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Abstract. Consider an abstract storage devicg7) that can hold a single elemenfrom a fixed, publicly known
finite groupG. Storage is private in the sense that an adversary does not havecressd to”(G) at all. However,
X(G) is non-robust in the sense that the adversary can modify its contendslingasome offsefA € G. Due to the
privacy of the storage device, the valdlecan only depend on an adversarg’priori knowledge ofr. We introduce

a new primitive called amalgebraic manipulation detectiofAMD) code, which encodes a sourgénto a valuex
stored on¥’(G) so that any tampering by an adversary will be detected, except withlaesnaa probabilityd. We
give a nearly optimal construction of AMD codes, which can flexibly asewdate arbitrary choices for the length
of the sources and security leved. We use this construction in two applications:

— We show how to efficiently convert any linear secret sharing schema intmist secret sharing schenwehich
ensures that nonqualified subseidf players can modify their shares and cause the reconstruction efwadoe
s’ # s.

— We show how how to build nearly optimedbust fuzzy extractofer several natural metrics. Robust fuzzy ex-
tractors enable one to reliably extract and later recover random laysfoisy and non-uniform secrets, such
as biometrics, by relying only onon-robust public storagdn the past, such constructions were known only
in the random oracle model, or required the entropy rate of the secretgrehter than half. Our construction
relies on a randomly chosen common reference string (CRS) availaallep@rties.

1 Introduction

We consider an abstract storage de\igig/) that can hold a single elementfrom a fixed, publicly known
finite (additive) grou;. Storage is private in the sense that an adversary does not haecoesd td(G)

at all. However,2(G) allows tampering in the sense that an adversary may manipulate the stored value
by adding some offsef\ € G of his choice. As a result/(G) stores the element+ A € G. Due to the
privacy of the storage device, the valdecan only depend on an adversarg'griori knowledge ofx. For
instance, one-time-pad encryption can be understood as such a stevage it hides the message perfecily,
but an adversary can add (bitwise-xor) a string to the message withiogt detected. Of course, by itself,
this example is not very interesting, since it requires sanditional private and tamper-proof storader

the one-time pad key. However, in the two applications discussed below, no other private or tapnpef
storage is available and hence we will need to i$€) alone to achieve authenticity.

1 For example, by using a slightly longer secret key containing a key to-dimeeMAC in addition to the one-time-pad key, one
can trivially add authentication to this application.



1.1 Linear Secret Sharing Schemes

In alinear secret sharing schenfe.g. Shamir's secret sharing [26] and many others) a se@elistributed
amongn players so that each player gets some algelsiagre of the secret. Anygualified subset of the
players can pool their shares together and recetgrmeans of a linear transformation over the appropriate
domain while anyunqualifiedsubset gets no information abosit Unfortunately, the correctness of the
recovery procedure is guaranteed only if all the shares are camgmrticular, if a qualified subset of the
players pools their shares for reconstruction, but the honest playarag them form an unqualified set,
then the dishonest players (possibly just one!) can cause the reagiwstrof a modified secret. Moreover,
the difference between the correct secretnd the reconstructed secrétis controlled by the corrupted
players, due to the linearity of the scheme. Luckily, this is “all” that the caediplayers can do: (1) by
the privacy of the secret sharing scheme, the noise introduced byrfuptm players can only depend on
their prior knowledge of the secret and (2) by the linearity of the sebiairsg scheme, for any attempted
modification of their shares, the corrupted players must “know” the addiiiference betweenands’. In
essence, a linear secret sharing schemecah be viewed as storingon our abstract devic'(G).

To deal with this problem, we introduce the notion ofegebraic manipulation detectiofhMD) code.
This is a probabilistic encoding of a soureérom a given setS as an element of the grogj with unique
decodability. The security of the code ensures that, when the encoditoged é1.X(G), any manipulation
of contents by an adversary will be detected except with a small errbapildy 6. The guarantee holds
even if the adversary has full a priori knowledge of the source stdt® secret keys are required since we
rely on the privacy of(G) instead.

Using an AMD code, we can turn any linear secret sharing schemetioboist secret sharing scherf28],
which ensures that no unqualified subset of players can modify thegshad cause the reconstruction of
some valug’ # s. The transformation is very simple: apply the linear secret sharing scheheeacoding
of s rather thars itself.

In terms of parameters, we obtain robust secret sharing schemes whinkaxly as efficient as their
non-robust counterparts, since the overhead added by encodigce svill be very small. More precisely,
to achieve securitg ", we build an AMD code where the length of the encoding oflait values is only
2k 4+ O(log(u/k)) bits longer than the length af This construction is close to optimal since we prove a
lower bound o2« on the amount of overhead that an AMD encoding must add to the size ajuhees As
a concrete example, in order to robustly secret share a 1 megabyte mestagecurity leveb = 27128,
our best construction adds fewer than 300 bits by encoding the mesdageas previous constructions
(described below) add nearly 2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never formally defined in previous
work, some constructions of AMD codes have appeared, mostly in cbonedth making secret sharing
robust [20, 7, 21]. Although some of these constructions are essertatityal, all of them are largely
inflexible in that the error probability is dictated by the cardinality of the source sp&te) ~ 1/|S].
In particular, this implies that when the cardinality 8fis large, the known constructions may introduce
significantly more overhead than what is needed to achieve a particulaitgereshold. In contrast, our
constructions can accommodate arbitrary choices of secuaityl message length

For example, Cabello, Pawland $iez [7] (see also [23, 22]) proposed an elegant construction bistro
secret sharing scheme which implicitly relies on the following AMD code. Fgifiite field F of orderq,
the encoding of the secrete F is a triple(s, z, x - s), wherex € F. This code achieves securify= 1/g
and optimal message overhe2tbg(q) = 2log(1/9) for this value ofé. However, as already mentioned,
it is far from optimal when we only desire a security level> 1/q, making this construction inflexible
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for many applications. Similarly, Ogata and Kurosawa [20] proposed axihfé construction of aveakly
robust secret sharing scheme (the scheme is robust only if the shemed s uniformly random) that
implicitly defines what we call aseakAMD code. We describe this construction and argue its inflexibility
in Appendix C.3. In Appendix D, we also show a natural generic transdtion of weak AMD codes
to (ordinary “strong”) AMD codes, observing that such a transfornmatian never achieve the optimal
overhead (nearly) achieved by our direct construction. AMD codesao very useful for several other
related applications. Indeed, in Section 3 we point their applications totristfasmation dispersal, secure
private storage and anonymous message transmission.

In the context of robust secret sharing, the inflexibility issue mentionesteabas recently been ad-
dressed in a paper by Obana and Araki [19], wheffexdble robust secret sharing scheme (in fact, an
AMD code in our terminology) was proposed and claimed to be “provenirge¢iowever, as we discuss in
Appendix B, the proposed robust secret sharing scheme (resgig@MD code) is completelynsecure

1.2 Fuzzy Extractors

A less obvious example comes from the domairfiuaizy extractor$l0]. A fuzzy extractor extracts a uni-
formly random keyR from some non-uniform secret (e.g., biometric data) in such a way that this key
can be recovered from any sufficiently close tav in some appropriate metric spac&o accomplish this
task, the fuzzy extractor also computes a pubétper stringP in addition to the extracted kel, and then
recoversRk usingw’ and P. Unfortunately, the original notion of a fuzzy extractor critically depeodshe
value of P being stored on a tamper-proof (though public) device. As observdbign et al. [6, 5], this
severely limits the usability of the concept. To address this problem, [6, 5Hintexd a stronger notion of
arobust fuzzy extractopmwhere any tampering aP will be detected by the user, even with an imperfect
readingw’ of w! Thus, P can be stored on a potentially untrusted server without the fear that a \wegng
R # R will be extracted.

Before describing the new and prior results on robust fuzzy extd#drus give some intuition on how
this setting is related to our abstract storage device. As we will show (ertetite previous observation of
[11]), for “appropriately designed” (non-robust) fuzzy extrastdhe effect of modifying the helper string
P into P can be essentially subsumed by giving the attacker the abiligritol the difference between the
original key R extracted fromw, and the “defective” key? extracted froms’ and P. Thus, on a very high
level, storing the public helpe? on a public and unprotected storage can be viewed as implicitly storing
the extracted keyr on a deviceX'(G) that ensures privacy but allows tampering.

Unfortunately, in this application one does not have the freedom of steonge encoding ofR on
X ({0,1}"), so AMD codes are not directly applicable. Instead, we introduce a detation called gone-
time) message authentication code with key manipulation se¢iiits-MAC). Abstractly, this authentica-
tion code is keyed by a random element of some finite g@ugnd remains secure even if the key is stored
in X(G). The message and the authentication tag can be stored in insecure statagendither private
nor tamper-proof. The adversary, who gets to see one valid messageittagmd modify the key stored on
X(G), will be unable to produce an alternative message/tag pair that verifies thedmodified key, except
with some small error probability. We show how to construct KMS-MACSs using appropriate AMD codes.
Combined with our nearly optimal AMD construction, we get KMS-MACs thaeegially achieve the same
parameters as ordinary (one-time) MACSs: to authenticate-aiht message with substitution security”,
one uses a key of siz& + O(log(u/k)) and a tag of size + O(log(u/k)).

2 For now and much of the paper, we will concentrate on the Hamming spatd0, 1}, later pointing out how to extend our
results to related metrics.



We use KMS-MACs to add robustness to fuzzy extractors. As we mentidhegublic helperP is
stored on a public unprotected storage and we can think of the extragtétideebeing stored i’ ({0, 1}*).
Surprisingly, we can use the kéy (which is derived fromP) to authenticateP itself! The idea is to split
the extracted ke into two partsR,,,.. andR,;. The “long” R,,; will be the new extracted key, while the
“short” R, Will be sacrificed and used as the key to the KMS-MAC applied to the origielglen string
P (so that the new helper string will contaihand the tag). An adversary that replaé¢ewith P’ implicitly
adds a known offset t®,,,,. but, by the security of the KMS-MAC, is then unable to compute a valid tag for
P’ under the modified key. As a result, for the first time, we obtabustfuzzy extractors for the Hamming
(and related) metrics, which do not rely on random oracles (or otherutignal assumptions) and achieve
nearly the same optimal parameters as their non-robust countergdasever, as we explain shortly, this
result is obtained in the Common Reference String model. Indeed, a setupiss is hecessary as our
result breaks the impossibility result of [12] for the plain model.

Relation to Prior Work on Fuzzy Extractors. In their original paper, Dodis et al. [10] gave several nearly
optimal constructions for (non-robust) fuzzy extractors for the Hammingsgveral other metrics. Boyen
et al. [5] gave a generic transformation which makes a fuzzy extradboistin the random oracle modgel
without considerably sacrificing any of the parameters. Unfortunatetiemplain model Dodis et al. [11]
showed that robustness can only be achieved if the initial secoemntains an entropy rate of at least one
half (i.e. the entropy of the secret is at least half the length of the selerédict, this holds even if no errors
are allowed [12] (i.e.w = w’). Moreover, even when the secret does meet this threshold, robsissnanly
achieved at a large cost in the length of the extracted random key, asuchtp the optimal non-robust
extractors for the same entropy threshold.

In this work we overcome this pessimistic state of affairs by building robustyfextractors in the
Common Reference StrifGRS) model. The common reference string can be chosen once whestidya s
is designed and can be hardwired/hardcoded into all hardware/seftwalementing the system. Moreover,
the CRS can be published publicly and we allow the attacker to observedbutadify) it.3 Our CRS is a
random bitstring - it has no trapdoors and we do not require any abilityramfam” it. Since most users do
not create their own hardware/software but instead assume that a thiydrpplementation is correct, the
assumption that this implementation also contains an honestly generated randgmices not significantly
increase the amount of trust required from users. We do assume tpaiotability distribution from which
the secretw is chosen is independent of the CRS. This is a very natural assumptibiofoetrics and many
other scenarios. However, it also means that our scheme is not applicéidesetting of exposure resilient
cryptography (see [9]) where the attacker can learn some functiom akttret after seeing the CRS.

What our result shows, however, is that this seemingly minor addition rigtadlows us to achieve
robustness without additional restrictions on the entropy rate of thetseatealso tonearly match the
extracted key length of non-robust fuzzy extractor constructimnthe robust fuzzy extractor constructions
in the random oracle model [5]).

On atechnical level, it is also interesting to compare our model and techwidthetbose of Dodis et al.
[11], who built robust fuzzy extractors in the plain model (with the ne&elyspoor parameters mentioned
above). The work of [11] could be viewed (in our language) as riedube question of building robust fuzzy
extractors to that of using th@e original secretw stored inX(G), for authentication purposes. In partic-
ular, the authors had to build a message authentication code (in fact, ame against key manipulation

3 We remark that assuming tamper-proof storage of the CRS, whichecalinased by many users, is very different than assuming
tamper-proof storage of a “user-specific” helper stifhdndeed, the former can be hardwired into the system, and the latter can
not.



attacks) using thaon-uniformstringw as the key. Authentication codes keyed by non-uniform randomness
imply non-trivial parameter degradation in the plain model [12] and all thegsgary) inefficiencies of [11]
followed from this fact. In contrast, the addition of the CRS reduces thstigumeof building robust fuzzy
extractors to that of using uniformly randoentracted randomnesk, stored on¥'(G), for authentication
purposes (this implication is non-trivial and forms one of the contributionisisfivork). As a consequence,
we can use much more efficient KMS-MACSs relyingumiformly randornrsecret keys and, therefore, obtain
nearly optimal robust fuzzy extractors in the CRS maodel.

2 Algebraic Manipulation Detection Codes

Definition 1. An (S, G, §)-algebraic manipulation detection cod® (S, G, §)-AMD code for short, is a

probabilistic encodingnapf : S — G from a setS of sizeS into an (additive) grouy of orderG, together

with a (deterministicflecodingunctionD : G — SU{_L} suchthatD(£(s)) = s with probability 1 for any

s € S§. The security of an AMD code requires that for ang S, A € G, Pr[D(E(s) + A) & {s, L}] <.
An AMD code is calledystematidf S is a group, and the encoding is of the form

E:S§—8%xG1 xGy s (s,z, f(x,s))

for some functiory andx €r G;. The decoding function of a systematic AMD code is naturally given by
D(s',2',0") = ¢ if o/ = f(2/,s") and L otherwise.

Intuitively, £(s) can safely be stored on a private storage de¥i¢€) so that an adversary who manipulates
the stored value by adding an offs&t cannot cause it to decode to some? s. It is also possible to define
aweakAMD code where security only holds forrandoms € S rather than an arbitrary one. We focus of
regular (strong) AMD codes and mention some constructions and applsatianeak AMD codes in the
appendices.

From a practical perspective, it is typically not sufficient to have onéiquéar code, but rather one
would like to have a class of codes at hand such that for every chdaethe bit-length of the sourceand
for every choicex of the security level, there exists a code that “fits” these parameters. Thiigates the
following definition:

Definition 2. An AMD codefamily is a class of AMD codes such that for anyu € N there exists an
(S, G, 0)-AMD code in that class witl§ > 2* andé < 27*.

We point out that in this definition, the grogpcan be different for every AMD code in the family and is
left unspecified. In our constructions the grag@will often be the additive group of the vector spatefor
some fieldF. Specifically, we will often focus on the fielt,« (as an additive group, this is equivalenti$)

so addition (and subtraction) is just bitwise-xorddbit long strings.

We would like the construction of an AMD code to be close to optimal in hahould not be much
larger thanS . We consider theag sizew of a (S, G, §)-AMD code defined asv = log(G) — log(S).
Intuitively, this denotes the number of bits that the AMD code appends to tireesoMore generally we
define the efficiency of an AMD code family as follows.

Definition 3. Theeffective tag sizeo*(x, u) with respect tax,u € N of an AMD code family is defined
asw*(k,u) = min{log(G)} — u where the minimum is over allS, G, §)-AMD codes in that class with
S >2%ando < 27,

In Appendix A, we prove the following lower bound on the effective tag sizan AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower boundegttiy:, u) > 2x — 274+ >
2k — 1.



2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is bdimalpand flexible. As noted in
the introduction, a similar, but more complicated construction appeared intfitiligh it was presented as
part of a larger construction, and its properties were not stated explisidystéand-alone primitive. The two
constructions were discovered concurrently and independently fasin@her.

Let[F be a field of sizey and characteristip, and letd be any integer such thdt+ 2 is not divisible by
p. Define the functiorf : F? — F? x F x F by E(s) = (s, z, f(z, s)) where

d
f(z,s) =x@*2 4 Z s

=1

Theorem 2. The given construction is a systemati¢, ¢*2, (d + 1)/q)-AMD code with tag sizec =
2loggq.

Proof. We wish to show that for any € F and A € F¥*+2: Pr[D(£(s) + A) ¢ {s, L}] < 6. Itis enough to
show that for any’ # s and anyA,, Ay € F: Pr[f(z,s) + Ay = f(z + A,,s")] < 6. Hence we consider
the event

d d
PN s+ Ap = (2 + AP+ si(w 4+ Ay’ 1)
i—1 i=1

We rewrite the right hand side of (1) 282 + (d+2) A,z% + 3% s'a’ + A, - p(x), wherep(z) is some

polynomial of degree at mositin x. Subtracting this term from both sides of equation ££);? cancels out
and we get

d
—(d+2)Aga®tt + Z(sZ —sh)r' — Ay -p(x) + Ay =0 2)
i=1

We claim that the left side of equation 2 isian-zeropolynomial of degree at mogt+ 1. To see this,
let us consider two cases:

1. If A, # 0, then the leading coefficientis(d+2) A, # 0 (here we use the fact thét- 2 is not divisible
by the characteristic of the field).

2. If A, = 0, then (2) simplifies ttozl(si — sh)z' + Ay = 0, which is not identically zero since we
assumed that # 5.

This shows that (2) has at mast- 1 solutionsz. Let B be the set of such solutions 88| < d + 1. Then

d+1

Pr(D(E(s) + ) ¢ {s, L}] = Prlr e B < =

O

Notice, the elements of the range gragip= F¢ x I x [ can be conveniently viewed as eIement%pﬁor
somet (recall,p is the characteristic df). Thus, addition irG simply corresponds to element-wise addition
modulop. Whenp = 2, this simply becomes the XOR operation.

Quantifying the above construction over all fieldsind all values ofl (such thatd + 2 is not divisible
by p), we get a very flexible AMD family. Indeed, we show that the effectivpdize of the family is nearly
optimal.



Corollary 1. The effective tag size of the AMD code familyi§ s, u) < 2 +2log(;: +3) + 2. Moreover,
this can be achieved with the range gro@Gbeing the group of bitstrings under the bitwise-xor operation.

Proof. For a givenx andu, choosed andq as follows: letd be the smallest positivedd integer such that
u < d(k + log(d + 1)), and choosg = 2[#tle(d+1)1 Note thatd + 2 is not divisible by2, which is the
characteristic off,. Furthermoreu < dlog(q), and thus we can restrict the source spBteviewed as
{0,1}4102(9) | to the subseS = {0,1}* and the rang@&? x F x F to the subgrouj = S x F x F. The
resulting(S, G, §)-AMD code fitsx andw in thatS > 2% andé = (d + 1)/q < 27". The effective tag size
is given by:

log(G) —u=1log(|S X F x F|) —u =2log(q) <2k + 2log(d+ 1) +2
<2k +2log(% +3) +2.

Thusw*(k,u) < 2k + 2log(% + 3) + 2. 0

3 Application to Robust Secret Sharing

A secret sharing schemig given by two probabilistic functions. The functi®hare maps a secret from

some grouy to a vectorS = (54, . .., .S, ) where thesharesS; are in some groug;. The functionRecover

takes as input a vector of shargs= (51, ..., S,) whereS; € G; U {L} and output$ € GU { L}. A secret
sharing schemes is defined over somenotone access structwehich maps subset8 C {1,...,n} to

a statusgual i fi ed,unqual i fi ed, L. The correctness property of such a scheme states that for any
s € G and anygualifiedset B, the following is true with probabilityt. If S < Share(s) andS is defined to

beS; = S; for eachi € B andS; = L for eachi ¢ B, thenRecover(S) = s. Similarly, the privacy of such

a scheme states that for amgqualifiedsubsetA, the share¢S;},. , reveal no information about the secret

s (this is formalized using standard indistinguishability).

Thus, qualified sets of players can recover the secret from theirgpebbees, while unqualified subsets
learn no information about the secret. Sets of players which are neithbfieghnor unqualified might not
be able to recover the secret in full but might gain some partial informatioutats value.

A linear secret sharing scheme has the property thaRtwever function is linear: given anyg € G,
any S € Share(s), and any vectof’ (possibly containing somé symbols), we hav®ecover(S + S’) =
s + Recover(S’), where vector addition is defined element-wise and addition withdefined byl + = =
xz+ 1 =1 forall z.

Examples of linear secret sharing schemes include Shamir’s secliegstetteme [26] where the access
structure is simply a threshold on the number of players, or a scheme foeeafjaccess structure in [16].

We consider a setting where an honest dealer uses a secret shhangedo share some secggtmong
n players. Later, an outside entity called teeonstructorcontacts some qualified subggtof the players,
collects their shares and reconstructs the secret. The security of #raeemsures that, as long as the set
A C B of players corrupted by an adversary is unqualified, the adversdsynp information about the
shared secret. However, if ti®nestplayersB\ A also form an unqualified subset, then the adversary can
enforce the reconstruction of an incorrect secret by handing inrectoshares. In fact, if the reconstructor
contacts aninimal qualified subset of the players, then even a single corrupted playeacae the recon-
struction of an incorrect secret. Robust secret sharing schenfese(la [28, 4]) ensure that such attacks

4 We can also imagine situations where the “base” fi8ldf some characteristigis given to us, and our freedom is in choosing
the extension fieldf and the appropriate value dfso thatS can be embedded inf&'. Under such restrictions, the effective tag
size becomes roughBk + 2log(u) + O(logp).



can't succeed: as long as the adversary corrupts only an unqualifpsgt of the players, the reconstructor
will never recover a modified version of the secret.

Definition 4. A secret sharing scheme dsrobust if for any unbounded adversarywho corrupts an un-
qualified set of playersl C {1,...,n} and anys € G, we have the following. Lef < Share(s) and S be
a value such that, for each< : < n,

g _ [ Al s, {Si}ica) ific A
fSior L ifi ¢ A

ThenPr[Recover(S) & {s, L}] < 4.

We note that in a (non-robust) linear secret sharing scheme, when ¥hesady modifies shares by
settingS; = S; + A; then, by linearity of the scheme, the adversary also knows the differ&nees — s
between the reconstructed secrand the shared secretThis implies that we can think afas being stored
in an abstract storage devié&G), which is private for an adversary who corrupts an unqualified sufse
the players, yet is not-robust in that the adversary can specify agldiisets so that’(G) storess + A.
This immediately implies that we can turn any linear secret sharing scheme intomaust secret sharing
scheme using AMD codes.

Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with dongaof order G, and let
(€,D) be an(S, G, §)-AMD code with rang&j. Then the schem@&hare™, Recover™) given byShare*(s) =

Share(&(s)), Recover®(S) = D(Recover(.S)) is and-robust secret sharing scheme.

Proof. Let S = Share*(S) and letS be a vector meeting the requirements of Def. 4. 8%t S — S. The
vectorS’ containg) for honest players/|. for absent players, and arbitrary values for dishonest players. We
have:

Pr[Recover®(S) ¢ {s, L}] = Pr[D(Recover(S) + Recover(S’)) & {s, L}]
— PrD(E(s) + A) & {5, 1}]

where the valued = Recover(S’) is determined by the adversarial stratedgyBy the privacy of the secret

sharing scheme, it is only based on the adversary’s a-priori knowlefiine shared secret and is otherwise

independent of the valug(s). The conclusion then follows immediately from the definition of AMD codes.
O

For Shamir secret sharing (and similar schemes), where the groap be an arbitrary field of size> n,

we can use the optimal and flexible AMD code construction from Section 12.doihg so, each player’'s
share would increase by roughlyog(1/§)+2 log u bits (whereu in the length of the message) as compared
to the non-robust case.

ROBUST INFORMATION DISPERSAL Systematic AMD codes have an additional benefit in that the encod-
ing leaves the original valueintact. This could be beneficial in the scenario where players do noabare
the privacy ofs, but only about its authenticity. In other words, it is safe to i$ermation dispersabn s
or, alternatively,s can be stored in some public non-robust storage. Using a systematic Avdach
mapss to (s, z, f(z,s)), the players can just secret share the authentication informatiof{z, s)) and
use it later to authenticate As long as the corrupted players form an unqualified set, the authentication
information (z, f(z, s)) remains private and hence an adversary who changes’ (and trivially knows
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the offsetA; = s — ') still cannot come up with an offset ta, f(z, s)) so that it authenticates in-
stead ofs. The values might be very large but the authentication informatienf(z, s)) remains relatively
small, and hence secret sharing only the authentication information (ratrettih entire encoding) gives
us significant gains in efficiency. Concretely, to authenticate-ait secrets, we only need to secret share
roughly2(log(1/4) + log u) bits.

SECURE AND PRIVATE STORAGE / SECURE MESSAGE TRANSMISSION. Consider again the problem of
reconstructing a shared secret in the presence of faulty sharesveiowow the goal is not only to prevent
the reconstruction of an incorrect secret by detecting foul play, behsare that reconstruction always suc-
ceeds in producing the correct secret (except with small probabilityther words we do not want to allow
the option of reconstructing.. We still assume the dealer to be honest and that reconstruction is towards
one player. However, now we additionally assume that among the play&spgading in reconstruction, the
honest players form qualifiedset. The dishonest players are still assumed to formmgualifiedset. This
problem is known under the name (unconditiorsgure information dispers§24, 17] or non-interactive
secure message transmissidd, 13]. There is a generic, though for large player sets computatianafly
ficient, construction based on a robust secret sharing [8]: foyepalified subset of the involved players,
invoke the robust reconstruction until for one set of shares no fiayl is detected and a secret is recon-
structed. If the robust secret sharing scheme/i8"*"-secure, then this procedure succeeds in producing
the correct secret except with probability at mbse”.

ANONYMOUS MESSAGETRANSMISSION. In recent work [3], Broadbent and Tapp explicitly used the no-
tion of AMD codes introduced in this paper (and our construction of them)ars#ftting of unconditionally
secure multi-party protocols with a dishonest majority. Specifically, AMD sawed them to obtain
robustness in their protocol for anonymous message transmission. dtosgr and with it the underlying
AMD code, was then used in [2] as a building block to obtain a protocoldfongmous quantum commu-
nication.

4 Message Authentication Codes with Key Manipulation Securit

As a notion related to AMD codes, we define message authentication coddsrefmain secure even if the
adversary can manipulate the key. More precisely, we assume that {foalk®y of the authentication code

is stored on an abstract private devitéG) to which the adversary has algebraic manipulation access, but
the message and tlaeithentication tagare stored publicly and the adversary can modify them at will. This
is in contrast to AMD codes where the entire encoding of the message id BIOtEG).

Definition 5. An (S, G, T, §)-message authentication code with key manipulation sec{KMS MAC) is
a functionMAC : § x G — 7 which maps aource messagm a setS of sizeS to atagin the set7 of size
T using akey from a groupg of orderG. We require that for any # s’ € S, anyo,0’ € 7 and anyA € G

Pr[MAC(s', K + A) = o' | MAC(s,K) = 0] < §
where the probability is taken over a uniformly random k& G.

Intuitively, the adversary get some message/tag (3air). The adversary wins if he can produce an offset
Aand a message # s along with a tagr’ such that the paifs’, o) verifies correctly under the key + A.
The above definition guarantees that such an attack succeeds witbifitpbamostd. In fact, the definition

is slightly stronger than required, since we quantify over all possibledagfsthe message (rather than
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just looking at a randomly generated one). However, since the abdinéida is achievable and simpler to
state, we will consider this stronger notion only. We can also think of a KMSEMSs a generalization of a
standard message authentication code, which only guarantees seausity-fo.

As with AMD codes, we will consider the notion of a KMS-MAC family. For eféincy, we are inter-
ested in minimizing the tag sizeg(7") and the key sizéog(G). The following well known lower bounds
on standard message authentication codes (e.g., see [27]) obviousipplgdo the stronger notion of a
KMS-MAC.

Lemma 1. For any authentication code with securify< 27, the key sizéog(G) must be at leas?x, and
the tag sizdog(7") must be at least.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem 4. LetE : S — S x G1 x Ga, s +— (s, 7, f(x,s)) be a systematic
(IS, |S]11G111G2], 6)-AMD code. Then the functidlAC : Sx (G1xG2) — Gayields a(|S|, |G1]|Ga|, G2, 9)-
KMS-MAC:

MAC(s, (1, 22)) = f(x1,5) + x2

Proof. AssumeK = (x1,z2) € Gi X Go is chosen uniformly at random, and consider arbitrary=
(A1, A2) € G1 X Go,0,0" € Gy, ands, s’ € S, wheres £ 5.

The evenMAC(s, K) = o isthe evenif (z1, s)+x2 = o, which is the same a8, = — f(z1, s)+o. Let
us call this evenk); . Similarly, the evenMAC(s’, K+ A) = ¢’ isthe evenlf (1 + A1, s')+ (z2+A2) = o/,
which is the same ag(z1 + A;,s’) = —x2 + 0’ — Aq. Let us call this evenE,. Thus, we need to bound
PI“[EQ ’ El]

Letus denoted; = —o + 0’ — Ay and define an auxiliary eveit) asf(z1 + A1, s') = f(z1,5) + Ay.
We claim thatPr[E; | Eq] = Pr[E) | E4]. Indeed, ifzy = — f(x1, ) + o, then

—x340 — Ay =—(—f(z1,8) +0)+0 — Ay = f(x1,5) + (—0 + 0" — Ay) = f(x1,5) + Af
Finally, notice thatt, and £, areindependentindeed, sincé”), does not depend or,, andz, is chosen at
random fromG,, whether or notz, is equal to— f(x1, s) + o does not affect any other events not involving
x9. Thus,Pr[E), | Eq] = Pr[E)]. Therefore, we have

PrIMAC(s', K + A) = o' | MAC(s, K) = o] = Pr[f(x1 + A1, s") = f(x1,8) + Af] <6
where the last inequality follows directly from the security of the AMD codegess # s'. a
Using the systematic AMD code family constructed in Section 2.1, we get a naatilpal KMS-MAC
family. In particular, plugging in the systematic AMD code family from Theoream& using the parameters

obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for aryu € N, the family contains afs, G, T, d)-
KMS-MAC (with respect to XOR operation) with< 277, S > 2% and

log(G) < 2k + 2log (u/k + 3) + 2
log(T) < k + log (u/k + 3) + 1
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5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic definitions needed to define the nofiezegfextractors from [10].

MIN-ENTROPY. Themin-entropyof a random variabl& is

H, (X) = —log(max, Prx[z]). Following [10], we define the (average) conditional min-entropyXof
givenY asHu, (X | Y) = —log(E,_y (2 H=(XIY=4))) (here the expectation is taken ovgefor which
Pr[Y = y] is nonzero). This definition is convenient for cryptographic purposesause the probability
that the adversary will predict givenY is 2~ He(XIY) Finally, we will use [10, Lemma 2.2], which states
thatH.. (X | Y) > Hoo((X,Y)) — A, where2* is the number of elements i.

SECURESKETCHES. Let M be a metric space with distance functitis. Informally, a secure sketch enables
recovery of a stringy € M from any “close” stringy’ € M without leaking too much information about

Definition 6. An (m,m/’, t)-secure sketch for a metric spaceM is a pair of efficient randomized proce-
dures 6S, Rec) s.t.:

1. The sketching procedufS on inputw € M returns a bit strings € {0, 1}*. The recovery procedure
Rec takes an element’ € M ands € {0, 1}*.

2. Correctnesdf dis(w, w’) < t thenRec(w’, SS(w)) = w.

3. Security:For any distributioni¥” over M with min-entropym, the (average) min-entropy &F" condi-
tioned ons does not decrease very much. Specificalldif (W) > m thenH, (W | SS(W)) > m/'.

The quantityn — m/’ is called theentropy los®f the secure sketch.

As already mentioned in Footnote 2, we will concentrate on the Hamming metric{Ove}”, later
extending our results to several related metrics. For this metric we will makef tisesyndrome construc-
tion from [10], which we review in Appendix E (this construction appeared asmponent of protocols
earlier, e.g., in [1]). For our current purposes, though, we onlg r@&now that this construction isliaear
transformationover[Fy.

STATISTICAL DISTANCE. Let X1, X5 be two probability distributions over some sp&teTheir statistical
distanceis SD (X1, Xo) = 1 3" o | Pry, [s] — Prx, [s]]. If

SD (X1, Xs) < ¢, we say they are-close, and writeX; ~. X,. Note thate-close distributions cannot

be distinguished with advantage better thagven by a computationally unbounded adversary. We use the
notationU, to denote (fresh) uniform distribution ovée, 1}.

RANDOMNESS EXTRACTORS FOR AvG. MIN ENTROPY. A randomness extractor, as defined in [18], ex-
tracts a uniformly random string from any secret with high enough entuspyg some randomness as a
seed. Here we include a slightly altered definition to ensure that we cactednaomness from any secret
with high enoughaveragemin-entropy.

Definition 7. A functionExt : {0,1}" x {0,1}¢ — {0,1}* is called a(m, ¢, ¢)-extractor if for all random
variablesX andY such thatX € {0,1}" andH (X | Y) > m, andI < Uy, we have
SD (Y, Bxt(X; 1), 1), (Y,Up,Ug) ) < €

It was shown by [10, Lemma 2.4] that universal hash functions ard g&tractors in the above sense. In
particular, the constructiobixt : {0,1}" x {0,1}" — {0, 1}, defined byExt(z,i) £ [z - i]¢ is a(m, £, ¢)-
extractor for any < m — 2log(1/¢). Here the multiplication: - i is performed in the field» and the
notation[z]¢ denotes the first bits of .
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Fuzzy EXTRACTORS. A fuzzy extractor extracts a uniformly random key from some seeret such a
way that the key can be recovered from arfyclose tow. The notion was first defined in [10]. Here we alter
the definition to allow for a public common reference string (CRS).

Definition 8. An (m, ¢, t,e)-fuzzy extractor for a metric spaceM is defined by randomized procedures
(Init, Gen, Rep) with the following properties:

1. The procedurénit takes no inputs and outputs a striaRS € {0, 1}*.

2. The generation procedut@en, on inputw € M,CRS € {0,1}*, outputs an extracted string €
{0, 1} and a helper string? € {0, 1}*. The reproduction proceduiRep takesw’ € M and P, CRS €
{0,1}* as inputs. It output® € M U {L}.

3. Correctnesdf dis(w,w’) < t and (R, P) < Gen(w, CRS), thenRep(w’, P, CRS) = R.

4. Privacy:For any distributioni’” with min-entropyin over the metricM , the stringR is close to uniform
even conditioned on the value Bf Formally, if Ho (W) > m and (R, P) < Gen(WW, CRS), then
(R, P,CRS) ~. (Uy, P,CRS).

Composing ar(m, m’, t)-secure sketch with &n’, ¢, e)-extractorExt: M x {0,1}¢ — {0,1}¢ (as
defined in Def. 7) yields &n, ¢, t, )-fuzzy extractor [10]. The construction of [10] has an empyS and
setsP = (SS(w),i) and R = Ext(w;) for a randomi. However, it is easy to see that the construction
would remain secure if the extractor séeslas contained in th€RS and P was justSS(w). One advantage
of such approach would be that tGen andRep algorithms are then deterministic which might make them
easier to implement in hardware. Another advantage is that it would evendalially us to overcome the
impossibility barrier of robust fuzzy extractors (defined next) in the plaideho

5.1 Definition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to revelpublicly without sacrificing the security of the extracted randomness
R. However, there are no guarantees when an active attacker ma@ifies prevent such attacks, robust
fuzzy extractors were defined and constructed in [5, 11]. Here Weadmbust fuzzy extractors in the CRS
model.

For two (correlated) random variabl&g 17’ over a metric spaca1, we say
dis(W, W') < t if the distance betweeW and W is at mostt with probability one. We cal(W, W’) a
(t,m)-correlated pairif dis(W, W') < t andH., (W) > m. It will turn out that we can get more efficient
constructions if we assume that the random variable- W — W’ indicating the errors betwed’ and
W' is independent ofV (this was the only case considered by [5]). However, we do not wamnike this
assumption in general since it is often unlikely to hold. We define the faﬁ’ﬁ& to be the family of all

(t, m)-correlated pairgW, W') and the family]-‘f%lep to be the family of(¢, m)-correlated pairs for which
A=W — W'is independent ofi/.

Definition 9. An (m, ¢,t,e,0)-robust fuzzy extractofor a metric spaceM and a family F of (¢, m)-
correlated pairs is ar{m, ¢, t, ¢)-fuzzy extractor oveM such that for all(1V, W’) € F and all adversaries

Rep(P,w’, CRS) # L CRS «— Init(), (w,w’) — (W, W) <5
P#P (P,R) — Gen(w,CRS), P« A(P,R,CRS) | —
We call the above notiopost-application robustness and it will serve as our main definition. We also con-

sider a slightly weaker notion, callgute-application robustness where we do not giiketo the adversary
A.

Pr
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The distinction betweepre-application andpostapplication robustness was already made in [5, 11]. In-
tuitively, when a user Alice extracts a key using a robust fuzzy extrasha may use this key for some
purpose such that the adversary can (partially) learn the value of yh& e adversary can then mount an
attack that modifieg® based on this learned value. For post-application security, we insistotagtness

is preserved even in this setting. For pre-application security, we assathé¢hadversary has no partial
information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in the CRS nieidstl. let us outline a general idea
for the construction using an extractott, a secure sketclb§, Rec) and a one-time (information-theoretic)
message authentication collAC. A pictorial representation of the construction is shown in Figure 1 and
pseudo-code is given below.

Init() outputs a random seedor the extractoExt as a shared CRS.
Gen(w, i) does the following:
R — Ext(w, ) which we parse a& = (Rmac, Rout)-
s < SS(w), o0 — MAC(s, Rmac), P := (s,0).
Output(P, Rout).
Rep(w’, P, i) does the following:
ParseP = (3,5). Letw « Rec(w’, 3). If d(w,w’) > t then outputL.
Using@ ands, computeR and parse it a®out, Rmac.
Verify 6 = MAC(3, Rimac). If equation holds outpuR,..;, otherwise output..

The idea is fairly intuitive. First, we extract randomness frerasing the public extractor seedThen
we use part of the extracted randomne&ssg; as the output, and the remaining p&yt.. as the key for the
one-time information-theoretic MAC to authenticate the secure sket€hw.

However, in arguing robustness of the reconstruction phase, we tiugicthere is a problem. When an
adversary modifies to some value then this will force the user to incorrectly recow@r=# w, which in
turn leads to the reconstruction Bf# R and Rynee # Rimae. SO the keyR,.q., Which is used to verify the
authenticity ofs, will itself be modified whers is!

To break the circularity, we will need to us special linearity properties of#iueire sketch and extractor
constructions, which we specify in section 5.3. We will argue in that anradwewho modifies to 5 will
know the offsetA such that,,,,. = Rinae + A. AlthoughRmac is derived fromw’, s and theCRS, we can
think of R,,,.. as being stored in an abstract devicg7) which is private but only weakly robust in that the
adversary can specify an additive offset by modifyingVe can then use a KMS-MAC to get security even
when the key is stored on such a device. Hence, the adversary wileradilb to come up with a valid pair
(8,5) wheres # s.

5.3 Linearity of modifying P

In this section, we specify the properties of our secure sketch anc®tt@nstructions to ensure that an
adversary who knows\ = ' — w and modifiess to 3, will know the offsetR® = R — R between the
original extracted key and the recovered key.

Secure Sketch Linearity Property: Let(SS, Rec) be an(m, m’, t)-secure-sketch and, v’ be values such
thatdis(w,w’) < t. LetA = w’ —wands = SS(w). For anys, letw := Rec(w’, §) and A = @ — w. Then,
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Fig. 1. Construction of Robust Fuzzy Extractor

we say that the secure sketch is lineafifs completely determined hy, s ands. Formally A = f(A, s, 3)
wheref is a deterministic function.

Lemma 2. The syndrome based construction of a secure sketch meets the aleavitiproperty.

This lemma follows easily from the properties of the syndrome constructiowamive a proof in Appendix
F. It was also implicitly used in [11].

Extractor Linearity Property: The extractoiExt is linear if for anya, b andi, we haveExt(a — b,i) =
Ext(a,i) — Ext(b,1).

It is easy to see that the extractor definedEay(w, i) & [w - i]{ has the required linearity property. We
also notice that several other extractors (e.g., [29, 25]) with shoréer leagths also satisfy this property.
As it turns out, it is precisely this property of extractors, not useful inpgllaén model setting of [11], that
would allow us to obtain the following key Lemma what we will use in the CRS model.

Lemma 3. Assume a secure sket$5, Rec) and an extractoiExt meet the respective linearity properties
above. Consider any, v’, i, § and lets = SS(w), R = Ext(w, i), w = Rec(w’, §), R = Ext(w, i). Finally,
denoteA = w' —w andRA = R— R. Then, there is a deterministic functigrsuch thatR? = 9(A, s,3,1).
Namely, one can compuféd by knowing only the differencé betweenv andw’, the sketch, the modified

sketchs and the public CR&

Proof. Using Lemma 2, there is a deterministic functipf, s, 5) = A=w—w. lfwe letg(A,s,3§,1) 4

Ext(f(4,s,5),i) then

9(A,s,5,1) = Ext(f(A4,s,3),i) = Ext(w — w, i) = Ext(w, i) — Ext(w, 1)

5.4 Security of Construction and Parameters

We are now show that the construction outlined in Section 5.2 indeed satidietefinition of a robust
fuzzy extractor.

Let (SS, Rec) be a(m,m/, t)-secure sketch satisfying the secure sketch linearity property andoet
an upper bound on the size 6 (w). Let MAC be a(S, G, T, §)-KMS-MAC, such thatS > 2“. Assume
that the keys come from a grogp= {0, 1}* under the XOR operation so that = 2k Let F be a class of
(t, m)-correlated variable§V, W') and let/i be the largest value such that< H, (W |SS(W), W — W)
for any (W, W') € F. Lastly, letExt be a(m, ¢, c)-strong randomness extractor satisfying the extractor
linearity property and seeded by randomnegElengthd.
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Theorem 5. When instantiated with the primitivesxt, MAC and (SS, Rec), our construction yields a
(m, ¢ — k,t,2e,0 4 ¢)-robust-fuzzy extractor for the family.

Proof. The correctness property of the fuzzy extractor is guaranteed bypthectness of the secure sketch.
The privacy property follows from the security of the randomness etdraRecall, that the adversary can
observe, s, 0. Since, by definitiomyn < H,,(W|SS(W)), the distribution(i, s, Ryqc, Rout) €an be distin-
guished from(i, s, U, Uy_) with probability at most. In particular,

(iv S, RmaCa Rout) e (’La S, Uka Uf—k‘) e (27 S, RmaCa Uf—k‘)

and so(i, s, Rymac, Rout) ~2: (i, 8, Rimac, Ur—i) by the triangle inequality. An adversary givers, o is
weaker than an adversary givérs, R,... and even this latter adversary can distinguigly; from R,_;
with probability at mosRe.

For robustness, consider any péi¥, W') € F and any adversaryl attacking the robustness of the
scheme. Then

i ~ CRS « Init(), (w,w") «— (W, W'
Pr[A succeeds= Pr Rep(P, %IECRS}) 7L (P,R) (<)— (Gen(w), CR(S) )
| andP# P — A(CRS,P,R)
[ i Ug, (w7w/) — (VV, W/)
MAC(3, Rinac) = & (Rmac, Rout) := Ext(w, 1)
=Pr s:=SS(w), o := MAC(s, Rpac)
(8,0) # (s,0) (8,6) — A(i, s,0, Rout)
i W = Rec(w', 3), (Rmac, Rout) := Ext(10,1)

Now we use Lemma 3 which defines the deterministic funcgiench that

i — Uy, (w,w") — (W, W)
(Rmacs Rout) := Ext(w, i)
>3 s:=SS(w), o := MAC(s, Rinac)
(8,0) 7 (s,0 (5,5) — A(i, 5,0, Rout)
A:=w —w, Rmac := Rmac + 9(4,s,8,1)

Pr[A succeeds= Pr

On the right hand side of the inequality, the pair, «w’) and the valué determine the valued, s, Rqc, Rout-
But the distributiong A, s, i, Rnac, Rout) @nd(4, s, 4, Uy) can be distinguished with probability at mest
by the security of the extractor and the fact thatk H, (W|SS(WW), A).

Hence we have:

Pr[A succeeds
i« Uqg, Rpac < Uy, (w7w/) — (VV, W/)

MAC(g, Rmac) =0 S 1= SS(U}), g = MAC(S, RmaC)

sethr 5.5) % (s.0) (5,8) — Ali, 5,0, Upr) ®)
50 50 A —w' —w, Rnae := Riac + 9(A, s,3,1)
R Riae — Uk
<e + max Pr |[MAC(S, Rpae) =07 | o:=MAC(s, Rmac)
R7Anac"§7ésvo"& > o— A
Rmac T Rmac + Rmac
<e+$
Where the last inequality follows from the security of the KMS-MAC. a
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The above theorem is stated with generality in mind. We now examine the parameteret when
plugging in the optimal implementation of a KMS-MAC and using the “multiplication” ectoa
Ext(z,i) = [z - i]Y.

Corollary 3. Using given constructions of strong randomness extractors and KiMSsywe get ém, ¢, t, ¢, §)-
robust fuzzy extractor for the famil§f and for anym, t,c and§ > . The extracted key length is

. 2(u+3)
~m — 21 —
o= in—og (3525
Recall, that: is the length of the secure sketehs the length of the secret, andm < ﬁoo(W\SS(W), W—

W) for any (W, W') € F.
Moreover, for the famil)ﬂ-"gtl%) of all (¢, m) correlated pairs,

m>m—u—t<log< )—i—loge)

For the family]—“(iffrf)p of all (¢, m)-correlated pairs for whichA = W — W’ and W are independent
m=m'>m—u.

Proof. The strong randomness extractor construction we looked at previousigices (R, ,qc, Rout) Of
lengthrin — 21og(1/¢’) to achieve security’. We wante’ = /2. This implies? ~ 7 — 2log(2/e) — k
wherek is the size ofR,,,.. By the bounds on key-lengths of the KSM-MAC construction given in 2, if
we want to get security — ¢ and authenticate messages of lengttwe can use a key of length <
2log(1/(d —€)) + 2log(u + 3) + 2 Putting these together we see

0> 1~ 2{l0g(2/¢) +log(1/(5 — £)) + log(u + 3)] — 2 > i — 2log (%gj?) 9

This proves the first part of the corollary. To boungwe noticeH o, (W |SS(W), W — W) > Huo (W) — A
where2* is the number of possible values of the &(1W), W — W’. The number of possible values of
SS(W) is 2%, sinceu is a bound on the size &S(W). The number of possible values df = W' — W

of a(t, m) correlated paifW, W) is the volume of the ball of elements of lengttthat are at a distancde
from each other. The log of this volume is derived in [11] and i (B)g( ) + log e) This gets us the first
bound onvi. WhenA andWW are independent tha (W|SS(W), W — W) = Hoo (W|SS(W)) = m/ >
H.. (W) — u which derives the second bound. O

So far, all of our bounds are for post-application robustness. Weshow that for pre-application robustness
the bounds for the famllleg(a” ) and]-'g"de)” are essentially equivalent. This is because, for pre-application
robustness, the adversary does not get tofgge when mounting a key-manipulation attack. Hence, for
robustness, we no longer need to ensure that there is enough residuaitropy left over inw after the
adversary seed ands to extractR,,; as well asRk,,4c.

Corollary 4. For pre-application robustness only, we get(a, ¢, ¢, ¢, §)-robust fuzzy extractor for any
(t, m)-correlated familyF and for anym, ¢, andd > e with

ent-am(2523)
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as long as

Proof. The first condition on the size of the extracted key follows from Theoremdbounds on the length
k of the KMS-MAC key. In Theorem 5, inequality 3, for pre-applicationustmess the adversary does not
getR,:. This means that inequality 3 holds as lond &s s, i, R,,,.) and(A, s, i, Ux) can be distinguished
with probability at most. Now we notice that the extract@xt(w, i) e [w-i]] has the property that the first
H. (W) — 2log(1/¢) bits of Ext(w, ) aree close to random no matter how largés. This means we only
needR,,,. to be indistinguishable in this case, and hence we have the weaker coidition — 2 log(1/¢)
rather thar? < m — 2log(1/¢) in Theorem 5. Substituting the bounds lowe get

2log((u+3)/(0 —€)) +2 <1 — 2log(1/e)

which derives the condition stated in the corollary. This condition is venkvaed likely to be satisfied in
practice. Hence, for pre-application robustness, we can essentiadiseigme fact thatA and W might not
be independent. O

COMPARISON WITH PREVIOUS CONSTRUCTIONS Recall that the “non-robust” construction of [10] ex-
tracts! < m’ — 2log (%) bits. On the other hand, the robust construction of [11] requires:

¢ < % <2m—n—u—2tlog (%) —2log (%)) - 0(1)

The bounds achieved in this paper are significantly closer to the nostradxsion. In essence we show that
the price of robustness can be cheap if we allow random public systametars.

5.5 Extension to Other Metrics

We note that the above construction can be extended for other metricssgrattasecure sketches. For ex-
ample, we can easily extend our discussion of the hamming distance ovengadiptzabet to an alphabet
of sizeq wherel, is a field. The secure sketch simply uses an error correcting cod®, {@ossibly even
allowing us to use the optimal Reed-Solomon codesf n). For the extractor we work over the fiely»
and the truncation functiopr]{ is defined as truncating symbolsB{where elements df,» are viewed as
n dimensional vectors ovéf,) rather than bits.

Finally, we note that our construction extends to the set difference metri@atle the same way as the
construction of [11].
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A Lower Bounds

Theorem 6. Any weak, respectively regular (strongy, G, §)-AMD code satisfies

G > % +1 respectively G > % +1.
Let (£, D) be an(S, G, 6)-AMD code, withf : S — GandD : G — S x {L}. Foranys € S, consider
the setD~!(s) = {e € G : D(e) = s}. Clearly,D~'(s) n D=!(s') = ) and|D~!(s)| > 1 for anys # s'.
Consider first the case where the AMD codenvisaklysecure. Lets be uniformly distributed oves.
SampleA # 0 at random frony, independently of. The probability thatD(E(s) + A) # {s, L} is upper
bounded by. This implies that

. ‘Us’;ésD_l(S,)‘ > S—1
B G-1 ~—G-1

§ > Pr[&(s)+A € Uy D7'(5)]

where the first inequality follows by considering fixed, and the first equality follows by considering
fixed, and realizing that if the (in)equality holds for any fixed value thetsi aolds for a random value.

Consider now the case where the AMD codestimongly secure. Then, for any € S, it holds that
|D~1(s)| > 1/4. This follows from the fact that if one guessgs) correctly (knowings) then it is easy to
come up with aA such thatD (E(s) + A)) ¢ {s, L}. Similar to above, it hence follows that

_ Uezs DN (5176
B G-1 - G-1

§>Pr[E(s)+A € Uy DH(s)]

which implies the claimed bound. Note that here the probability is taken overdamad and over the
randomness used by the encoding functidior a givens. O

Note that similar bounds were found in [20] for robust secret shakhgraes. This is no coincidence,
since we show in the paper that AMD codes can be used to construst dmret sharing schemes. The
following bounds on the tag size now follow quite easily. It shows that it isvoigi@able that the message
grows byk respectivel\2« bits if one wants to have weak respectively str@n¢g-security.

Corollary 5. The effective tag size of a weak, respectively strong, AMD code is lowadbd by
w*(kyu) >k —2""" >k -1  respectively w*(k,u) >2k -2 > 925 -1
Proof. For any weak S, G, §)-AMD code with with.S > 2* andd < 27"

log(G) —u > log(G) — log(S) > log (%%) = log (%) + log (1 — %) >k — %

where the last inequality follows from Theorem 6 and the bolugdl — z) > —2z for 0 < z < %.5
Similarly, for a strongly secure AMD code, the argument proceeds amasbgbut the last inequality is

replaced bylog (%) + log (1 _ %) > 25— 2. .

® The bound follows from the fact that the two sides coincide when evalated= 0 and atz = %, and that-2z has constant
slope whereakg(1 — z) has strictly decreasing slope (as can be seen from its second dejivaivnakes a “right turn®.
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B An Insecure AMD code

Consider the systematic AMD code : F! — F? x F x F, s — (s,x, f(z,s)) with z € F, where
f(z,s) = syx + - + sqz?. This AMD code, respectively the resulting robust secret sharingrsehwas
proposed and “proven” to be secure in [19]. However, it is easy édatsat this AMD code isiot secure.
This can easily be seen by observing that

d
flx+ Ay, s) Zslx—FA Zs’;ﬁ%—Af—f(a: s+ Ay
=1 =1

for somes’ = (s1,...,sq) and someA; € F, where boths’ and A, can (efficiently) be computed when
givens and A,. Recall that when considerirgirongsecurity, the adversary is assumed to knowlence,
adding A, to z, Af to f(z,s), and replacing by s" allows the adversary to break the AMD code with
probability 1. The “proof” given in [19] is very complicated, and thus it ifficult to point to what exactly
was argued incorrectly. We note that this mistake was later noted and fixée bythors independently of
our work. However, we feel that the error nicely highlights the advantdghe abstract notion of an AMD
code: it allows for a much simpler (in the above case we may evelris@l) analysis than, for instance,
when considering fully-fletched robust secret sharing schemes.

C The Combinatorics of AMD Codes

C.1 Weakly Secure AMD Codes

Let G be a group of finite orde®.

Definition 10. Asubset” C G of sizeSis a (S, G, t)-bounded difference sétthe list of differences; —v;,
wherev;,v; € V, contains every non-zero elementjoat mostt times.

Note that the standard notion of a difference set requires the list ofeliifes to contain every non-zero
elemenexactlyt times. We call an AMD codé€, D) deterministidf the (in general probabilistic) mapping
£ is deterministic. The following equivalence holds.

Theorem 7. If V C Gisa (S, G,t)-bounded difference set then the AMD-code

E:V =G, s—s, and D(s):{jgtifw‘vfise

is a (deterministic) weakly secufe, G, §)-AMD code withd = ¢/S. And, vice versa, for an arbitrary
deterministioveak(m, n, )-AMD code(€, D), the subseV = £(S) = {£(s) : s € S} C Gisa(S,G,t)-
bounded difference set with= 6S.

Proof. Itis clear that &, D) as constructed is a wedk, G, 6)-AMD code. It remains to argue the valuedf
By the property ofl/, for every non-zer\ € G, there exist at mostelements; € V suchthats + A € V.
For a uniformly distributes € V, and forA chosen independent ef this means that + A € V holds at
most with probabilityt /.S. The other implication is argued similarly. a
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C.2 Strongly Secure AMD Codes

Let G be a finite group of ordef. LetS be a finite set of cardinality. For simplicity writeS = {1, ..., S}.
LetVi,..., Vs be disjoint non-empty subsets Gf

Definition 11. We call(G, Vi,. .., Vg) adifferential structure

The parameters of interest related to a differential structure are as $olleov anyi; we write ¢; for the
maximal overlap between any translationigfand the union of the othér;’s:

t; = max | (Vi+4) N UV; :
J#i
For a given differential structur@, V1, .. ., V) consider the following AMD code.

E:A{l,...,8} -G, s—35§
with
s €R VS )
i.e., §is chosen with uniform distribution o¥i; and independently of anything else, and

N s ifds:5eV;
bs) = {L otherwise

This AMD code iswith uniform selectioiin that for everys € S, the encoding (s) is uniformly distributed
overD~1(s) = {e € G : D(e) = s}. All natural AMD codes we are aware of are with uniform selection.

Theorem 8. If (G, V4, ..., Vs) is a differential structure with parameters, ..., tg, then the above code
(€,D) is a (strong)(S, G, §)-AMD code (with uniform selection) whefe= max; ¢;/|V;|. And, vice versa,
for any (S, G, §)-AMD codewith uniform selectionthe setsV; = D~!(s) for s € S form a differential
structure where; < §|V|.

Proof. Let s be an arbitrary fixed source. L&be its probabilistic encoding, uniformly distributedliy, and
let A be the difference added goby the adversary, independentfThen,s + A is uniformly distributed
in Vs + A, and thus the probability that it lies inlg with j # s is at most/|V|. The other implication is
argued similarly. O

An AMD code issystematiaf the source sef is a group and the encoding is of the form
E:8—8xG1 xGy s+ (85,1, f(x,5))

for some functionf, and wherer € G;. All our new constructions are systematic, and thus in particular
with uniform selection. The decoding function of a systematic AMD code israbyigiven by

s ife= f(x,s)
1 otherwise

D(s,x,e) = {
and we usually leave it implicit. The following lemma is trivial.
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Lemma 4. For a systematic AMD code, the underlying differential strucf@rel, ..., Vs), we have
t; = maxaeg [(V;+A)N VJ| fori=1...5.
J#i

Our results above can be viewed as supporting the view that combinatatds tiugly and non-smooth
or non-symmetric” from a combinatorics point of view may sometimes lead to ‘tnoaryptography”.
Indeed, by requiring only certain relevant bounds on the parametarsahbinatorial construct with cryp-
tographic relevance (like tHeoundedcompared to the ordinanstrict’ notion of a difference set), a much
wider class of mathematical approaches to its construction may become availataehat there are other
areas in cryptography that have seen this phenomenon as well, e.gnteaiien codes.

C.3 Relation to Earlier Work

Our combinatorial approach must be discussed with respect to earliebyw@gata and Kurosawa [20] and
Ogata, Kurosawa, Stinson and Saido [21]. In [20] the idea of usingl#issical notion of planar difference
sets is introduced, and applications to (in our terminology) weakly secur® Addles are given. The con-
struction is based on the following AMD code. Lgbe a prime so that = ¢% + ¢ + 1 is a prime as well,
and letB c {0,...,p — 1} be aplanar difference setf sizeq + 1. This means that thg; + 1)g = p — 1
pairwise differences modulp of the elements iB are exactly the numbets...,p — 1. It is known that
such a difference set exists (see e.g. [20] and the referencesjhé&ten,£ : B — Z,, s — s is a weak
(¢q+1,¢*+q+1,1/(q¢+1))-AMD code. The tag size equais = log(¢> + ¢+ 1) — log(¢ + 1), which lies
betweenlog(q) andlog(q + 1). See also [21] for a more general approach. As before, the exwbability

is determined by the source space and hence the approach is not flexible.

Motivated by this, the above approach is extended in [21] to usiktgrnal difference familieEDF),
as introduced there. AG, ¢, \) S-EDF consists consists of a grogpof orderG and.S disjoint non-empty
subsetdl, ..., Vg, each of size:, such that every non-zero element®foccursexactly A timesas the
difference between somg and some; wherev; andv; come from different set¥; andV;, respectively.
This abstract notion of an EDF (with = 1) leads to a weakly secure AMD code with a minimal tag size
for a source space of sizand withd = % However, no general construction has been proposed to design
EDF's, and thus it is not clear how fruitful this approach is, and in pdgichow good it is with respect
to theeffectivetag size, i.e., when andx are given and a weakly secuf§, G, §)-AMD code needs to be
found withm > 2" andé < 27*. Furthermore, we feel that the case that is more important for practice is
the case where the size of the source spalzdsr than the inverse of the allowed error probability.

As to strongly secure AMD codes, with this notion of(&, ¢, A\) m-EDF one could at best guarantee
an error of at mos{g, since it seems that one cannot rule out that theredsa G and aV; such that the
intersection betweel; + A and some othe¥; has cardinality\.

In conclusion, our notion of differential structures, though somewdlated to external difference fam-
ilies, captures exactly the case of strongly secure AMD codes and it ass the way for a wider class of
mathematical constructions due to its relaxed conditions.

D From Weak AMD Codes to Strong AMD Codes

We show how to construct a strong AMD code from any weak AMD codkaafstandard) message authen-
tication code MAC. Consider a systemétimessage authentication code: S x K — 7 where we may

® The restriction tesystematicodes is not crucial, but it allows to simplify the exposition.
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assume, without loss of generality, titahnd7 are groups (e.g. sets of bitstrings of a given length with xor).
In the standard setting, such a code is used to authenticate a saaigdy appending the tag = A(k, s)
with a randomly sampled secret keéyc IC (known to sender and receiver); integrity of a (possibly modi-
fied) pair(s, o) is then checked by verifying # = A(k, 5) holds. Letpg be the success probability of the
substitution attack, i.e., the maximum over alkt s’ € S of the probability of successfully substituting
the authenticated by s’.” Furthermore, let’ : &' — G’ be aweaklysecure(S’, G', §')-AMD code with

S’ = K. Consider the following AMD code.

E:8—>8xG xT,s— (s, E'(k),Ak,s)).

for k €r K. The decoding functiorD is obvious:D(s, €', o) outputss if and only if D’(¢/) # L and
o= A(D'(¢),s).

Theorem 9. The codef is a (S, G, 0)-AMD code withS = |S|, G = |S||G'||T| andd = ¢’ + pg. If the
underlying AMD cod€’ is systematic, thefl = max{d’, ps}.

Proof. Obviously, the sizes of the domain and rangefadre as claimed. It remains to determiheFix
an arbitrarys € S, and an arbitrary translatiod = (A, A, A,) € S x G' x T with A; £ 0. Let
e = (s,¢,0) = E(s) = (s,&'(k), A(k, s)) for a randomk. By assumption or€’, the probability that
D'(e'+Ay) ¢ {k, L} is at mos®’. Furthermore, by assumption on the authentication code, the probability
thato + A, = A(k, s+ A;) is at mostg. It follows thatD(e) = s + A, with probability at most’ + pg.

In case of a systemat#/, the encoding’ hask as first component, and we can make a case distinction
of whether the corresponding first componeht of A, is zero or not: ifA; # 0 thenD’(¢’) = L except
with probabilityd’, and if Ay, = 0 theno + A, # A(k, s + As) except with probabilitys. O

We now show that this approach is still doomed to give a sub-optimal AMD waithean effective tag
size separated from the lower bound by essentially

Proposition 1. For any strongly secure AMD code obtained via Theorem 9, the effectiveiza satisfies
(K, u) > 4k — 272+,

Proof (of Proposition 1)In order to achieve an error probabilidy< 27, by Lemma 1, the tag must be
of bit-size at leask and the keyk of at least2x. But then, by Corollary 5, the elements must be of
bit-size at leassx — 272t (namely2x bits for the sourcé plusx — 272*! for the tag size of’). This
adds up to the claimed bound. O

E Syndrome Based Construction of Secure Sketch

For completeness, we review the secure sketch construction below.

Recall that an efficiently decodablle, &, 2t + 1]-error-correcting (binary) cod€ over {0, 1}" consists
of 2% codewords” = {z | Hz = 0}, whereH is the(n — k) x n parity check matrixof C' (addition and
multiplication overGF'(2)). Namely, H defines(n — k) linear constraints which are satisfied precisely by
the codewords irC. Moreover,H is chosen in such a way that the Hamming distance between any two
distinct codewords, z; € C'is at leas®t + 1 (recall, the Hamming distance betweerd € {0, 1}" is the

" We would like to point out that there is some ambiguity in hewmay be precisely defined, with regard to the attacker’s control

over the source to be substituted and over the souktavith which he substitutes. The definition used here, which controls
theworst caseis necessary for our application.
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number of symbols such thati; # b;). This means, in principle, that any codeward C can be recovered
from any “corrupted” string.” within Hamming distance at mosfrom 2. In an efficiently decodable code
C, this procedure of recoveringfrom 2’ can be done efficiently.

As it turns out, for our purposes we will only need to know the following vkelbwn fact about such
efficiently decodablén, k, 2t + 1]-codes: ifz € C anddis(z, ') < t, then there is an efficient procedure
Decode that can determine the “error vectar”— = from the(n — k)-bit quantity H 2. This quantityH 2’ is
also called thesyndrome ot’ and denotedyn(z’).

Coming back to the syndrome construction of the secure sketches frgnmté&ketchs = SS(w) of
w € {0, 1}" consists of thé-bit syndrome ofw with respect to some (efficiently decodablle)n — k, 2t +
1]-error-correcting cod€’: SS(w) = syn(w) = s. Notice, s is a (deterministic)inear functionof w, and
that the entropy loss of this construction is at mest= n — k. To see the correctness of this cosntruction,
we notice that the recovery functidtec of w from the sketchs and anyw’ of Hamming distance at most
from w is computed as follows:

Rec(w', s) = w’ — Decode(syn(w') — s)

We should also note that this construction extends to the set difference thedtigh sublinear-time encod-
ing and decoding [10] .

F Proof of Lemma 2

Recall that the secure sketch for hamming distance is given by two fungtipbecode

SS(w) = syn(w) = s
Rec(w’, s) = w’ — Decode(syn(w') — s)

and thatyn is linear. Hence

A= —w=Rec(w,3) —w
= w' — Decode(syn(w’) — 3) —w
= A — Decode(syn(w + A) — 3)
= A — Decode(s + syn(A) — 3)
— (A,5,5)

wheref is deterministic.
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