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Abstract. We introduce Ad Hoc Anonymous Identification schemes, a new multi-user cryptographic
primitive that allows participants from a user population to form ad hoc groups, and then prove mem-
bership anonymously in such groups. Our schemes are based on the notion of accumulator with one-way
domain, a natural extension of cryptographic accumulators we introduce in this work. We provide a
formal model for Ad Hoc Anonymous Identification schemes and design secure such schemes both gener-
ically (based on any accumulator with one-way domain) and for a specific efficient implementation of
such an accumulator based on the Strong RSA Assumption. A salient feature of our approach is that
identification protocols take time independent of the size of the ad hoc group. All our schemes and
notions can be generally and efficiently amended so that they allow the recovery of the signer’s identity
by an authority, if the latter is desired.
Using the Fiat-Shamir transform, we also obtain constant-size, signer-ambiguous group and ring sig-
natures (provably secure in the Random Oracle Model). For ring signatures, this is the first such
constant-size scheme, as all the previous proposals had signature size proportional to the size of the
ring. For group signatures, we obtain schemes comparable in performance with state-of-the-art schemes,
with the additional feature that the role of the group manager during key registration is extremely sim-
ple and essentially passive: all it does is accept the public key of the new member (and update the
constant-size public key of the group).

1 Introduction

Anonymous identification is an oxymoron with many useful applications. Consider the setting, for a known
user population and a known set of resources, where a user wants to gain access to a certain resource. In
many cases, accessing the resource is an action that does not mandate positive identification of the user.
Instead, it would be sufficient for the user to prove that he belongs to the subset of the population that
is supposed to have access to the resource. This would allow the user to lawfully access the resource while
protect his real identity and thus “anonymously identify” himself.

Given the close relationships between identification schemes and digital signatures, one can easily extend
the above reasoning to settings where a user produces a signature that is “signer-ambiguous” i.e., such that
the verifier is not capable of distinguishing the actual signer among a subgroup of potential signers. In fact,
it was in the digital signature setting that such an anonymous scheme was presented for the first time, with
the introduction of the group signature model [19], which additionally mandates the presence of a designated
party able to reveal the identity of the signer, were the need to arise.

Subsequent work on group signatures and on anonymous identification in general [20, 24, 13, 18, 16, 23, 3,
1, 11, 14, 6, 2] allowed for more efficient designs and formal modelling of the primitive, with the current state
of the art being the scheme by Ateniese et al. [1]. In general, existing group signature schemes are derived
from their interactive counterpart (ID Escrow schemes [31]) via the Fiat-Shamir transform [27].

A related notion, but of slightly different nature, is that of ring signatures, introduced by Rivest, Shamir
and Tauman in [34] and further studied in [12, 32]. Ring signatures differ from group signatures in that
they allow group formation to happen in an ad hoc fashion: group must be formed without the help of a
group manager; in fact, a user might not even know that he has been included in a certain group. This
is in sharp contrast to the group signature setting where the user must execute a Join protocol with the
group manager and obtain a group-membership certificate that cannot be constructed without the help of



the group manager. Note that ad hoc group formation in the context of ring signatures is always understood
within the context of a user population and an associated PKI. Based on the PKI, ad hoc subsets of the user
population can be formed without the help of a “subset manager”—but it is assumed that every user has a
registered public key.

While ring signatures are attractive because they have simple group formation procedures that can be
executed by any user individually, they have the shortcoming that the length of the signature is proportional
to the group size. For large groups, the length of a ring signature (growing linearly with the group size) will
become impractical. To the contrary, schemes with constant-size signatures have been successfully designed in
the group signature setting [1]. We remark that in the setting of anonymous identification, the counterpart of
“signature size” is the bandwidth consumed by the protocol, which is thus an important complexity measure
to minimize.

Based on the above discussion, an important open question in the context of anonymous identification
and signature schemes, recently posed by Naor in [32], is the following:

Is it possible to design secure anonymous identification schemes that enable ad hoc group formation
in the sense of ring signatures and at the same time possess constant-size signature (or proof) length?

Our contribution. In this work we provide an affirmative answer to the above question. Specifically, we
introduce a new primitive called Ad Hoc Anonymous Identification schemes; this is a family of schemes where
participants from a user population can form groups in ad hoc fashion (without the help of a group manager)
and then get anonymously identified as members of such groups.

Our main tool in the construction of Ad Hoc Anonymous Identification schemes is a new cryptographic
primitive, accumulator with one-way domain, which extends the notion of a collision-resistant accumulator
[7, 4, 15]. In simple terms, in an accumulator with one-way domain, the set of values that can be accumulated
are associated with a “witness space” such that it is computationally intractable to find witnesses for random
values in the accumulator’s domain.

First, we demonstrate the relationship between such accumulators and Ad Hoc Anonymous Identification
schemes by presenting a generic construction based on any accumulator with one-way domain. Second,
we design an efficient implementation of accumulator with a one-way domain based on the Strong RSA
Assumption, from which we obtain a more efficient construction of Ad Hoc Anonymous Identification scheme
whose security rests upon the Strong RSA Assumption.

We remark that previous work on anonymous identification that allowed subset queries was done by
Boneh and Franklin [8]. They define a more limited security model, and show a protocol which imposes on
both parties a computational load proportional to the subset size at each run. Moreover, their scheme is
susceptible to collusion attacks (both against the soundness and against the anonymity of the scheme) that
do not apply to our setting.

In our Strong-RSA-based Ad Hoc Anonymous Identification scheme, the computational and communi-
cation complexity on both ends is constant, regardless of the size of the group. Thus, the signature version
of our ad hoc anonymous identification scheme yields a ring signature with constant size signatures (over
a dedicated PKI). Other applications of our scheme include “ad hoc group signatures” (group signature
schemes where the group manager can be offline during the group formation) and identity escrow over ad
hoc groups.

Recently, work by Tsudik and Xu [35], building on the work by Camenisch and Lysyanskaya [15], inves-
tigated techniques to obtain more flexible dynamic accumulators, on which to base group signature schemes
(which is one of our applications). The specific method used by [35] bears many similarities with our Strong-
RSA-based instantiation, with some important differences. Namely, in their solution anonymity revocation
takes time proportional to the user population, due to subtle problems concerning the accumulation of
composite values inside the accumulator. Our work resolves this technical problem. Moreover, we present a
new notion of Ad Hoc Anonymous Identification scheme, which has more applications than those specific to
group signature schemes: for example, they allow us to build the first constant-size ring signature schemes.
We present a general construction for our primitives from any accumulator and not just the one of [15]. Last,
our formal definitional framework is of independent interest.
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2 Preliminaries

2.1 Notation

Throughout the paper, we assume familiarity with the GMR notation [29], briefly summarized below.

A negligible function, denoted by ν(λ), is a function f(λ) such that for all polynomials p(λ), f(λ) < 1/p(λ)
holds for all sufficiently large λ.

An efficient algorithm A(·) is a probabilistic Turing machine running in expected polynomial time. An
adversary A is a probabilistic, polynomial-time interactive Turing machine. If A(·) is an efficient algorithm
and x is an input for A, then “A(x)” denotes the probability space that assigns to a string σ the probability
that A, on input x, outputs σ. An efficient algorithm is deterministic if for every input x, the probability
mass of A(x) is concentrated on a single output string σ.

For a probability space P , “x
R
← P” denotes the algorithm that samples a random element according to

P . For a finite set X , “x
R
← X” denotes the algorithm that samples an element uniformly at random from X .

If p(·, ·, . . .) is a boolean function, then “Pr[x1
R
← P1, x2

R
← P2, . . . | p(x1, x2, . . .)]” denotes the probability

that p(x1, x2, . . .) is true after executing the algorithms x1
R
← P1, x2

R
← P2, . . ..

A two-party protocol is a pair of interactive probabilistic Turing machines (P, V ). An execution (or run)
of the protocol (P, V ) on input x (for P ) and y (for V ) is an alternating sequence of P -rounds and V -rounds,
each producing a message to be delivered to the other party (except for the last V -round). The sequence
of such message is called the transcript of this run of the protocol. If, for all x and y, the length of such
sequence, as well as the expected running time of P and V , are polynomial in the length of x and y, then
(P, V ) is an efficient two-party protocol. By “(P (x)↔ V (y))”, we denote the probability space that assigns
to a sequence of strings π the probability that a run of the (P, V ) protocol, on input x and y, will produce
π as transcript.

2.2 NP-Relations and Σ-Protocols

An NP-relation R is a relation over bitstrings for which there is an efficient algorithm to decide whether
(x, z) ∈ R in time polynomial in the length of x. The NP-language LR associated to R is defined as
LR

.
= {x | (∃z)[(x, z) ∈ R]}

A Σ-protocol [22, 21] for an NP-relation R is an efficient 3-round two-party protocol, such that for every
input (x, z) to P and x to V , the first P -round yields a commitment message COM, the subsequent V -
round replies with a random challenge message CH, and the last P -round concludes by sending a response
message RES. At the end of a run, V outputs a 0/1 value, functionally dependent on x and the transcript
π

.
= (COM, CH, RES) only; a transcript is valid if the output of the honest verifier is 1. Additionally, a

Σ-protocol satisfies (1) Special Soundness, meaning that there is an efficient algorithm (called a Knowledge
Extractor) that on input any x ∈ LR and any pair of valid transcripts with the same commitment message,
(COM, CH1, RES1) and (COM, CH2, RES2) outputs z such that (x, z) ∈ R; and (2) Special Honest-Verifier
Zero-Knowledge, meaning that there is an efficient algorithm (called a Simulator) that on input x ∈ LR

and any challenge message CH, outputs a pair of commitment/response messages COM, RES, such that
the transcript π

.
= (COM, CH, RES) is valid, and it is distributed according to the probability distribution

(P (x, z)↔ V (x)), for any z such that (x, z) ∈ R.3

The main result we will need about Σ-protocols is the following:

Theorem 1 ([28, 26]). A Σ-protocol for any NP-relation can be constructed if one-way functions exist.

3 In particular, this implies that, for any x ∈ LR and any two z1, z2 such that (x, z1), (x, z2) ∈ R, the probability
distributions induced by honest conversations between (i) a prover holding (x, z1) and a verifier holding x; or
between (ii) a prover holding (x, z2) and a verifier holding x, are the same.
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2.3 Accumulators

An accumulator family is a pair ({Fλ}λ∈N, {Xλ}λ∈N), where {Fλ}λ∈N is a sequence of families of functions
such that each f ∈ Fλ is defined as f : Uf ×Xext

f → Uf for some Xext
f ⊇ Xλ and additionally the following

properties are satisfied:

– (efficient generation) There exists an efficient algorithm G that on input a security parameter 1λ outputs
a random element f of Fλ, possibly together with some auxiliary information af .

– (efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.
– (quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ,

f(f(u, x1), x2) = f(f(u, x2), x1)

We will refer to {Xλ}λ∈N as the value domain of the accumulator. For any λ ∈ N, f ∈ Fλ and X =
{x1, . . . , xs} ⊂ Xλ, we will refer to f(. . . f(u, x1) . . . , xs) as the accumulated value of the set X over u: due
to quasi-commutativity, such value is independent of the order of the xi’s and will be denoted by f(u, X).

Definition 1. An accumulator is said to be collision resistant if for any λ ∈ N and any adversary A:

Pr[f
R
← Fλ; u

R
← Uf ; (x, w, X)

R
← A(f, Uf , u) |

(X ⊆ Xλ) ∧ (w ∈ Uf ) ∧ (x ∈ Xext
f \X) ∧ (f(w, x) = f(u, X))] = ν(λ)

For λ ∈ N and f ∈ Fλ, we say that w ∈ Uf is a witness for the fact that x ∈ Xλ has been accumulated
within v ∈ Uf (or simply that w is a witness for x in v) whenever f(w, x) = v. We extend the notion of
witness for a set of values X = {x1, . . . , xs} in a straightforward manner.
Accumulators with One-Way Domain. An accumulator with one-way domain is a quadruple
({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N), such that the pair ({Fλ}λ∈N, {Xλ}λ∈N) is a collision-resistant ac-
cumulator, and each Rλ is a relation over Xλ × Zλ with the following properties:

– (efficient verification) There exists an efficient algorithm D that on input (x, z) ∈ Xλ × Zλ, returns 1 if
and only if (x, z) ∈ Rλ.

– (efficient sampling) There exists a probabilistic algorithm W that on input 1λ returns a pair (x, z) ∈
Xλ × Zλ such that (x, z) ∈ Rλ. We refer to z as a pre-image of x.

– (one-wayness) It is computationally hard to compute any pre-image z′ of an x that was sampled with
W . Formally, for any adversary A:

Pr[(x, z)
R
←W (1λ); z′

R
← A(1λ, x) | (x, z′) ∈ Rλ] = ν(λ)

2.4 The Strong RSA Assumption

We briefly review some definitions [7, 4] regarding the computational assumption underlying our efficient
construction in Section 5.

A number n is an RSA integer if n = pq for distinct primes p and q such that |p| = |q|. For λ ∈ N, let
RSAλ be the set of RSA integers of size λ. A number p is a safe prime if p = 2p′ + 1 and both p and p′ are
odd primes. A number n is a rigid integer if n = pq for distinct safe primes p and q such that |p| = |q|. For
λ ∈ N, let Rigλ be the set of λ-bit rigid integers.

Definition 2 (Strong RSA Assumption, [4]).
For any integer λ and for any adversary A:

Pr[n
R
← Rigλ; z

R
← Z

∗
n; (x′, y′)

R
← A(1λ, n, z) |

(
y′ > 1

)
∧

(
(x′)y′

≡ z(n)
)
] < ν(λ)

the probability being over the random choice of n and z, and A’s random coins.
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3 Ad Hoc Anonymous Identification scheme

3.1 Syntax

An Ad Hoc Anonymous Identification scheme is a six-tuple of efficient algorithms (Setup, Register, Make-GPK,
Make-GSK, Anon-IDP, Anon-IDV), where:

– Setup initializes the state of the system: on input a security parameter 1λ, Setup creates a public database
DB (that will be used to store information about the users’ public keys), and then generates the system’s
parameters param; its output implicitly defines a domain of possible global parameters Par.

– Register, the registration algorithm, allows users to initially register with the system. On input the
system’s parameters param and the identity of the new user u (from a suitable universe of users’ identity
U), Register returns a secret key/public key pair (sk, pk). To complete the subscription process, the user
then sends his public key to a bulletin board for inclusion in a public database DB.

The Register algorithm implicitly defines a domain SK of possible user secret keys and a domain PK of
possible user public keys; its output induces a relation over user secret key/public key pairs, that we will
denote by ⇋. We also require a superset PK′ ⊇ PK to be specified, such that membership to PK′ can
be tested in polynomial time.

– Make-GPK, the group public key construction algorithm, is a deterministic algorithm used to combine a
set of user public keys S into a single group public key gpkS , suitable for use in the Anon-ID protocol
described below. Syntactically, Make-GPK takes as input param and a set S ⊆ PK′; its output implicitly
defines a domain GPK of possible group public keys. We also require a superset GPK′ ⊇ GPK to be
specified, such that membership to GPK′ can be tested in polynomial time.

The Make-GPK algorithm shall run in time linear in the number of public keys being aggregated; we also
remark here that our definition forces Make-GPK to be order-independent i.e., the order in which the
public keys to be aggregated are provided shall not matter.

– Make-GSK, the group secret key construction algorithm, is a deterministic algorithm used to combine a
set of user public keys S′, along with a secret key/public key pair (sku, pku), into a single group secret
key gsku, suitable for use in the Anon-ID protocol described below.

Make-GSK takes as input param, a set S′ ⊆ PK′ and a key pair (sku, pku) satisfying sku⇋pku, and it
shall run in time proportional to the size of S′. Its output implicitly defines a domain GSK of possible
group secret keys.

The Make-GPK and Make-GSK algorithms can be used to extend the ⇋-relation to GSK × GPK, as
follows: A group secret key gsk

.
= Make-GSK(param, S′, (sk, pk)) is in ⇋-relation with a group public

key gpk
.
= Make-GPK(param, S) if and only if S = S′ ∪ {pk}. Observe that even in the case that the

⇋-relation is one-to-one over SK × PK, it is usually many-to-one over GSK × GPK, as more than one
group secret key correspond to the same group public key.

– Anon-ID
.
= (Anon-IDP, Anon-IDV), the Anonymous Identification Protocol, is an efficient two-party pro-

tocol, in which both Anon-IDP (the prover) and Anon-IDV (the verifier) get in input the system’s pa-
rameters param and a group public key gpk (corresponding to some set S of user public keys i.e.,
gpk

.
= Make-GPK(param, S)); Anon-IDP is also given a group secret key gsk as an additional input.

Any execution of the Anon-ID protocol shall complete in time independent from the number of public
keys that were aggregated when constructing gpk and/or gsk; at the end of each protocol run, Anon-IDV

outputs a 0/1-valued answer.

Correctness. For correctness, we require that any execution of the Anon-ID protocol in which the additional
input to Anon-IDP is a group secret key gsk ⇋-related to the common input gpk, shall terminate with
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Honest user registration oracle OHReg User corruption oracle OCor

IN: u ∈ U IN: pk
u
∈ PK′

RUN: 1. (sku, pk
u
)

R
← Register(param, u) RUN: 1. sku ← DB.Lookup(pk

u
)

2. DB.Store(sku, pk
u
) /* sku ← ⊥ if no match found */

OUT: pk
u

OUT: sku

Transcript oracle OScr

IN: S′ ⊆ PK′, pk
u
∈ PK′

RUN: 1. sku ← DB.Lookup(pk
u
)

2. if sku = ⊥
3. then π ← ⊥
4. else gpk← Make-GPK(param, S′ ∪ {pk

u
})

5. gsk← Make-GSK(param, S′, (sku, pk
u
))

6. π
R
← (Anon-IDP(param, gpk, gsk)↔ Anon-IDV(param, gpk))

OUT: π

Fig. 1. Oracles for the soundness attack game. DB denotes a database storing user secret key/public key pairs,
indexed by public key.

Anon-IDV outputting a 1 answer, with overwhelming probability. Formally:

(∀λ ∈ N)(∀(u1, . . . , ut) ∈ U
∗)(∀m ∈M)

Pr[param
R
← Setup(1λ);

(ski, pki)
R
← Register(param, ui), i = 1, . . . , t;

gpk ← Make-GPK(param, {pk1, . . . , pkt});

gsk ← Make-GSK(param, {pk2, . . . , pkt}, (sk1, pk1)) |

Anon-IDV(param, gpk)Anon-IDP(param,gpk,gsk) = 1] ≥ 1− ν(λ)

3.2 Soundness

The Attack Game. We formalize the soundness guarantees that we require from an Ad Hoc Anonymous
Identification scheme in terms of a game being played between an honest dealer and an adversary A. In this
game, the adversary is allowed to interact with three oracles OHReg (the honest user registration oracle), OCor

(the user corruption oracle), and OScr (the transcript oracle) (see Fig. 1).
The game begins with the honest dealer running the Setup algorithm for the security parameter 1λ, and

handing the resulting global parameters param to the adversary. Then, A arbitrarily interleaves queries to the
three oracles, according to any adaptive strategy she wishes: eventually, she outputs a target group S∗ ⊆ PK′.
At this point, A starts executing, in the role of the prover, a run of the Anon-ID protocol with the honest
dealer, on common inputs param and gpk∗ .

= Make-GPK(param, S∗). Notice that during such interaction, the
adversary is still allowed to query the three oracles OHReg,OScr and OCor. Let π̃ be the transcript resulting
from such run of the Anon-ID protocol. A wins the game if the following conditions hold:

1. for all pk∗ ∈ S∗, there is an entry indexed by pk∗ in the SK-DB Database, and
2. π̃ is a valid transcript i.e., the run completed with the honest dealer outputting 1, and
3. for all pk∗ ∈ S∗, A never queried OCor on input pk∗;

Define SuccSnd
A (λ) to be the probability that A wins the above game.

Definition 3. An Ad Hoc Anonymous Identification scheme is sound against passive chosen-group attacks
if any adversary A has negligible advantage to win the above game:

(∀λ ∈ N)(∀PPTA)[SuccSnd

A (λ) ≤ ν(λ)]
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Challenge oracle OCh

IN: S′ ⊆ PK′, (sk0, pk
0
), (sk1, pk

1
)

RUN: 1. b∗
R
← {0, 1}

2. if sk0 6⇋pk
0
or sk1 6⇋pk

1
then abort

3. gpk← Make-GSK(param, S′ ∪ {pk
0
, pk

1
})

4. gsk∗ ← Make-GSK(param, S′ ∪ {pk
1−b∗
}, (skb∗ , pk

b∗
))

5. π∗ R
← (Anon-IDP(param, gpk, gsk∗)↔ Anon-IDV(param, gpk))

OUT: π∗

Fig. 2. The oracle for the anonymity attack game.

A Note on Active Security. Our definition of soundness models an adversary that, in her attempt to fool
an honest verifier into accepting a “fake” run of the Anon-ID protocol, can actively (and, in fact, adaptively)
corrupt users, but can only passively eavesdrop the communication between honest provers and verifiers. One
could, of course, define stronger notions of security by considering active, concurrent or even reset attacks,
along the lines of previous work on Identification Schemes [25, 5]; however, we refrain from doing so, both to
keep the presentation simpler, and because the main application of our Ad Hoc Anonymous Identification
schemes is to obtain new ring and group signatures scheme by means of the Fiat-Shamir Heuristic (see
Section 6.3), for which security against a passive adversary suffices.

3.3 Anonymity

The Attack Game. We formalize the anonymity guarantees that we require from an Ad Hoc Anonymous
Identification scheme in terms of a game being played between an honest dealer and an adversary A. In this
game, the adversary is allowed to interact only once with a “challenge” oracle OCh, described in Fig. 2.

The game begins with the honest dealer running the Setup algorithm for the security parameter 1λ, and
handing the resulting global parameters param to the adversary. Then, the adversary A creates as many user
secret key/public key pairs as she wishes, and experiments with the Make-GPK, Make-GSK, Anon-IDP and
Anon-IDV algorithms as long as she deems necessary; eventually, she queries the OCh oracle, getting back a
“challenge” transcript π∗. The adversary then continues experimenting with the algorithms of the system,
trying to infer the random bit b∗ used by the oracle OCh to construct the challenge π∗; finally, A outputs a
single bit b̃, her best guess to the “challenge” bit b∗.

Define SuccAnon
A (λ) to be the probability that the bit b̃ output by A at the end of the above game is equal

to the random bit b∗ used by the OCh oracle.

Definition 4. An Ad Hoc Anonymous Identification scheme is fully anonymizing if any probabilistic,
polynomial-time adversary A has success probability at most negligibly greater than one half:

(∀λ ∈ N)(∀PPTA)
[∣∣∣SuccAnon

A (λ) −
1

2

∣∣∣ ≤ ν(λ)
]

3.4 Extensions

Identity Escrow. In some scenarios, complete anonymity might create more security concerns than what
it actually solves. Instead, some degree of “limited anonymity”, not hindering user accountability, would be
preferable. In our context, this can be achieved with the help of a trusted Identity Escrow Authority, or IEA

(also called Anonymity Revocation Manager elsewhere [15]), endowed with the capability of “reading” the
identity of the prover “between the lines” of any transcript produced by a run of the Anon-ID protocol.

To enable such escrow capability, the definition of Ad Hoc Anonymous Identification scheme from Sec-
tion 3.1 is modified as follows:

– The Setup algorithm is run by the IEA, and it additionally outputs an identity escrow key skIE (from
some domain SKIE), which the IEA keeps for himself.
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– Register is replaced by an efficient two-party protocol (Registeruser, RegisterIEA), meant to be run between
the prospective user and the IEA, at the end of which the IEA learns the user’s newly generated public key
pku (possibly along with some other information auxu about u that the IEA stores in a public registry
database DB), but he doesn’t learn anything about the corresponding secret key sku.

– the Anon-ID protocol is changed in that both prover and verifier get an additional common input called
an Identity Escrow Token (IET) τ . A new IET τ is produced afresh by the prover before each execution of
the Anon-ID protocol, and it should include a policy (or label) describing the circumstances under which
the Identity Escrow Authority should honor an escrow request from a verifier.

– An additional (deterministic) Extract algorithm is defined, which takes as input an Identity Escrow Token
τ and a transcript π for the Anon-ID protocol, along with the Identity Escrow secret key skIE and the
registry database DB, and returns a public key pk ∈ PK′ or the special symbol ⊥. Intuitively, Extract

should be able to recover the identity of the user who participated as the prover in the run of the Anon-ID

protocol that produced π as transcript; the symbol ⊥ should be output when π does not meet the escrow
criteria specified by the label included in τ , or when π is ill-formed (e.g., when π comes from a ZK
simulator, or upon failure to trace the correct identity).

Our definitions of the security properties of the system have to be adjusted, since we now have an
additional functionality that the adversary may try to attack; moreover, the presence of the IEA may open
new attack possibilities to the adversary.

The security requirements for the new Extract algorithm are formalized by augmenting the attack scenario
defining the soundness property (Section 3.2). In this new, combined game, the adversary initially gets the
IEA’s secret key skIE, along with the public parameters param of the system. Also, the definition of the honest
user registration oracle OHReg should be changed so as to use the two-party protocol (Registeruser, RegisterIEA)
in place of the Register algorithm; similarly, the definition of the transcript oracle OScr should be amended
to reflect the syntactical changes to the Anon-ID protocol described above.

Then, the game proceeds as described in Section 3.2, except that we loosen the conditions under which
the adversary is considered to win the game, substituting the last caveat with the following:

3′. for all pk∗ ∈ S∗, either Extract(π̃, skIE, DB) 6= pk∗, or A never queried OCor on input pk∗;

As for the anonymity property, the definition from Section 3.3 is changed in that the adversary is now
given access to two more oracles: a corrupted-user registration oracle OCReg()

.
= RegisterIEA(skIE, param, DB),

and a user identity extraction oracle OXtr(·, ·)
.
= Extract(·, ·, skIE, DB). Also, the definition of the challenge

oracle OCh should be amended to reflect the syntactical changes to the Anon-ID protocol described above.
(In particular, the challenge output by OCh now consists of an IET τ∗ and an associated transcript π∗.)

The adversary wins the game if she successfully guesses the random bit chosen by the challenge oracle
OCh, without ever submitting to the extraction oracle OXtr the IET τ∗ which was output (together with the
transcript π∗) by the challenge oracle OCh.
Supporting Multiple Large Ad Hoc Groups. In many applications where Ad Hoc Anonymous Iden-
tification schemes could be useful, new ad hoc groups are often created as supersets of existing ones: for
example, if ad hoc groups are used to enforce access control, new users may be added to the group of prin-
cipals authorized to access a given resource. In such cases, the ability to “augment” a group public key with
the a new user’s public key can be very handy, especially if coupled with algorithms to efficiently create the
corresponding group secret key for the new user, and to update the group secret keys for the existing users.
Our model can be easily amended to capture this incremental functionality (cf. Appendix A).

4 Generic Construction

In this section, we will establish the fact that the existence of accumulators with one way domain implies
the existence of Ad Hoc Anonymous Identification schemes. Below we describe how the algorithms (Setup,
Register, Make-GPK, Make-GSK, Anon-IDP, Anon-IDV) can be implemented given an accumulator with one-
way domain ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N, ).
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– Setup executes the accumulator generation algorithm G on 1λ to obtain f ∈ Fλ. Then it samples Uf to
obtain u ∈R Uf . Setup terminates by setting param := (λ, u, f, D, W ), where D and W are polynomial-
time algorithms respectively to decide and to sample the relation Rλ.

– Register first samples a pair (x, z) ∈ Xλ × Zλ such that (x, z) ∈ Rλ using the sampling algorithm W of
the relation Rλ on input 1λ. Then, Register outputs sk

.
= z (the user secret key) and pk

.
= x (the user

public key). Observe that SK′ = SK
.
= Zλ, PK′ = Xext

f and PK
.
= Xλ.

– Make-GPK operates as follows: given a set of user public keys S = {x1, . . . , xt} and the parameters
(λ, u, f, D), it sets the group public key of S to be the (unique) accumulated value of S over u i.e.,
gpkS

.
= f(u, S). Note that thanks to the quasi-commutativity property of f , Make-GPK is indeed order-

independent.
– Make-GSK operates as follows: given the set of user public keys S′ .

= {x1, . . . , xt}, a user secret key/public
key pair (z, x) and the system parameters param = (λ, u, f, D, W ), it first computes the accumulated
value w

.
= f(u, S′), and then sets the group secret key gsk to be the tuple (x, z, w). Observe that w is a

witness for x in f(u, S) (where S
.
= S′ ∪ {x}), and that GSK

.
= Xλ × Zλ × Uf and GPK

.
= Uf .

– Anon-IDP and Anon-IDV are obtained generically as the Σ-protocol corresponding to the following NP-
relation Rparam ⊂ GPK × GSK:

Rparam
.
=

{(
v, (x, z, w)

)
|
(
(x, z) ∈ Rλ

)
∧

(
f(w, x) = v

)}

It is easy to see that the above relation is polynomial-time verifiable: indeed, given v and (x, z, w), one
can check in time polynomial in |v| whether (x, z) ∈ Rλ (by verifying that D(x, z) = 1), and whether w
is indeed a witness for x in v (by verifying that f(w, x) = v). Thus, by Theorem 1, we can construct a
Σ-protocol (P, V ) for the NP-relation Rparam. In the resulting protocol, the common input to the prover
and the verifier is the accumulated value v (i.e. a group public key) and the additional input to the
prover is a tuple of the form (x, z, w) (i.e., a group secret key). Hence, the protocol (P, V ) meets the
specification of the Anon-ID protocol.

Correctness of the above construction follows from the fact that relation Rparam is essentially equivalent
to the ⇋ relation. Consequently, a prover holding a group secret key gsk

.
= (x, z, w) ⇋-related to the group

public key gpk
.
= v given as input to the verifier, possesses a tuple belonging to the relation Rparam, so

that the execution of the Anon-ID protocol will terminate with the verifier outputting 1, with overwhelming
probability.

We also remark that, thanks to the quasi-commutativity of (one-way) accumulators, our construction
can be extended to meet the extra requirements of “incremental” Ad Hoc Anonymous Identification scheme
(cf. Appendix A) in a straightforward and efficient way.

4.1 Soundness

Intuitively, the soundness of the above generic construction stems from the following considerations. The
Special Honest-Verifier Zero-Knowledge property of the Σ-protocol Anon-ID guarantees that the Transcript
Oracle doesn’t leak any information to the adversary that she could not compute herself. By the Special
Soundness property, in order to make the honest dealer accept (with non-negligible probability) a run of
the Anon-ID protocol in which the group public key gpk∗ .

= v∗ consists solely of the aggregation of public
keys of non-corrupted users, A should posses a tuple gsk

.
= (x∗, z∗, w∗) such that (x∗, z∗) ∈ Rλ and w∗ is a

witness of x∗ in v∗. Now, the collision resistance of the accumulator implies that the user public key x∗ must
indeed have been accumulated within v∗, which means (by the third caveat of the soundness attack game in
Section 3.2) that x∗ belongs to a non-corrupted user. Hence, the adversary didn’t obtain the pre-image z∗ via
the user corruption oracle, which implies that A was able to find it by herself, contradicting the one-wayness
of the accumulator’s domain.

More formally, we now present a reduction argument showing how an adversary A having non-negligible
advantage SuccSnd

A (λ) in attacking the soundness of the above scheme can be used to attack the security of
the underlying accumulator with one-way domain. Recall from Section 2.3 that a secure accumulator with
one-way domain is such that:
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1. the advantage SuccColl
B1

(λ) of any probabilistic, polynomial-time adversary B1 in attacking the collision-
resistance of the accumulator is a negligible function in λ;

2. the advantage SuccOW
B2

(λ) of any probabilistic, polynomial-time adversary B2 in attacking the one-wayness
of the accumulator’s domain is a negligible function in λ.

Thus, our reduction argument will proceed as follows: given black-box access to A, we will construct two
adversaries, B1 and B2, attacking the security of the accumulator with one-way domain in the sense of 1
and 2 above, respectively. We will then prove that if SuccSnd

A (λ) is non-negligible, then either SuccColl
B1

(λ) or

SuccOW
B2

(λ) (or both) must also be non-negligible, thus reaching a contradiction.
Construction of B1. We now describe how to turn A into an adversary B1 attacking the collision-resistance
of the accumulator with one-way domain. The input to B1 is the description of the accumulator function f ,
the initial value u, and the decision and sampling algorithms D and W for the relation Rλ. This is exactly
the format of the system parameters param that A expects, so B1 can feed A with that. During its execution,
A also expects to be given access to the three oracles OHReg, OCor and OScr: B1 simply simulates these oracles
honestly, according to the specification in Fig. 1 (in particular, B1 will use the sampling algorithm W to
generate user secret key/public key pairs). Eventually, A will tell B1 the ad hoc group S∗ that she wishes to
target, and then she will initiate a run of the Anon-ID protocol on the common input gpk∗ .

= f(u, S∗): let
COM∗ be the first flow sent by A to B1. Adversary B1 then attempts, using standard rewinding techniques
for Σ-protocols [33], to extract a tuple (x∗, z∗, w∗) from A: if successful, B1 outputs (x∗, w∗, S∗), otherwise
B1 aborts.
Construction of B2. The construction of adversary B2 follows the same structure as the one given above
for B1, with few differences (described below), stemming from the fact that the input to B2 additionally
includes a “challenge” value x̂ for which B2 needs to find a preimage ẑ.

Let QHReg be an estimate on the number of queries that A will ask to OHReg, and let i be a random
integer between 1 and QHReg; the simulation put on by B2 will proceed as done by B1, with the following
changes:

– In answering the ith query to oracle OHReg, B2 will return the challenge value x̂ to A;
– If A queries OCor on x̂, B2 immediately aborts the simulation;
– If A queries OScr on (S′, x̂), B2 uses the simulator for the Σ-protocol to produce the transcript π, and

returns it to A;
– After successfully rewinding A and extracting (x∗, z∗, w∗), B2 checks if x∗ = x̂: if so, B2 outputs z∗; if

not, B2 aborts.

Reaching a contradiction. Consider the events:

Erew
.
= “rewinding succeeded” Ein

.
= “x∗ ∈ S∗” Eeq

.
= “x∗ = x̂”

and the quantities:

prew
.
= Pr[Erew] p1

.
= Pr[Ein | Erew] p2

.
= Pr[Eeq | Erew ∧ Ein]

the probability being over the random coins of A, B1, B2 and the random choice of i. Now, notice that if
during the execution of adversary B1, events Erew and Ein occur, then the output of B1 is actually a collision,
so that B1 wins the game: it follows that SuccColl

B1
(λ) ≥ prew ·p1. As for executions of adversary B2, first notice

that the simulation is correct as long as A does not query OCor on x̂ (in particular, Special Honest-Verifier
Zero-Knowledge implies that A cannot detect that transcripts from queries of the form OScr(S

′, x̂) actually
come from the Simulator). Thus, if events Erew, Ein and Eeq occur, then the output of B2 is actually a pre-

image of x̂, so that B2 wins the game: it follows that SuccOW
B2

(λ) ≥ prew · (1− p1) · p2. The probability prew of

successful rewinding can be safely estimated (cf. [33]) as pRew = O(SuccSnd
A (λ)2). As for p2, notice that since

the choice of i is independent from A’s view, it follows that p2 is at least 1/QHReg, which is non-negligible.

Finally, observe that p1 and (1 − p1) cannot both be negligible, so that, assuming that SuccSnd
A (λ) is non-

negligible, it follows that either SuccColl
B1

(λ) or SuccOW
B2

(λ) (or both) are also non-negligible, as required. ⊓⊔
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4.2 Anonymity

In attacking the anonymity of the proposed scheme, the adversary basically chooses a group public key
gpk

.
= v and two group secret keys gsk1

.
= (x1, z1, w1) and gsk2

.
= (x2, z2, w2), both ⇋-related to gpk. To

subvert anonymity, the adversary should then be able (cf. Section 3.3) to tell whether gsk1 or gsk2 was
used in producing the (honest) “challenge” transcript. Since in the generic construction above the Anon-ID

protocol is implemented as a Σ-protocol, this would mean that the adversary is able to tell which “witness”
(gsk1 or gsk2) was used by the prover to show that v belongs to the NP-language Lparam associated to the
NP-relation Rparam. In other words, a successful adversary would break the Witness Indistinguishability of
the Anon-ID protocol, which contradicts the fact that Anon-ID enjoys Special Honest-Verifier Zero-Knowledge.

To turn the above intuition into a formal proof, we now define two games, G0 and G1, indistinguishable
to the eyes of any probabilistic, polynomial-time adversary, both defined over the same probability space,
where G0 is the original anonymity attack game defined in Section 3.3, and G1 is a game in which even an
unbounded adversary cannot win with probability better than 1/2.
Game G0. Define game G0 to be the original anonymity attack game (cf. Section 3.3).
Game G1. In game G1, step 4. and 5. of the Challenge Oracle OCh from Fig. 2 are replaced by the following:

4’. Ch
R
← {0, 1}χ

5’. π∗ ← Sim(param, gpk, Ch)

where χ is the challenge size and Sim is the simulator for the Σ-protocol.
In other words, in game G1, the Challenge Oracle constructs the challenge using the Simulator algorithm,
so that the value of b∗ is independent of the adversary’s view. By Special Honest-Verifier Zero-Knowledge,
no probabilistic, polynomial-time adversary can detect that the challenge transcript π∗ actually comes from
the Simulator, so that the probability of adversary A guessing b∗ in G0 and G1 can only be negligibly apart.
But as argued above, such probability is exactly 1/2 in G1: it follows that any probabilistic, polynomial-time
adversary A can only guess b∗ in the original anonymity attack scenario of Section 3.3 with probability at
most negligibly greater than 1/2 i.e., our generic construction yields a fully anonymizing Ad Hoc Anonymous
Identification scheme.

4.3 Adding ID Escrow

The generic construction described above can be extended to deal with Identity Escrow as follows. During
the initialization, the Setup algorithm additionally runs the key generation algorithm K of some CCA2-secure
encryption scheme (K, E ,D). The resulting public key pkIE is included in the system parameters param, and
the secret key skIE is given to the Identity Escrow Authority (IEA).

As for the user registration phase, each new user, after choosing his user secret key/public key pair
(sk, pk)

.
= (z, x), registers his public key with the IEA, which simply stores his identity and public key in a

publicly-available database DB.
The Anon-ID protocol is also changed to be the Σ-protocol corresponding to the following NP-relation:

RIE
param

.
=

{(
(v, τ), (x, z, w, r)

)
|
(
(x, z) ∈ Rλ

)
∧

(
f(w, x) = v

)
∧

(
τ = EpkIE

(x; r)
)}

In other words, the prover now additionally encrypts his public key x under the IEA’s public key pkIE, and
proves to the verifier that he did so correctly. Notice that the Identity Escrow Token τ (cf. Section 3.4) is
created by the prover and sent to the verifier immediately before each execution of the Anon-ID protocol.

Finally, on input an IET τ and a transcript π, the Extract algorithm, recovers the identity of the user
that played the role of the prover by decrypting τ .

It is not hard to check that the above changes do not affect the soundness and anonymity properties of
the generic construction: in particular, the CCA2-security of the encryption scheme (which is needed since a
malicious party could trick the IEA into acting as a decryption oracle) guarantees that an honestly-created
IET τ cannot be modified so as to alter the prover identity hidden within it. We omit the details.
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5 Efficient Implementation

5.1 Construction of an Accumulator with One-way Domain

An efficient construction of a collision-resistant accumulator was presented in [15], based on earlier work
by [4] and [7]. Based on this construction, we present an efficient implementation of an accumulator with
one-way domain.

For λ ∈ N, the family Fλ consists of the exponentiation functions modulo λ-bit rigid integers:

f : (Z∗
n)2 × Zn/4 → (Z∗

n)2

f : (u, x) 7→ ux mod n

where n ∈ Rigλ and (Z∗
n)2 denotes the set of quadratic residues modulo n.

The accumulator domain {Xλ}λ∈N is defined by:

Xλ
.
=

{
e prime |

(e− 1

2
∈ RSAℓ

)
∧

(
e ∈ S(2ℓ, 2µ)

)}

where S(2ℓ, 2µ) is the integer range (2ℓ − 2µ, 2ℓ + 2µ) that is embedded within (0, 2λ) with λ − 2 > ℓ and
ℓ/2 > µ + 1. The pre-image domain {Zλ}λ∈N and the one-way relation {Rλ}λ∈N are defined as follows:

Zλ
.
= {(e1, e2) | e1, e2 are distinct ℓ/2-bit primes and e2 ∈ S(2ℓ/2, 2µ)}

Rλ
.
= {

(
x, (e1, e2)

)
∈ Xλ × Zλ |

(
x = 2e1e2 + 1

)
}

The collision resistance of the above construction can be based on the Strong RSA Assumption, as showed
in [15]. Regarding the added one-wayness of the domain, assuming the hardness of factoring RSA integers,
it is easy to see that the NP-relation Rλ satisfies our one-wayness requirement (cf. Section 2.3): hence, the
above construction yields a secure accumulator with one-way domain.

5.2 Efficient Proof of Witnesses for the Accumulator

The generic construction described in Section 4 derives algorithms Anon-IDP and Anon-IDV from the Σ-
protocol corresponding to some NP-relation Rparam: for our RSA-based accumulator with one-way domain,
the relation is defined as:

RRSA
param

.
=

{(
v, (x, (e1, e2), w)

)
|
(
wx ≡ v mod n

)
∧

(
x ∈ S(2ℓ, 2µ)

)

∧
(
x− 1 = 2e1e2

)
∧

(
e2 ∈ S(2ℓ/2, 2µ)

)}

However, the protocol generically obtained in virtue of Theorem 1, though polynomial time, is not efficient
enough to be useful in practice; thus, below we describe how a practical Σ-protocol for relation RRSA

param could
be constructed, exploiting the framework of discrete-log relation sets [30], which provides a simple method
to construct complex proofs of knowledge over groups of unknown order. A discrete-log relation set R is
a set of vectors of length m defined over Z ∪ {α1, . . . , αr} (where the αj ’s are called the free variables of
the relation) and involves a sequence of base elements A1, . . . , Am ∈ (Z∗

n)2. For any vector 〈ai
1, . . . , a

i
m〉

the corresponding relation is defined as
∏m

j=1 A
ai

j

i = 1. The conjunction of all the relations is denoted as
R(α1, . . . , αr). In [30], an efficient Σ-protocol is presented for any discrete-log relation set R, by which
the prover can prove of knowledge of a sequence of witnesses x1, . . . , xr, with xi ∈ S(2ℓi , 2µi) that satisfy

R(x1, . . . , xr) ∧
(
∧r

i=1 (xi ∈ S(2ℓi, 2ǫ(µi+k)+2)
)
, where ǫ > 1, k ∈ N are security parameters. Note that

the tightness of the integer ranges can be increased by employing the range proofs of [10], nevertheless the
tightness achieved above is sufficient for our purposes, and incurs a lower overhead.
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In order to prove the relation RRSA
param, we assume that the public parameters param include the elements

g, h, y, t, s ∈ (Z∗
n)2 with unknown relative discrete-logarithms. In order to construct the proof, the prover pro-

vides a sequence of public values T1, T2, T3, T4, T5 such that T1 = gr, T2 = hrgx, T3 = srge2 , T4 = wyr , T5 =

trg2e1 , where r
R
← [0, ⌊n/4⌋ − 1].

The proof is constructed as a discrete-log relation set that corresponds to the equations T1 = gr, T2 =
hrgx, (T1)

x = ga1 , (T1)
e2 = ga2 , T3 = srge2 (T4)

x = vya1 , (T5)
e2g = ta2gx, for the free variables r, x, e2, a1, a2

such that x ∈ S(2ℓ, 2µ), e2 ∈ S(2ℓ/2, 2µ), a1 = rx and a2 = re2. The matrix of the discrete-log relation set is
shown below:




g h y t s v T−1
1 T−1

2 T−1
3 T−1

4 T−1
5 g−1

T1 = gr : r 0 0 0 0 0 1 0 0 0 0 0
T2 = hrgx : x r 0 0 0 0 0 1 0 0 0 0

(T1)
x = ga1 : a1 0 0 0 0 0 x 0 0 0 0 0

T3 = srge2 : e2 0 0 0 r 0 0 0 1 0 0 0
(T1)

e2 = ga2 : a2 0 0 0 0 0 e2 0 0 0 0 0
(T4)

x = vya1 : 0 0 a1 0 0 1 0 0 0 x 0 0
(T5)

e2g = ta2gx : x 0 0 a2 0 0 0 0 0 0 e2 1




Observe that a proof of the above discrete-log relation set ensures that (i) the prover knows a witness
w for some value x in the ad hoc group accumulated value v, and (ii) for the same x, the value x − 1
can be split by the prover into two integers one of which belongs to S(2ℓ/2, 2µ). This latter range-property
guarantees the non-triviality of the splitting i.e., that the prover knows a non-trivial factor of x − 1 (i.e.,
different than −1, 1, 2). Note that this will require that the parameters ℓ, µ, ǫ, k should be selected such that
ℓ/2 > ǫ(µ + k) + 2.

5.3 ID Escrow

In Section 4.3, we discussed a generic transformation to add Identity Escrow to an Ad Hoc Anonymous
Identification scheme. Most of the required changes do not affect the system’s efficiency, except for the need
to resort to a generic derivation of the Anon-ID protocol.

This performance penalty is not unavoidable, however: in fact, escrow capabilities can be directly sup-
ported by the Σ-protocol for Anonymous Identification described in Section 5.2. using protocols for verifiable
encryption and decryption of discrete logarithms from [17].

With notation as in Section 5.2, the Anon-ID protocol is augmented as follows: after sending the com-
mitment T2 to the verifier, the prover verifiably encrypts an opening of T2 (namely, x and r) under the IEA

public key. By checking that the encryption was carried out correctly, the verifier can be assured that, should
the need arise, the IEA would be able to identify the prover by decrypting such opening, which would yield
the prover’s public key x. Moreover, by using verifiable decryption in the Extract algorithm, we can prevent
the IEA from untruthfully opening the identity of the prover for a given transcript, or falsely claiming that
the prover’s identity cannot be properly recovered.

Alternatively, if only honest users are assumed to have access to the Escrow functionality (so that mali-
cious parties cannot exploit the IEA as a “decryption oracle”), then a more efficient solution is possible, by
having the IEA knowing the value logg(h) in the proof of knowledge from Section 5. Then, given a transcript

of the protocol (which includes the values T1, T2, T3, T4, T5) the IEA can recover the value gx = T2T
− logg(h)

1 ,
from which the prover’s identity can be recovered by comparing gx to the public keys published in the public
DB database.

6 Applications

6.1 Ad Hoc Identification Schemes

This is the most direct application. Imagine a large universe of users, where each user has a public certificate,
but otherwise there is no central authority in the system. Now, some party “from the street” has a resource
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which he is willing to share with some subset of the users. For example, an Internet provider P may want
to enable internet access to all its subscribers. However, privacy considerations may lead a user to refuse to
positively identify himself; in fact, this is not strictly necessary, as long as he proves he belongs to the group
of current subscribers. Our ad hoc identification schemes are ideally suited for this application, bringing
several very convenient feautures. First, P can simply take all the public keys of the users (call this set S)
and combine them into one short group public key gpkS . Notice, this initial setup is the only operation P
performs which requires time proportional to the group size. As for each user u ∈ S, once again he will
use his secret key and the public keys of other user to prepare one short group secret key gsku. After that,
all identifications that u makes to P require computation and communication independent of the size of
the group. Now, another provider P ′ can do the same for a totally different sub-group, and so on, allowing
truly ad hoc groups with no trusted authority needed in the system. Additionally, with incremental Ad Hoc
Anonymous Identification schemes (cf. Appendix A), one can preserve efficiency even when the ad hoc group
is built gradually, as each new member addition only requires constant computation by P and by every
pre-existing user in the system.

6.2 Constant Size Ring Signatures

This is one of our main applications, since it dramatically improves the efficiency of all known ring signature
schemes (e.g. [34, 12, 9]). Recall, in a ring signature scheme there again is a universe of registered users, but
no trusted authority. Any user u can then form a ring S, and sign a message m in such a way that any verifier
(who knows S) can confidently conclude that “the message m was signed by some member u of S”, but gets
no information about u beyond u ∈ S. Previous papers on the subject suggested that linear dependence
of the ring signature size on the size of the ring S was inevitable, since the group is ad hoc, so the verifier
needs to know at least the description of the ring. While the latter is true, in practical situations the ring
often stays the same for a long period of time (in fact, there could be many “popular” rings that are used
very often by various members of the ring), or has an implicit short decryption (e.g., the ring of public keys
of all members of the President’s Cabinet). Thus, we feel that the right measure of “signature size” in this
situation is that of an “actual signature”—the string one needs in addition to the group description. Indeed,
when the ring stays the same for a long time or has a short description, this actual signature is all that the
verifier needs in order to verify its correctness. With this in mind, there is no reason why the signature size
must be linear in the size of the ring.

In fact, our result shows that it does not have to be. Specifically, by applying the Fiat-Shamir heuristics
to our ad hoc identification scheme, we immediately get ring signatures of constant size. Moreover, our ring
signatures enjoy several desirable features not generally required by ring signatures (even those of constant
size). For example, both the signer and the verifier need to perform a one-time computation proportional
to the size of the ring, and get some constant-size information (gskS and gpkS , respectively) which allows
them to produce/verify many subsequent signatures in constant time.

6.3 Ad Hoc ID Escrow and Group Signatures

As mentioned in Section 3.4, in some situations complete anonymity might not be desirable. In this case, one
wishes to introduce a trusted Identity Escrow Authority (IEA), who can reveal the true identity of the user
given the transcript of the identification procedure (presumably, when some “anonymity abuse” happens).
Such schemes are called ID Escrow schemes [31] and have traditionally been considered for fixed groups. ID
Escrow schemes are duals of group signature schemes [19, 1], which again maintain a single group of signers,
and where a similar concern is an issue when signing a document anonymously. As argued in Section 4.3
and Section 5.3, our Ad Hoc Anonymous Identification schemes and the corresponding signer-ambiguous
signature schemes can efficiently support identity escrow capabilities. As a result, we get an ID Escrow
and a group signature scheme with the following nice features. (For concreteness, we concentrate on group
signatures below.) First, just like in current state-of-the-art group signature schemes, the signature is of
constant size. Second, a user can join any group by simply telling the group manager about its public key: no
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expensive interactive protocols, where the user will “get a special certificate” have to be run. Thus, the group
manager only needs to decide if the user can join the group, and periodically certify the “current” public key
of the group. In other words, we can imagine a simple bulletin board, where the group manager periodically
publishes the (certified) group public key, the description of the group, and potentially the history of how
the public key evolved (which is very handy for incremental Ad Hoc Anonymous Identification schemes; see
Appendix A). From this information, each member of the group can figure out its group secret key and sign
arbitrary many messages efficiently. (Of course, when signing a message the signer should also include the
certified version of the current group key, so that “old” signatures do not get invalidated when the group
key changes.)
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A Incremental Ad Hoc Anonymous Identification scheme

Definition 5. An incremental Ad Hoc Anonymous Identification scheme is a Ad Hoc Anonymous Identi-
fication scheme augmented with 3 deterministic, polynomial-time algorithms

Augment-GPK : Par× GPK × P(PK)→ GPK

Augment-Old-GSK : Par× GSK × P(PK)→ GSK

Augment-New-GSK : Par× GPK × SK × PK → GSK

such that:

– (Additional Public Keys can be Incrementally Added into Group Public Keys)

(∀λ ∈ N)(∀(u′
1, . . . , u

′
t′) ∈ U

∗)(∀(u′′
1 , . . . , u′′

t′′) ∈ U
∗)

Pr[param
R
← Setup(1λ);

(sk′
i, pk′

i)
R
← Register(param, u′

i), i = 1, . . . , t′;

(sk′′
i , pk′′

i )
R
← Register(param, u′′

i ), i = 1, . . . , t′′;

gpk′ ← Make-GPK(param, {pk′
1, . . . , pk′

t′});

gpk← Make-GPK(param, {pk′
1, . . . , pk′

t′ , pk′′
1 , . . . , pk′′

t′′});

ĝpk← Augment-GPK(param, gpk′, {pk′′
1 , . . . , pk′′

t′′}) |

ĝpk = gpk] ≥ 1− ν(λ)
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– (Additional Public Keys can be Incrementally Added into Group Secret Keys)

(∀λ ∈ N)(∀(u′
1, . . . , u

′
t′) ∈ U

∗)(∀(u′′
1 , . . . , u′′

t′′) ∈ U
∗)

Pr[param
R
← Setup(1λ);

(sk′
i, pk′

i)
R
← Register(param, u′

i), i = 1, . . . , t′;

(sk′′
i , pk′′

i )
R
← Register(param, u′′

i ), i = 1, . . . , t′′;

gsk′ ← Make-GSK(param, {pk′
2, . . . , pk′

t′}, (sk
′
1, pk′

1));

gsk ← Make-GSK(param, {pk′
2, . . . , pk′

t′ , pk′′
1 , . . . , pk′′

t′′}, (sk
′
1, pk′

1));

ĝsk ← Augment-Old-GSK(param, gsk′, {pk′′
1 , . . . , pk′′

t′′}) |

ĝsk = gsk] ≥ 1− ν(λ)

– (Group Secret Keys can be Incrementally Built from Group Public Keys)

(∀λ ∈ N)(∀(u1, . . . , ut) ∈ U
∗)

Pr[param
R
← Setup(1λ);

(ski, pki)
R
← Register(param, ui), i = 1, . . . , t;

gpk← Make-GPK(param, {pk2, . . . , pkt});

gsk← Make-GSK(param, {pk2, . . . , pkt}, (sk1, pk1));

ĝsk← Augment-New-GSK(param, gpk, (sk1, pk1)) |

ĝsk = gsk] ≥ 1− ν(λ)

where all the probabilities are over the random coins of the Setup and Register algorithms.

As an example, below we sketch how these algorithms can be efficiently implemented for the generic
construction of Section 4 (and hence, for its efficient instantiations of Section 5).

Recall that the systems parameters of an instance of our generic construction (cf. Section 4) have the
form param := (λ, u, f, D, W ). Also, recall that SK

.
= Zλ, PK

.
= Xλ, GSK

.
= Xλ × Zλ ×Uf and GPK

.
= Uf .

Then, the algorithms Augment-GPK, Augment-Old-GSK, Augment-New-GSK can be defined as follows:

Augment-GPK(param, v, S′′)
.
= f(v, S′′)

Augment-Old-GSK(param, (x, z, w), S′′)
.
= (x, z, f(w, S′′))

Augment-New-GSK(param, (x, v, z, x)
.
= (x, z, f(v, x))
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