldreich and Levin [11], usually achieve pretty poor parameters. In
our setting, the most efficient PRF built from an unpredictable function (or permutation) is the con-
struction of Naor and Reingold [14], who showed that the Goldreich-Levin construction with a secret
inner-product vector r yields a 1-bit PRF with PRF-security εprf ≈ (εup · q

2
prf)

1/2, where qprf is the
number of queries the adversary makes to the PRF and εup is the security of the block cipher under
q = O(q3

prf/ε2
prf) queries. Since q ≤ 2n, the bound is void when qprf ≥ 2n/3 or εprf ≤

1
2n/2 , and (in

particular) birthday security cannot be achieved. Moreover, to use the resulting 1-bit PRF, we first
need to amplify its output length to be at least the security parameter κ, resulting in bad efficiency
rate.

Thus, not surprisingly, the route through pseudorandomness is too inefficient. Hence, we turn to
other “direct” and efficient VIL-MAC constructions to see if, by “lucky chance”, they happen to be
secure with unpredictable block ciphers.
CBC Mode. The popular CBC-MAC (and it related variants) is a simple, rate-1 construction of
a VIL-MAC from a block cipher. In fact, under the assumption that the block cipher is a PRP, one
can even get a VIL-PRF with birthday security of 2n/2 messages. Unfortunately, as demonstrated by
An and Bellare [2], the CBC-MAC could be completely insecure assuming the block cipher is a UP:
εmac = 1 already for two queries on two-block messages! Hence, this approach fails completely.
HMAC/NMAC. The popular HMAC construction [6] is a heuristic practical variant of the NMAC
construction, and is based on the Merkle-Damgard (i.e., cascade) mode of operation. It requires a keyed
function family whose output length is at least as large as its key length, which is the case for many
block ciphers including AES. In each iteration of the cascade, the current chaining variable (initially,
the key) is used as the key for the next iteration. Intuitively, this works for the case of PRFs/PRPs,
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whose output is (pseudo)random, and can be used as a key. However, it totally fails for the case of
UPs, whose output need not be random at all (just unpredictable). For example, it is very simple to
construct (artificial) UPs, for which the cascading operation will converge to a known constant on some
fixed two-block input.4 Thus, simple counter-examples of this kind easily dispatch this approach.5

Hash-then-MAC. A classical approach to extend a domain of a cryptographic primitive is to use
an appropriate variable-input-length hash function H to first hash a long message x to a short digest
y = H(x), and then to apply a given FIL-MAC (such as UP) to y. The key question is which properties
of H suffice for this goal. The first simple observation is that collision-resistant hash function (CRHFs)
obviously suffice. However, as explained in the Introduction, this is unsatisfactory both in theory and
in practice.

Thus, we would like to base security of the “hash-then-mac” approach on weaker hash functions than
CRHFs, which is promising since the hash function H can be keyed. In particular, (almost) universal
hash functions are known to be sufficient for the soundness of this approach (this is attributed to [5]
by [3]), when later composed with a FIL-PRF f (such as a PRP). Intuitively, all long as no collisions
for H are produced so far, the “outer” f will hide all information about the key of H, allowing one to
securely evaluate H on future inputs, without causing collisions with high probability. Unfortunately,
it is very crucial that the outer f is pseudorandom, and it is easy to see that this approach will not
work, in general, with unpredictable block ciphers.6

Luckily, as also explained in the Introduction, one can base the security of the “hash-then-mac”
approach, even when the outer MAC function is only unpredictable, on a weaker class of hash functions
than CRHFs, called Weakly Collision-Resistant (WCR) [6]. Moreover, a shrinking MAC is also a
WCR with birthday security [2]. Coupled with a simple domain extension of WCR hash functions
via the (strengthened) Merkle-Damgard transform [2], the question of building VIL-MACs from UPs
is essentially equivalent to the question of building either a FIL-WCR hash or a sufficiently shrinking
FIL-MAC from a UP. Unfortunately, as we show below, this latter question turns out to be quite
non-trivial.
Truncating Block Cipher? Of course, one can always turn a UP (i.e., a length-preserving MAC)
into a shrinking MAC (or, perhaps, WCR hash), by simply truncating its output. Unfortunately, this
does not work. First, truncating a bits can potentially degrade the unpredictability of the construction
by a factor 2a, meaning that this approach is theoretically sound only for very small a (logarithmic in
security parameter). However, since the rate of the resulting construction is n/a, to achieve constant
efficiency rate one must truncate at least a constant fraction of bits, making it unsound. Moreover,
even if one somehow assumes that such “sufficiently truncated” block cipher is still a “good” MAC, the
birthday security will now be with respect to the truncated output length (n− a). E.g., truncating half
the bits can give “birthday security” at most 2n/4, defeating our goal.
Two-Block “Solution”? Given that practical MACs, such as CBC-MAC, are secure with PRPs,
one can simply assume away the difficulty of the building a “sufficiently compressing” MAC (or WCR),
and assume that two-block versions of these MACs yield a secure two-to-one MAC (or WCR). The
“rationale” for this trivialization of the problem is the following. Perhaps, it is “almost as good” to
assume that a two-block CBC is a secure MAC (or WCR) as to assume that a one-block version is a
MAC (i.e., UP). And, maybe, this strange ad hoc assumption is somehow better than assuming a PRP,
which provably implies it. Our belief is that this reasoning is extremely dangerous, and is really not
substantiated by any evidence. In fact, we know that it is wrong with (generic) unpredictable block
ciphers. Thus, we reject it.

4Say, fk(0n) is unpredictable, but always begins with 0n/2, and f0n/2‖k′(x) = x for all k′ ∈ {0, 1}n/2, x ∈ {0, 1}n.
5Bellare [3] mentions some ad hoc assumptions on the components of NMAC/HMAC, under which one can prove (only)

MAC security. As far as we can see, though, these relaxations (among others, so called “privacy-preserving MACs”) seem
to be only marginally weaker than assuming a PRP, and much stronger than assuming regular unforgeability, as done here.

6E.g., it is easy to construct a natural universal hash function and an artificial UP for which this approach is completely
insecure.
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Feistel Network. Another popular approach to double the domain of a primitive is to use the Feistel
Network, which iterates the permutation π(x‖y) = (y‖f(y)⊕x) for several rounds (with different keyed
functions f in each round). The celebrated result of Luby and Rackoff [12] showed that already 3 rounds
of Feistel would give a PRF from 2n to 2n bits, which could be truncated to n bits by dropping one of
the halves. Unfortunately, this argument does not translate if we replace a PRP by a (general) UP. An
and Bellare [2] showed that three rounds of Feistel fail to preserve unpredictability (or yield WCR), and
Dodis and Puniya [9] extended this attack even to O(log κ) rounds, where κ is the security parameter.
On a positive, [9] showed that super-logarithmic number ω(log κ) of Feistel rounds indeed allows one
to construct a two-to-one MAC (and WCR) from an unpredictable block cipher. Unfortunately, this
results in super-constant rate ω(log κ), making this construction somewhat inefficient for practice. More
significantly, the security of this construction proven by [9] was only εmac = O(εup · q

6
mac), where qmac is

the number of queries made by the MAC-forging adversary, meaning that it can only be secure for at
most 2n/6 messages, which is unacceptable for n = 128. To summarize, the work of [9] gives the first
reasonable construction of a VIL-MAC from an UP, but has very poor security and super-constant rate.
Enhanced CBC Mode. This mode was recently proposed by Dodis et al. [8]. The authors made the
surprisingly simple observation that the function h(x‖y) = f1(x) ⊕ f2(y) is a two-to-one, rate-2 WCR
hash function, assuming f1 and f2 are two independent UPs. This immediately gives a rate-2 VIL-
MAC from UPs, which is very efficient, and is the first (and only) constant-rate solution to Question 1
known prior to this work. Unfortunately, the security of this WCR function is O(εup · q

4), since the UP
forger has to guess all four queries f1(x), f1(x

′), f2(y), f2(y
′) which are “responsible” for the collision

h(x‖y) = h(x′‖y′), and predict the last value in the quartet as the XOR of the three prior values.
Moreover, it is easy to see that this bound is actually tight. Thus, the construction can only be secure
for at most 2n/4 messages, again making it fall short of our goal of obtaining security up to 2n/2 asked
in Question 2. In fact, this question of achieving “birthday security” 2n/2 was the main open question
posed in [8], which we resolve in this work.

B Full Proof of Theorem 1

This section contains the proof of Theorem 1. As explained in the proof outline, A is a collision-finding
adversary for F with oracle access to f1, f2, f3 making q queries to each fi; B simulates A, interrupting
the computation to forge one of the fi’s at some un-queried point. We must exhibit a strategy for B
such that B’s chance of forging is at least ε/10q2 log2(q) where ε is A’s probability of finding a collision,
and such that B’s computational overhead is O(q2n). We assume that A makes all the queries necessary
to compute its collision.

At the start B chooses a random integer between 1 and 10, uniformly. Depending on this number B
attempts one of 10 different types of forgeries. The types of forgeries are described below. All random
choices are made uniformly in the specified domain.

Type 1: B chooses random indices i < j between 1 and q. When A makes its j-th query xj to f1 B
guesses the answer will be f1(xi) where xi was the i-th query to f1.

Type 2: B chooses random indices i < j between 1 and q. When A makes its j-th query yj to f2 B
guesses the answer will be f2(yi) where yi was the i-th query to f2.

Type 3: B chooses random indices i < j between 1 and q. When A makes its j-th query zj to f3 B
guesses the answer will be f3(zi) where zi was the i-th query to f3.

Type 4: B chooses random indices i < j between 1 and q. When A makes its j-th query zj to f3 B
guesses the answer will be zj ⊕ zi ⊕ f3(zi) where zi was the i-th query to f3.
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Type 5: B chooses a random integer ℓ between 1 and q2 and a random integer k between 1 and log(q).
As A makes queries B keeps track of the pairs (x, y) for which A knows f1(x), f2(y) in a sequence S.
Pairs are added to S as A makes queries: when A makes a query x to f1, say, B adds the pairs {(x, y) : A
has already queried f2(y)} to S, with the pairs ordered lexicographically by y, and symmetrically when
A makes queries f2 on a new point y. The value of pair (x, y) ∈ S is f1(x)⊕ f2(x). When B sees that
A’s latest query will result in the length of S becoming ≥ ℓ it finds the pair (x, y) that will be the ℓ-th
pair of S (it can do this without seeing the answer to the query), chooses a value d uniformly in the
set c = {c ∈ {0, 1}n : there are at least k pairs in S of value c}, and guesses the answer of the query
by guessing the value of (x, y) will be d (namely guesses f1(x) = d ⊕ f2(y) if A’s query was f1(x) and
guesses f2(y) = d⊕ f1(x) if A’s query was f2(y)). No guessing occurs if C is empty.

Type 6: B chooses a random integer ℓ between 1 and q2 and a random integer k between 1 and log(q).
As A makes queries B keeps track of the pairs (x, z) for which A knows f1(x), f3(z) in a sequence T ,
which is constructed like the sequence S of the Type 5 strategy. Like for the sequence S, the value
of pair (x, z) ∈ T is f1(x) ⊕ f3(z). When B sees that A’s latest query will result in the length of T
becoming ≥ ℓ it finds the pair (x, z) that will be the ℓ-th pair of T , chooses a value d uniformly in the
set C = {c ∈ {0, 1}n : there are at least k pairs in T of value c}, and guesses the answer of the query
by guessing the value of (x, z) will be d. No guessing occurs if C is empty.

Type 7: B chooses a random integer ℓ between 1 and q2 and a random integer k between 1 and log(q).
As A makes queries B keeps track of the pairs (y, z) for which A knows f2(x), f3(z) in a sequence
U , which is constructed like the sequences S, T of the Type 4 and Type 5 strategies. The value of
pair (y, z) ∈ U is f2(y) ⊕ z ⊕ f3(z). When B sees that A’s latest query will result in the length of U
becoming ≥ ℓ it finds the pair (y, z) that will be the ℓ-th pair of U , chooses a value d uniformly in the
set C = {c ∈ {0, 1}n : there are at least k pairs in U of value c}, and guesses the answer of the query
by guessing the value of (y, z) will be d. No guessing occurs if C is empty.

Type 8: B chooses a random index i between 1 and q. When A makes its i-th query to f1, say f1(x), B
chooses one element at random from the set Q = {(y, z, x′, y′) : f2(y)⊕ z⊕ f3(z) = F (x′‖y′) and A has
made the queries f2(y), f3(z) and the queries necessary to compute F (x′‖y′)} (if the set is nonempty)
and guesses the answer to f1(x) will be f2(y)⊕ z.

Type 9: B chooses a random index i between 1 and q. When A makes its i-th query to f2, say f2(y),
B chooses one element at random from the set R = {(x, z, x′, y′) : f1(x)⊕ f3(z) = F (x′‖y′) and A has
made the queries f1(x), f3(z) and the queries necessary to compute F (x′‖y′)} (if the set is nonempty)
and guesses the answer to f2(y) will be f1(x)⊕ z.

Type 10: B chooses random indices j < i between 1 and q. Let zi, zj be the i-th and j-th queries that
A makes to f3 and let Bin(z) be as defined in Section 4.2. When the query f3(zi) is made, B chooses a
random element (xi, yi) ∈ Bin(zi) and a random element (xj , yj) ∈ Bin(zj) (if these sets are nonempty,
otherwise B gives up), and guesses that f3(zi) = f1(xi)⊕ f1(xj)⊕ f3(zj).

We argue that with this strategy B’s chance of forging one of the fi’s successfully is at least ε/10q2 log2(q).
Let Coll be the event that A finds a collision, and let Forge be the event that B successfully forges. We
define 10 events Ev1, . . . ,Ev10 on A’s query history such that Coll =⇒ Ev1 ∨ . . . ∨ Ev10. Then if Typei

denotes the event that B selects the Type i strategy, we show that Pr[Forge|Evi ∧Typei] ≥ 1/q2 log2(q)
for i = 1 . . . 10. This implies that Pr[Forge] ≥ ε/10q2 log2(q), since, by independence of the events

18



Type1, . . . ,Type10 from the events Ev1, . . . ,Ev10,

Pr[Forge] ≥
10

∑

i=1

Pr[Forge ∧ Evi ∧ Typei]

=
10

∑

i=1

Pr[Evi] Pr[Typei] Pr[Forge|Evi ∧ Typei]

≥
1

10q2 log2(q)

10
∑

i=1

Pr[Evi]

≥
ε

10q2 log2(q)

The events Ev1, . . . ,Ev10 will be defined in terms of the following events Win1, . . . ,Win10:

• Win1 is the event that A queries f1 at distinct points x, x′ such that f1(x) = f1(x
′).

• Win2 is the event that A queries f2 at distinct points y, y′ such that f2(y) = f2(y
′).

• Win3 is the event that A queries f3 at distinct points z, z′ such that f3(z) = f3(z
′).

• Win4 is the event that A queries f3 at distinct points z, z′ such that z ⊕ f3(z) = z′ ⊕ f3(z
′).

• Win5 is the event that, when A is finished querying, there exists a z ∈ {0, 1}n such that |{(x, y) :
f1(x)⊕ f2(y)}| > log(q).

• Win6 is the event that, when A is finished querying, there exists a v ∈ {0, 1}n such that |{(x, z) :
f1(x)⊕ f3(z)}| > log(q).

• Win7 is the event that, when A is finished querying, there exists a w ∈ {0, 1}n such that |{(y, z) :
f2(y)⊕ f3(z)}| > log(q).

• Win8 is the event that A obtains a collision such that the last query made by A to obtain the collision
is a query to f1.

• Win9 is the event that A obtains a collision such that the last query made by A to obtain the collision
is a query to f2.

• Win10 is the event that A obtains a collision such that the last query made by A to obtain the collision
is a query to f3.

Now we define Evi = Wini
∧

¬
(

∨

j<i Wini

)

for i = 1 . . . 10. Because Coll =⇒ Win8 ∨Win9 ∨Win10

it is obvious that Coll =⇒ Ev1 ∨ · · · ∨ Ev10. We now show that Pr[Forge|Evi ∧Typei] ≥ 1/q2 log2(q) for
i = 1 . . . 10.

Proposition 1 Pr[Forge|Ev1 ∧ Type1] ≥ 1/q2.

Proof. Say that B selects its Type 1 strategy and that A queries f1 on two different points x, x′ such
that f1(x) = f1(x

′). For its Type 1 strategy B selects i < j uniformly in {1, . . . , q} and guesses that
f1(xi) = f1(xj) where xi, xj are the i-th and j-th query made by A to f1. Then there is chance at least
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(

q
2

)−1
≥ 1/q2 that {xi, xj} = {x, x′}, in which case B’s guess is correct, so Pr[Forge|Ev1∧Type1] ≥ 1/q2.

�

The following three propositions have similar proofs:

Proposition 2 Pr[Forge|Ev2 ∧ Type2] ≥ 1/q2.

Proposition 3 Pr[Forge|Ev3 ∧ Type3] ≥ 1/q2.

Proposition 4 Pr[Forge|Ev4 ∧ Type4] ≥ 1/q2.

Proposition 5 Pr[Forge|Ev5 ∧ Type5] ≥ 1/4q2.

Proof.
Let S = (p1, p2, . . .) be the sequence described in the Type 5 strategy, where each pi is a pair (x, y)

such that A has queried f1(x), f2(y). The value of a pair pi = (x, y) is f1(x)⊕ f2(x), and B attempts
to guess the value of the ℓ-th pair of the sequence at the moment when its value is about to be learned.
For this B’s strategy is to guess the answer uniformly among all numbers in {0, 1}n that are already
the values of at least k pairs in S, where k was selected randomly by B between 1 and log(q) at the
start of the attack.

Each query by A adds a group of pairs to S. The pairs in a group either all have their x-coordinates
or y-coordinates in common. When Ev5 occurs f1- and f2-collisions do not occur (by definition of Ev5,
it cannot occur if Win1 or Win2) so the pairs in a group all have different values. We are now exactly
in the case discussed under Case (2) in Section 4.2, where it is shown that B’s chance of forgery is at
least 1/4q2.

�

The following two propositions have the same proof as Propositions 5:

Proposition 6 Pr[Forge|Ev6 ∧ Type6] ≥ 1/4q2.

Proposition 7 Pr[Forge|Ev7 ∧ Type7] ≥ 1/4q2.

Proposition 8 Pr[Forge|Ev8 ∧ Type8] ≥ 1/q2 log2(q).

Proof. Assume that the adversary obtains a collision where the last query needed to obtain the
collision is a query x0 made to f1 and that ¬

(
∨

i<7 Wini

)

. Let (x0, y0), (x1, y1) be the two colliding
inputs. If x0 = x1 then f1(x0) = f1(x1) which implies f3(z0) = f3(z1) where z0 = f1(x0) ⊕ f2(y0) and
z1 = f1(x1) ⊕ f3(z1); then either z0 6= z1 and Win3, a contradiction, or z0 = z1 and f2(y0) = f2(y1)
but y0 6= y1, so Win2, another contradiction. Thus we can assume that x0 6= x1. This implies the tuple
(y0, z0, x1, y1) is in the set Q described in the Type 8 strategy. Note that f1(x0) = f2(y0)⊕ z0.

With its Type 8 strategy B wins if it makes its guess on the query f1(x0) and if it chooses a tuple
(y, z, x′, y′) ∈ Q such that f2(y) ⊕ z = f2(y0) ⊕ z0. Since B has chance 1/q of making its guess on the
query f1(x0) its chance of success is thus at least 1/q|Q′| where Q′ = {(y, z) : (y, z, x′, y′) ∈ Q for some
x′, y′}. Because ¬Win5 there are only at most q log(q) pairs (x′, y′) for which A has made the queries
necessary to compute F (x′‖y′) (each such pair necessitates a query to f3, and no query to f3 validates
more than log(q) pairs). Then because ¬Win7, the sum over these pairs (x′, y′) of the size of the set
{(y, z) : (y, z, x′, y′) ∈ Q} is at most q log2(q), which implies |Q′| is at most q log2(q). Thus B has chance
at least 1/q2 log2(q) of forging. �

Proposition 9 Pr[Forge|Ev9 ∧ Type9] ≥ 1/q2 log2(q).
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Proof. (Similar to Proposition 8.) Assume that the adversary obtains a collision where the last
needed to obtain the collision is a query y0 made to f2 and that ¬(

∨

i<8 Wini). Let (x0, y0), (x1, y1)
be the two colliding inputs. If y0 = y1 then f2(y1) = f2(y1) = f1(x0) ⊕ z0 = f1(x1) ⊕ z1 where
z0 = f1(x0) ⊕ f2(y0) and z1 = f1(x1) ⊕ f2(y1). Adding the equation f1(x0) ⊕ f3(z0) = f1(x1) ⊕ f3(z1)
to f1(x0) ⊕ z0 = f1(x1) ⊕ z1 we obtain z0 ⊕ f3(z0) = z1 ⊕ f3(z1). If z0 6= z1 this is a contradiction to
¬Win5, otherwise f1(x0) = f1(x1) and one can obtain a contradiction like in the proof of Proposition 8.
Thus the tuple (x0, z0, x1, y1) is in the set R described in the Type 9 strategy.

With its Type 9 strategy B wins if it makes its guess on the query f2(y0) and if it chooses a tuple
(x, z, x′, y′) ∈ R such that f1(x)⊕ z = f1(x0)⊕ z0. Since B has chance 1/q of making its guess on the
query f2(y0) its chance of success is thus at least 1/q|R′| where R′ = {(x, z) : (x, z, x′, y′) ∈ R for some
x′, y′}. Because ¬Win5 there are only at most q log(q) pairs (x′, y′) for which A has made the queries
necessary to compute F (x′‖y′). Then because ¬Win6, the sum over these pairs (x′, y′) of the size of the
set {(x, z) : (x, z, x′, y′) ∈ R} is at most q log2(q), which implies |R′| is at most q log2(q). Thus B has
chance at least 1/q2 log2(q) of forging. �

Proposition 10 Pr[Forge|Ev10 ∧ Type10] ≥ 1/q2 log2(q).

Proof. Assume that the adversary obtains a collision where the last query needed to obtain the collision
is a query z0 made to f3 and that ¬(

∨

i<9 Wini). Let (x0, y0), (x1, y1) be the two colliding inputs, where
z0 = f1(x0) ⊕ f2(y0). As argued in Section 4.2, z1 := f1(x1) ⊕ f2(y1) is distinct from z0, because
otherwise f1(x0) = f1(x1) and consequently f2(y0) = f2(y1), which would imply either Win1 or Win2, a
contradiction. Thus B has chance 1/

(

q
2

)

that zi = z0 and zj = z1. To win B moreover needs to choose
(xi, yi) = (x0, y0), which B has chance ≥ 1/ log(q) since Bin(z0) ≤ log(q) by ¬Win5, and likewise B has
chance ≥ 1/ log(q) of choosing (xj , yj) = (x1, y1). Thus B’s chance of winning is at least 1/q2 log2(q).
�

C Security of SS as a MAC

In this section we investigate the MAC security of the Shrimpton-Stam (SS) compression function. We
show that SS has MAC security εq4 if the underlying block cipher has MAC security ε. Thus SS has
some MAC security (in particular, cannot be trivially broken trivially like the compression function
of CBC-MAC or enhanced CBC-MAC [8]), but not birthday security. Moreover, as we show with an
artificially constructed MAC for which SS has security ∼ εq4, the bound is essentially tight.

The results of this section underscore that the crucial ingredients of Theorem 2 are the MAC security
of f4 and the WCR security of SS, not the MAC security of SS itself. Our counterexample also shows
a nice example of a compression function which is easier to forge than to find a collision for.

Theorem 5 Let f : {0, 1}κ × {0, 1}n → {0, 1}n and let F = F [f1, f2, f3] be the Shrimpton-Stam
compression function. Then

InSecmac
F (t, q, 2qn) ≤ 18q4InSecmac

f (t + O(q2n), q, qn).

Proof. Let A be a MAC adversary for F achieving advantage ε running in time t and making q queries.
We show there is a MAC adversary B for f running in time t + O(q2n), making at most q queries and
achieving advantage ε/3q4.

A makes q queries F (x1, y1), . . ., F (xq, yq) and then announces a forgery for F (xq + 1, yq + 1). Let
zi = f1(xi) + f2(yi) for i <= q + 1. As A makes queries, B computes the answers using its access to f1,
f2, f3, except for the moment when B decides to make its forgery. (We use the standard device that
B uses its oracle fk for one of the fi’s, choosing which one at random, while it samples two keys to
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simulate the other two fi’s on its own; since only of the fi’s counts for valid forgeries, this introduces a
factor 1

3 into B’s probability of success.)
B forges by using one of the following six types of strategies with equal probability:

Type 1: B anticipates that F (xq + 1, yq + 1) will involve a fresh query to f3, namely that zq+1 will be
distinct from z1, . . ., zq. Then B simply forgers f3 on zq+1 by predicting the answer will be w+f1(xq+1).
This strategy fails if zq+1 was already made as a query to f3, succeeds otherwise. (So basically we can
assume that zq+1 already appeared at some point as a query to f3, or else B is successful.)

Type 2: B anticipates that f3(zq+1) was already made as a query to f3 but that f1(xq+1) was not already
made as a query to f1, Then B forges by computing f2(yq+1) and guessing that f1(xq+1) = f2(xq+1)+zi

for some randomly selected i ≤ q. Then if f3(zq+1) was already made and f1(xq+1) hadn’t already been
made, B’s chance of success is 1/q times A’s chance of success (because there is 1/q chance of choosing
the right zi).

Type 3: symmetric to type 2, but anticipating that f2(yq+1) was not already made as a query instead
of f1(xq+1).

For the remaining types, B anticipates that all three queries f1(xq+1), f2(yq+1) and f3(zq+1) will all
have been made by the time A announces its forgery. Note that in this case, zq+1 = f1(xi) + f2(yi) for
some i ≤ q, and either xi 6= xq+1 or yi 6= yq+1 (and possibly both). To cover the cases, B play three
different types:

Type 4: B anticipates that xi = xq+1 and yi 6= yq+1. Then since the query f2(yq+1) was already made
there is some j ≤ q, j 6= i, such that yj = yq+1. So f2(yi) = zi + f1(xi) = zq+1 + f1(xq+1) = f2(yq+1) =
f2(yj). Therefore there is a collision in f2, and B does its forgery by guessing a collision for f2 (with
probability 1/q2 of success if a collision does occur).

Type 5: B anticipates that yi = yq+1 and xi 6= xq+1. Symmetric to type 4, B guesses a collision for f1.

Type 6: B anticipates that xi 6= xq+1, yi 6= yq+1. Let j be the smallest index such that xj = xq+1, let
h be the smallest index such that yh = yq+1. Also let m be the smallest index such that xm = xi and b
be the smallest index such that yb = yi. Then f1(xm) + f2(yb) = f1(xj) + f2(yh), so any one of the four
values f1(xm), f2(yb), f1(xj), f2(yh) can be inferred from the three others. Also note that m 6= j and
b 6= h, since we are assuming xi 6= xq+1 and yi 6= yq+1. Then B guesses the sets {m, j} and {h, b} (two
distinct integers each) and does the obvious forgery on the query corresponding to the highest of the four
integers {m, j, h, b}. For example, if b is the highest, B guesses that f2(yb) = f1(xm) + f2(yh) + f1(xj).
It is possible, say, that two of the integers {m, j, h, b} are both highest (say j = b), in which case B has
the choice of which of those two queries to make first and which to forge (if j = b, say, B could compute
f1(xj) and forge f2(yb) or compute f2(yb) and forge f1(xj)). The chance of guessing the four indices
correctly (conditioned on the assumptions of this strategy) is 1/q4.

B’s overall chance of success of p/18q4 follows from the fact that one of the six scenarios anticipated by
B in its strategies must occur, and the worst chance it has of winning for any scenario is 1/q4, if that
scenario occurs and it is playing the appropriate game, coupled with the fact that a successful forgery
is only a forgery for the real fk with probability 1

3 . �

We now show that Theorem 5 is essentially tight by showing there exists an (artificial) function
family f for which InSecmac

F (t, q, 2qn) ≥ 4q4InSecmac
f (t + O(q2n), q, qn)/27. We assume that f is an

n-bit to n-bit block cipher where n = 3k for some k.
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We individually design the functions f1, f2, f3, with f1 and f2 sharing the same design and f3 having
a separate design. Since these functions are in fact part of a common block cipher, we devote 2/3 of the
keys for functions with the behavior of f1, f2 and 1/3 of the keys for functions with the behavior of f3.
An instantiation of F uses random keys, so there is chance 4/27 that the key for each fi comes for the
“correct” group, which affects the probability of finding a collision by that much (namely, we think of
the MAC-forging adversary as abandoning if f1, f2, f3 do not each have keys coming from the correct
group).

The functions f1 and f2 fill the first k bits of the n-bit output with a random value and the bottom
2k bits with 0’s. The functions f3 fills the first k bits with 0’s, the middle k bits with its first k bits of
its input, and the last k bits with a perfect random value.

Note that if k = n/3 is sufficiently large, each fi is a good MAC, with constant security InSecmac
f (T, q, qn) =

1/2k against chosen message attack (independently of T and of q).
With this definition of the fi’s the output F (x, y) of SS is the first k bits for f1(x) followed by the

first k bits of f1(x) + f2(y) followed by the last k bits of f3(f1(x) + f2(y)). Note that by seeing this
output one can reconstruct the values f1(x), f2(y) and f3(f1(x)+f2(y)). Namely if F (x, y) = w = t|u|v
where t, u, v are k-bit values, one has

f1(x) = t|0|0 (where each 0 is k bits)

f2(y) = t + u|0|0 (because u is the first k bits of f1(x) + f2(y))

f3(f1(x) + f2(y)) = 0|u|v

The adversary A makes random queries F (x1, y1), F (x2, y2), . . . to its oracle until it finds xi, xj , ym,
yh such that f1(xi)+f2(ym) = f1(xj)+f2(yh) and such that j is not equal to h (recall that the adversary
knows f1(xi) and f2(yi) from F (xi, yi)). On average, because f1 and f2 only have k bits of active output,
the adversary’s chance of finding such a quadruple is q4/2k. Once the adversary has such a quadruple
it makes the query F (xi, ym) if the query hasn’t already been made (namely, if i is not equal to m).
Say F (xi, ym) = t1|u1|v1. Then the adversary forges by predicting that F (xj , yh) = t2|u1|v1 where t2 is
the first k bits of output of f1(xj) (which are known to the adversary). Obviously this forgery succeeds
with probability 1, and the overall chance of success is q4/2n/3 = q4InSecmac

f (t + O(q2n), q, qn). We
then obtain the result by taking into account the factor 4/27 mentioned above.
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