Incremental Codes

Yevgeniy Dodis* Shai Halevif

Abstract

We introduce the notion of incremental codes. Unlike a regular code of a given rate, which
is an unordered set of elements with a large minimum distance, an incremental code is an
ordered vector of elements each of whose prefixes is a good regular code (of the corresponding
rate). Additionally, while the quality of a regular code is measured by its minimum distance, we
measure the quality of an incremental code C by its competitive ratio A: the minimum distance
of each prefix of C has to be at most a factor of A smaller than the minimum distance of the
best regular code of the same rate.

We first consider incremental codes over an arbitrary compact metric space M, and construct
a 2-competitive code for M. When M is finite, the construction takes time O(|M|?), exhausts
the entire space, and is NP-hard to improve in general. We also show optimal incremental codes
for important specific spaces: the real interval [0, 1] and, most significantly, the hamming space
F" over moderate alphabets (|F'| > n). Finally, we concentrate our attention on hamming
spaces F' over small alphabets. Obtaining good competitive ratio is somewhat hard in this
case since our current knowledge of coding theory does not even yield very good regular codes
of a given rate. Nevertheless, we give three efficient constructions of incremental codes over F™
achieving constant competitive ratios for various important settings of parameters.

“Department of Computer Science, New York University, 251 Mercer Street, New York, NY 10012, USA. Email:
dodis@cs.nyu.edu

fIBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598, USA. Email:
shaih@watson.ibm.com.

1 Motivating Example

Imagine the following problem which was actually given to one of the authors. An Internet company
wants to assign account numbers to its customers when the latter shop on-line. An account number
allows the customer to check the status of the order, get customer support, etc. In particular, the
customer can enter it over the phone. Because of that and several other reasons, account numbers
should not be too long. On the other hand, we would like account numbers to be somewhat far
from each other, so that it is unlikely for the customer to access a valid number by mis-entering few
digits. One way to achieve this would be to use an error-correcting code of reasonable minimum
distance (for example, a random account number might work for a while). This has two problems,
however. First, good distance implies not very good rate, and since the account numbers are quite
short, we “waste” a lot possible account numbers, and exhaust our small account space too quickly
(thus, losing customers). Secondly, when the number of customers is small, the corresponding prefix
of our code is not as good as we could have made it with so few account numbers.

We propose a much better solution to this problem, namely, to use an #ncremental code. Such
a code will eventually exhaust (or nearly exhaust) the whole space. Indeed, when the number of
customers is huge, we prefer to have close accounts numbers rather than to lose customers. On the
other hand, when the number of customers is ¢, incremental code guarantees that the first ¢ account
numbers we assign will be almost as far from each other as any possible 7 account numbers could
be! In other words, the minimal distance of larger and larger prefixes of the code slowly decreases
at an almost optimal pace.

Notice that while it is customary to measure regular codes of a given rate in terms of their minimum
distance, a more relevant measure of incremental codes is the relative behavior of minimal distance
on larger and larger prefixes. This leads to the notion of a competitive ratio of an incremental code
C. Namely, C is A-competitive if the minimum distance of each prefix of C is at most A times
smaller than that of the optimum code of the same rate.

Organization. While the main motivation for incremental codes comes from the hamming spaces,
we start in Section 2 by defining and studying the corresponding notion on arbitrary (finite or even
compact) metric spaces. In particular, we obtain a 2-competitive codes for any such metric space,
and show that it is NP-hard (in general) to beat this competitive ratio. In Section 3 we give
two optimal constructions for specific important spaces. One constructs an optimal incremental
code for the real interval [0, 1], while the other gives a simple and efficient 1-competitive code for
the Hamming space over moderate alphabets. In particular, it gives an optimal and very practical
solution to the “account problem” defined above. Finally, in Section 4 we concentrate in more detail
on the intricacies of the hamming space over small alphabets. While it is much harder to obtain
competitive codes in this case (since our understanding of optimal codes is somewhat limited), we
give several efficient constructions achieving constant competitive ratios.

2 General Notion and Construction

Here we formally define the concept of incremental codes and give their constructions for general
(compact) metric spaces. To avoid verbosity, we first talk about arbitrary finite metrics, and later
extend our results to any (possibly infinite) compact metrics.

So let M = (M, D) be any finite metric space on point set M with metric D. A (regular) code on

M is simply a subset of points S C M. The minimum distance daq(S) of S is the smallest pairwise
distance between distinct points in S. For an integer 7 we define the quantity opt-da(i) to be the
largest minimal distance of a code of cardinality i: opt-daq(i) = max g)=; dam(S).

An incremental code C = (c; ...cy) is an ordered sequence of distinct points of M. C is ezhaustive
if k = |M], i.e. the code eventually runs through the entire space. For every i € [k] we define
the i-th prefix of C, C; = {c1...¢;}, and view it as a regular code of cardinality 7. We say that
C is A-competitive, if for every 7 € [k], the i-th prefix C; of C forms a code of distance at least
opt-daq(i) /A, ie. opt-dap(i) < A-dam(C;). We denote by ra(C) the (best) competitive ratio
of C, and by opt-ra(k) the smallest competitive ratio of any incremental code of cardinality &:
opt-ra(2) = mine— rm(C). We define opt-raq = opt-raq(|M|), and call it the competitive ratio
of M. (We notice that since the prefix an A-competitive incremental code is also A-competitive,
we have that opt-ra(k) is a non-decreasing function of k.) We say that an incremental code C is
perfect if C is 1-competitive, and that the space M is incrementally perfect if it has an exhaustive
1-competitive code (opt-raq = 1).

Theorem 1

1. The competitive ratio of any M is at most 2: opt-rapg < 2. Moreover, given M as an input,
one can construct an ezhaustive 2-competitive incremental code C for M in time O(|M|?). In
fact, constructing k-prefix of C can be done in time O(k - |M]|).

2. There exist M with competitive ratio 2.

3. For any A < 2 and given M as an input, it is NP-hard to construct A-competitive incremental
code for M, even when the competitive ratio of M is 1. In particular, it is NP-hard to
approzimate to competitive ratio of M within a factor less than 2.

Proof: Given a point p and a finite set of points S, define the distance from p to S to be D(p, S) =
minges D(p, q). We use the following simple greedy algorithm for constructing C.

1. Let ¢; be any point of M, and let C; = {c1}.
2. For k =2 to |M]|,

e Let ¢ be the furthest point from Ci_1, i.e. maximizing D(cg,Ck_1).
e Set Cp = {cx} UCk_1.

3. Output C = <cl . ..C|M‘>.

It is easy to see that each iteration of greedy can be implemented in linear time O(|M]), justifying
the running time. Indeed, having selected points Cx_1 = {c1...ck—1}, for each point p € M we
only need to maintain the closest point closest(p) in Cx_1, i.e. the one achieving D(p, closest(p)) =
D(p,Cr—1). Assuming we have done this, ¢, — the furthest point from {¢; ...cx_1} — is the point
maximizing D(p, closest(p)), which takes linear time to find. To maintain closest(p), initially we
have closest(p) = ¢1, and after selecting ¢, we update closest(p) to ¢ only if D(p,closest(p)) >
D(p,c). These |M| updates again take linear time per iteration.

Now, take any 2 < k < |M|. The 2-competitiveness of C follows from the two claims below.
Claim 1: daq(Cr) = D(c,Ck_1), i-e. the closest pair of points in Cy includes c.

Proof: Assume da(Cr) = D(c;,¢j) < D(cg,Cr—1), where ¢ < j < k. Then D(c¢j,Cj—1) = D(ci,¢j) <
D(ck,Cr—1) < D(ck,Cj—1), i.e. ¢ should have been added before ¢;, a contradiction.]

Claim 2: D(ck,Cr—1) > 3 - opt-dr (k).

Proof: Let by ...b, be the optimum code of cardinality k, i.e. D(b;,b;) > opt-daq(k) for i # j.
Then the k£ open balls of radius R = % -opt-daq (k) around the b;’s are all disjoint. Hence, at least
one of these k balls does not contain any of the first (k — 1) selected points ¢; ...ck_1. Say this is
the ball around b;. Hence, D(b;,Cr_1) > R. But ¢ is the furthest point from Cj_1, and, therefore,
D(ck,Ck,l) > D(bj,Ck,l) > R. L]

We next give an example of M with opt-ryg = 2. Let M = {w, z1,%2,y1, Y2, 2}, where D(w, x;) = 1,
D(zi,yj) =2, D(yj,2) =1, 4,5 = 1,2, and the other distances are the length of the shortest paths
induced by the above assignments (see Figure 1). In particular, the furthest 2 point are w and
z of distance 4, and the best 4-code is {z1,z2,y1,y2} of minimum distance 2. In other words,
opt-da(2) = 4 = D(w,z) and opt-dp(4) = 2 = D(x;,y;), 1,7 = 1,2. Now, for any incremental
code C = (c1,¢2,c3,ca), unless Cy = {z1,z2,y1,y2}, one of the pairwise distances in C4 will be 1,
giving a gap of 2/1 = 2. On the other hand, if Cy = {z1,x2,y1,y2}, then D(c,c2) = 2, giving again
a gap of 4/2 = 2 for the 2-prefix of C.

Figure 1: The “shortest path” closure of these distances define “bad” M.

Finally, we show that it is NP-hard to construct an A-competitive code for A < 2 when given
M as an input, even if opt-rpy = 1. We make a reduction from the MAXIMAL INDEPENDENT
SET problem, which is known to be NP-complete [GJ79]. Given a graph G = (V, E), we define
a metric space M = (M,d), where M = V and D(i,5) = 1 iff (i,5) € E, and D(i,j) = 2
otherwise. Let I = {s1...s5} C V be some maximal independent set of G. We claim that an
optimal incremental code for M is 1-competitive, and should first list the elements of I (or any
other maximal independent set) in any order, followed by the other elements in any order. Indeed,
the code C constructed this way will have da(C;) = 2 for ¢ < k, and dap(C;) = 1 for 2 > k. On the
other hand, the optimal code of cardinality ¢ can have the minimum distance of 2 if and only if it
is formed on the elements of some independent set in G, i.e. we must have ¢ < k (and this can be
achieved). In other words, opt-da(i) = 2 for i < k and opt-da(i) = 1 otherwise. To summarize,
any l-competitive code C for M induces the maximum independent set of G by looking at the
largest largest i-prefix of C with da(C;) = 2.

On the other hand, any code which is not 1-competitive for M must be 2-competitive. Hence, if
we have a procedure that can produce A-competitive code for M, where A < 2, this procedure
must in fact produce an optimal 1-competitive code. But we just argued that in this case we can
compute I — the largest independent set of G, which is NP-hard. L]

Remark 1 Notice that the greedy algorithm above is exactly the same as that of Gonzalez [G85]

for the so called k-center problem. This is a just a coincidence, since our problems and the analysis
are quite different.

Remark 2 Note, while the greedy algorithm is extremely efficient for generic metric spaces, we
are mainly interested in the hamming space F™. For this space we cannot afford to go through the
whole space, and would like our algorithms to be polynomial in nlog(|F|) = log(|M|). We discuss
an efficient optimal algorithm for this case when |F| > n in Section 3, and efficient competitive
algorithms over small fields in Section 4.

Extending to compact spaces. Aside from the complexity considerations, we can extend much
of the discussion above to infinite metric spaces. There are several things we need to ensure. First,
the distances should be bounded, and for every finite k there should exist an optimal code of
cardinality k. Additionally, the greedy algorithm that we gave in Theorem 1 makes perfect sense,
as long as there exists a point which is furthest away from a given finite set of points. The discussion
above suggests to use compact metric spaces, which satisfy each of the above requirements. For
such infinite compact spaces, we replace exhaustive codes with countably infinite codes, and require
every finite prefix of such a code to be “A-compatible” w.r.t. the best code of a given cardinality.
We notice that Theorem 1 implies that there exists a countably infinite 2-competitive incremental
code for any such metric space. In fact, the greedy algorithm is easily implementable for “nice”
compact subsets in R™ (since on such sets we can compute the furthest point from a given set of
points; of course, these computation could become less and less efficient once we introduce more
points). For example, on the interval [0, 1], and staring with ¢; = 0, our algorithm simply keeps
subdividing the largest interval in half. Thus, after 2* points, all the intervals will be of size 1/2%,
but one interval will be of size 1/2¥+1| giving a ratio 2¥+1/(2¥ + 1) — 2. We will see in Section 3
that the best ratio for any competitive algorithm for [0, 1] is in fact In4 = log, 4 ~ 1.386 < 2.

3 Optimal Constructions

In this section we give two optimal constructions of incremental codes. The first construction is
over the hamming space F" when |F| > n (and F' is a field), and shows that F™ is incrementally
perfect. The second one is for the real interval [0, 1] (which is not incrementally perfect).

3.1 Optimal 1-Competitive Code for Hamming space F", |F| > n

Our incremental code will be based on Reed-Solomon Codes (RS-codes), which we briefly recall
now. Let F be a field of size |F| = q. RS-code of dimension k and block length n over F' (where
|F| = ¢ > n) maps elements of F* into codewords over F" via the following procedure. Let
@1 ..., be arbitrary distinct elements of F. Given a = (ag...a;_1) € F*, assign a polynomial
palz) = Ef;ol a;z’ of degree at most (K — 1), and output the codeword (p(ay)...p(ay,)) € F™.
Since any two distinct polynomials of degree at most (k — 1) can agree on at most (k — 1) points
in F', the distance of the RS-code at least (in fact, exactly) d = n — k 4+ 1. On the other hand, the
classical singleton bound says that any code of dimension k (i.e., ¢* codewords) must have minimal
distance at most (n — k + 1), achieved by the corresponding RS-code. Hence, RS-codes are optimal
codes of dimension k, and, in particular, opt-da(¢¥) = n — k + 1 (where M = F™) when the size
of the field ¢ > n.

Letting F¥~![x] to denote the set of polynomials of degree at most (k — 1), we can view the RS-
code of dimension k as mapping an element of F*~1[z] into F™. Viewed this way, we observe that
FOlz] € F'lz]... € F" ![z], which allows us to to view the RS-code of dimension (k — 1) and
optimal distance (n — k 4 2) as a subset of the RS-code of rate k and optimal minimal distance
(n—Fk+1). Thus, if we first encode (i.e., evaluate at n points) the polynomials of degree 0, followed
by the polynomials of degree 1 and so on, we see that the minimal distance of our incremental code
slowly decreases from n to (n — 1), ..., all the way to 1. More specifically, at the time we are
encoding polynomials of degree k, our current code has minimal distance (n — k + 1) (being part of
the RS-code of dimension k), which is optimal by the singleton bound since our current code has
more than ¢*~! elements (as we already listed ¢*~! polynomials of degree at most (k — 1)).

Thus, we showed that the Hamming space F™ has a 1-competitive exhaustive code C = (cg,...,cn—1),
where N = ¢". To efficiently compute ¢;, we notice the following. If we write the elements of F
as numbers 0,...,(¢ — 1) (0 being the “zero” of F'), and then interpret the representation of an

integer 7 € {0,...,N — 1} base |F| as a string a(i) € F", then listing ¢ in the increasing order
corresponds to the lexicographic order of the a(i)’s, which also lists the polynomials Pa(i) in the
order of increasing degrees, as needed. To summarize, we get

Theorem 2 F" is incrementally perfect when |F| = q > n and F is a field. In particular, the

incremental code C = (co, ..., cn-1), where ¢; = (pqgiy(@1), - -, Pai)(an)) € F", is exhaustive and 1-
competitive. Moreover, for 1 <k < n and when ¢*~! < i < ¢*, the minimal distance of {co,...,¢}
is (n—k+1).

Practical Discussion and Examples: We notice that the procedure of computing ¢; is very
practical and efficient (at most quadratic in n and log|F'|), and does not need to keep any state
as 7 grows (unlike, for example, the greedy algorithm for generic metric spaces). For example,
consider the problem of assigning account numbers to Internet shoppers. For for any n, we can
select any prime power (since F' is a field) ¢ > n to be |F|, and be able to serve the maximal
number of customers, ¢", while having the property than when the number of customers is less
than ¢*, all account numbers have at least (n — k& + 1) distinct symbols. For example, if g =n =9,
we get practical scheme for 9° = 387,420,489 customers with 9-digit accounts over digits 1...9
(say, 0 is a special character when entering on the phone), the first 4, 782,969 (resp. 43,046, 721)
of which have at least 3 (resp. 2) distinct digits. And if 11 digits are acceptable, we can have 11!
(which is more than we will ever need) account numbers (say, over 0...9,x%), the first 20 (resp.
200) million of which have at least 5 (resp. 4) distinct digits. Finally, if we can use 25 English
letters as characters, even 7-character account numbers let us handle the world population (more
than 6 billion numbers), the first 10 (resp. 250) million of which have at least 3 (resp. 2) distinct
characters.

3.2 Optimal Code for [0, 1]

An incremental code over [0,1] is simply a sequence of points C = (p1,p2,...). If welet ¢t...q
denote p; ... p; in the increasing order (so that ¢} < ¢5... < ¢!), then after ¢ steps [0, 1] is split into
(i + 1) intervals Iy = [0,¢%], I» = [¢%,q5),..., Ii = [¢},1]. Clearly, the minimal distance of C; is
d(C;) = min(|I1|,...,|Ii—1])), while the optimum distance is opt-d(i) = 1/(i — 1) (by spreading the
points uniformly). When adding p;;1 we simply subdivide one of the I;’s into two subintervals. If
we assume that p; = 0 and pe = 1 (which will happen in our solution and will be the “worst case”

in the lower bound proof), then the “border” intervals Iy and I;;; disappear, and our objective is
to place the points p3,pa4,... on [0, 1] in such a manner that the length of the smallest interval after
each p; is as close to 1/(¢ — 1) as possible. We notice that the dual “maximal interval” version of
the latter problem — make the largest interval as close to 1/(i — 1) as possible — is a well known
dispersion problem (see [DT97, C00, M99]). While our lower bound and its proof will be somewhat
different for our “minimal interval” version, it will turn out that the optimal sequence for both
versions will be the same, which is not at all clear a-priori.

Let H(k) = (L4 %+ ...+ 1) denote the k' harmonic series.

Lemma 1 Incremental code of (2i+ 1) points in [0, 1] cannot be A-competitive for A < 2-[H(2i) —
H(i+1)].

Proof: Consider a code of 27+ 1 points in [0, 1] with competitive ratio A. For every j < i, consider
the distances between adjacent points after placing the first j points. Let # < ¢, < ...E;_l be
these distances, sorted in increasing order. We need the following claim:

Claim: ¢ < €115 for 1 <k <j—2.

Proof: Adding a point (in this case, (j + 1)-st point) can either add one more distance to the list
of interval distances (if the new point is the rightmost or the leftmost), or it can remove one length
from the list, replacing it with two others (if the new point lies between two old points). In either
case, there are at most two new lengths that are added to list. This means that among the first
k+ 2 lengths on the new list, there are at least k lengths that were already on the old list before we
added the last point. Hence, the k£ + 2’nd smallest length on the new list cannot be smaller than
the k’th smaller length on the old list.]
By iterating the above claim, we get for all 0 < 57 <4 —1, E%Hl*j < E%f;] Notice, E%Hl*j is the
length of the smallest interval after adding (2¢ + 1 — j) points. Since our code is A-competitive
(and since the optimal arrangement of 2¢ + 1 — j points has distance 1/(2¢ — j)), we must have
% < A, which means that E%:_'EE > K%Hl_j > 1/(A(2¢ — j)). Summing the last inequality for
j=0...1—1, we get

— 1 (1 1 1 1
el > — (2 = — - [H(2i)-H(i+1 1

On the other hand, since E%f;] < E%f% and all the 2¢ intervals sum to at most 1, so we get

i—1 i—1 [241 | p2i+1

) 05t + A5 1
2i+1 1425 T “2425

261:—23' < Z (2) =3 2)
Combining Equation (1) and Equation (2), we get A > 2-[H(2i) — H(i + 1)]. U
Since 2 - [H(2i) — H(i + 1) ~ 2In (li—g) 2% 104, we get

Corollary 2 If C is an infinite A-competitive code, then A > In4 = 1.386.

We now show an incremental code achieving the bound above. We let pg = 0, p; = 1, and explicitly
tell the lengths of the ¢ intervals after the first (i + 1) points. They are (in increasing order):
logy (1 + 547),logy (1 4+ 555), - . ., logy (1 + 4). Notice, > j=1logy(1 + 21-1_]-) = logy(IT}—, ZZZ—ZJ‘H) =
logy (%) = 1, indeed. Also, for i =1 our only interval is indeed of size 1 = logy(1 + 1). To add the
(i +2)"* point, we subdivide the currently largest interval of size log,(1 + 1) into two intervals of
sizes logy(1 + o) and logy(1 + ﬁ) (again, arithmetic works), as claimed. We see that the length
of the smallest interval after (i + 1) points is logy(1 + 517) > 75
proving that this sequence have competitive ratio In4.

(the latter is easy to check),

Remark 3 The above argument and construction can be adjusted to the case of the closed circle S*
(where distance is the shortest arc of the circle), and give the same competitive ratio. The first two
points of the code are put diametrically opposite to each other, and then we interleave the “interval”
construction above on the lower and upper semi-circles. The lower bound extends as well.

4 Hamming Space (Error-Correcting Codes)

In this section we discuss the hamming space F". We refer the reader to [MS81] for more information
on some of the facts we use in this chapter. Recall, we showed in Theorem 2 that F™ is incrementally
perfect when |F| = ¢ > n (and F is a field). We now consider the more difficult case when
|F'| = ¢ < n (in particular, binary). As we will see, obtaining tight bounds for this case is expected
to be harder (see below), but first let us recall some terminology that we will need later.

A code with K codewords and minimal distance d over F is said to have rate 7 = log, K/n,
dimension k = log, K and relative distance 6 = d/n. We omit the subscript to the space from the
quantities opt-r and opt-d when the hamming space is clear from the context, and otherwise write
opt-r(K; q,n) and opt-d(K; g,n) to emphasize the space. We let opt-d(7; ¢,n) = %-opt—d(qm; q,n)
be the largest possible relative distance of a code of rate 7 over F. We let V,(R; n) denote the
volume of an n-dimensional sphere of radius R in F", and notice that asymptotically, we have
1 -log, Vy(an; n) = Hy(a) = alog,(q¢ — 1) — alog, a — (1 — a)log,(1 — a), where Hy(:) above is
the g-ary entropy function (in particular, V,(an; n) < g"a()),

As a first observation, we notice below the the Hamming space is not incrementally perfect:

Lemma 3 If g < n, then the Hamming space [q])" is not incrementally perfect, unless ¢ = 2,n = 4.

Proof: Let ¢ < n and assume that [g|™ is incrementally perfect. Since the words 1™...¢" have
pairwise distance n, we have that opt-d(¢) = n. Hence, if [¢]" has a l-competitive incremental
code C, it must be that d(C;) = n. Namely, any two of the first ¢ words of C must differ in all the
coordinates 1 < ¢ < n. In fact, we can assume w.l.o.g. that the words 0™...(qg — 1)™ are the first ¢
words in C.! This means, however, that the (¢ + 1)’st word of C must agree with one of the first ¢

n
q

n

words in at least [-| positions, implying that d(Cy11) < n — h-|.
On the other hand, we now show that the optimal (¢+1)-word code in [¢]" has minimum distance at

least n — {%1 . Consider a (¢ + 1) x n matrix, whose rows would correspond to g+ 1 codewords.

We describe how to fill this matrix so that every two rows would agree in at most [2n/(q(q +1))]

!This is true since we can always permute the symbols in coordinate i of all the words of C, without changing any
of the distances of the code.

coordinates. Specifically, we fill the columns of this matrix in “chunks” of (qgl) at a time, making
sure that in each “chunk” every two rows agree in at most one coordinate. This is done as follows:
the (‘1;1) columns in each “chunk” correspond to all pairs of distinct indices 1 <17 < 7 < g+ 1.
Namely, the column v(7, j) corresponding to the pair (i,7) has symbol ¢ in positions ¢ and j, and
all the other symbols 1... (¢ — 1) in the other (¢ — 1) positions of v(¢,7) (in arbitrary order). So
within column v (3, j), the only two positions that agree are positions i and j. It follows that within
the current “chunk”, any two rows ¢ and j agree only in the column v(7,). And as there at most

[n/ (q‘gl)] = [q(311)1 such “chunks”, any two rows agree in at most {ﬁ1 coordinates.
Since we assume that C is 1-competitive, we must have
[2n W < opt-d(g+1) = d(Cps1) < Fﬂ
n — E—— ~ - q = +1 < n — —
q(g +1) ! q

ie. [%1 < [q(511)1' It is not hard to see that the only pair n > ¢ that satisfies this inequality

isn =4 and ¢ = 2, i.e. no other space can be incrementally perfect. As for {0, 1}4, it is indeed
incrementally perfect via the optimal code {0000, 1111, all words with two 1’s, all the rest}. [J

How good is the optimal code? One small problem with the notion of competitive ratio over
small alphabets, is that we need to compare the performance of the code with these of the optimal
code of the same rate. For codes over small alphabets, we only have bounds on the minimal distance
of the optimal code, rather than a closed-form formula. Hence, the competitive ratio that we can
prove depends not only on the performance of the code in question, but also on the quality of these
bounds.

On a brighter side, the discrepancy between the known upper- and lower-bounds on the optimal
distance as a function of rate is at most a small constant factor. In fact, the ratio between the
Hamming bound (an upper-bound) and the Gilbert-Varshamov bound (a lower-bound) is a factor
of 2 “in spirit”. To see that, recall that the Hamming bound says that for any code with K
codewords and minimum distance d over [g]", it holds that K-V (d/2; n) < ¢",i.e. opt-d(K; ¢q,n) <
2Vq_1(q” /K; n). The Gilbert-Varshamov bound, on the other hand, says that there exists a K-word
code with minimum distance d satisfying K - V,(d; n) > ¢", i.e. opt-d(K; ¢q,n) > I@*l(q”/K; n).

In principle, this means that when we use the Hamming bound as our estimate for the performance
of the optimal code, we only lose a factor of two (or less). However, notice that when we use that
bound, we usually use some estimate for Vq*1 (since working with qu1 itself is too hard), so we
may lose some small additional factor there (see Section 4.3 for an example).

What is an “efficient” construction? As opposed to the generic case, where we are given the
entire metric space as input and need to produce as output the “code” itself (as a list of points), in
the case of the Hamming space we usually think of entire space as being exponential in the relevant
parameters, and we think of the code as having some implicit small representation. What we may
require in terms of efficiency is to have a representation of the code whose length is polynomial in n
and log ¢, and an efficient procedure that given this representation and an index 4, produces ¢;, the
1’th codeword. For example, viewed in this light, a random code is not an “efficient construction”,
but a random linear code is.

Constructions. We now turn to the question of efficient constructions of incremental codes.
As a most trivial construction, consider a regular code with K codewords, minimum distance d

and relative distance 6 = d/n. How well does it perform as an incremental code (under arbitrary
ordering)? Without any additional knowledge about the code, the best competitive ratio we can get
isn/d = 1/§. Still, if we take a family of asymptotically good codes?, we get a family of incremental
codes with constant rate and constant competitive ratio. Of course, this simplistic construction
has several shortcomings. First, there is a pretty stringent tradeoff between the rate and the
relative distance of the code, so we will either sacrifice the rate (make the code very sparse), or the
competitive ratio. In particular, if the rate is close to 1, the completive ratio tends to co. Secondly,
even on small prefixes our code can have the same minimal distance d, i.e. the distance does not
necessarily “gradually decrease”. Because of that, there is no point in using more sophisticated
bounds than n on the optimal code’s minimal distance. Thus, this approach does not address the
essence of the problem at all.

Therefore, we use more sophisticated techniques that will give us better tradeoffs between the rate
and the competitive ratio of incremental codes. Specifically, we examine three efficient construc-
tions: (1) using algebraic-geometric codes (AG-codes) as a natural generalization of the RS-codes
to small fields, (2) using concatenation theorem to reduce the alphabet size, and (3) using ran-
dom linear codes. The latter construction will let us achieve our ultimate goal: have an absolute
constant competitive ratio (slightly more than 2), even when the rate is 1 — o(1).

4.1 Algebraic-Geometric Codes

Algebraic-Geometric Codes (AG-codes) are natural extensions of the RS-codes to small fields.
Detailed treatment of AG-codes is beyond the scope of this paper, so we informally concentrate
on the essentials only (see [S93] for more information). Rather than talking about polynomials of
degree at most « which can be evaluated at n points in the field, AG-codes deal with algebraic
functions with at most a “poles” at the “point of infinity” which can be evaluated at n “rational
points” of the function field. In both cases, the valuation map returns n elements of F', and a
given polynomial/algebraic function can have at most « zeros. We let L(«a, 0o) denote the space of
such functions, which turns out to be a linear space over F'. The famous Riemann-Roch theorem
says that the dimension of this space is at least a — g + 1, where g is the “genus” of the algebraic
field (for the RS-codes we can achieve g = 0, but for smaller fields g cannot be very small; see
below). All together, AG-codes given by the space L(a,00) have the following parameters: the
dimension k£ > « — g + 1, the distance d > n — «. Like with the RS-codes, we observe that
L(0;00) C L(1;00) C ... C L(n — 1;00), which implies that AG-codes of increasing pole orders at
infinity define an incremental code, the first (¢* — 1) codewords of which have minimal distance at
least (n — k — g+ 1). Since the singleton bound still says that the optimum distance is at most
(n—k+1), we get

Theorem 3 The competitive ratio of AG-codes of dimension k (listed in the order specified above)

15 at least nf;if‘;il. In particular, setting k = n—2g+1 gives an incremental code with ¢* codewords

and competitive ratio at most 2.

While the main advantage of the AG-codes is the fact that they are defined on small (e.g. constant
size) alphabets, we briefly point out their limitations. In particular, the bound above is meaningful

only when k < n — g, i.e. the rate can be at most (1 — £). It is known that ¢ > n/(,/g —1),* so
the maximal rate we can hope to achieve is roughly (1 — ﬁ)
*Recall, family of codes {C"} e is asymptotically good if both the relative distance and the rate of C" is €2(1).

*When n grows w.r.t. ¢, and this bound is tight for certain ¢’s. The general bound is g > (n —q — 1)/(2,/q).

4.2 Concatenation Theorem

We next address a general method of constructing an incremental code over small alphabet from
the one over a large alphabet and a good regular error-correcting code over a small alphabet.
This method is completely analogous to the one used when constructing regular codes over small
alphabets, and is called the concatenation of codes.

Let C = {c1 ... ck) be an incremental code in [g]", with competitive ratio A and rate 7 = (log, K)/n.
Let T = {t(1)...t(q)} be a regular code in [g2]"? (g2 < ¢), with distance da, relative distance
02 = dg/nz, and rate 7, = (log,, q)/n2. An incremental code C* = C*T = (c*(1)...c"(K)) C
[q2]"""2, the concatenation of C and T, is defined as follows. If we write the i-th codeword of C as
¢ =¢i1-..Cipn € [g]", and interpret ¢ symbols as integers 1...gq, then the i-th codeword of C* is
c; =t(ci) ... tlcin) € [g2]™2. The code C is called the “outer code”, and T is called the “inner
code”.

Theorem 4 C* is an incremental code in [go]"* with K codewords, rate 7* = (log,, K)/(nnz) =
(log, K -log,, q)/(nn2) = 772, and competitive ratio A* satisfying:

A opt-d(i; g2,mng) A opt-6(p72; q2,nn2)
- Inax =

A< ==
~ dy i<K opt-d(i; q,n)) rggf opt-d(p; q,n)

(3)
Proof: Take the i-prefix C7 of C*. We claim that d(C}) > d(C;) - d2, which is clear from the
construction of C*. Using also A-competiveness of C (i.e. opt-d(C;) < A -d(C;)), we get

A* — max opt-d(4; go,nn2) < max opt-d(i; qo,nns) opt-d(i; q,n)
T <K a(cr) ~ i<k opt-d(i; g,n) d(C;) - dy

A opt-d(i; q2,nn2)
< — - max -
dy i<k opt-d(i; q,n)

O

Clearly, we can try to substitute some known upper (resp. lower) bounds in place of opt-d(i; g2, nn2)
(resp. opt-d(i; g,m)), to get a more algenraic expression in the bound above. For example, in the
asympototic sense we can use the Hamming bound in the numerator, and the Gilbert-Varshamov
bound in the denominator, and get

opt-0(p72; g2, nN2) = 2- Hq_.zl(l —pr2) 2 Hq_zl(l — TTy)
max : ~ max 1 = 1
p<t opt-0(p; q,n) p<t Hy'(1—p) Hyt(1—7)

(recall, H, is the g-ary entropy function). However, such generic bound are often not much easier
to work with, and different such bounds could be more convenient for different construction.

Below we illustrate the bound from Theorem 4 for the case where the outer code is the incremental
RS-code constructed in Section 3.1, which is perhaps the most attractive case to consider. Recall,
from Section 3.1 that these incremental codes are 1-competitive, can be used with any rate 7 < 1,
and have the restriction that g > n.

Corollary 4 Let C be the 1-competitive RS-code of rate T, and T be as before. Then C* has rate
7" = 719 and competitive ratio

=51 W

10

Proof: We notice that for the RS-code we have A = 1 and opt-d(p; ¢,n) = 1 —p+ 1/n. Now
the most convenient bound to use for opt-d(p7a; g2,mn2) seems to be the (very loose in general)
singleton bound, which says that opt-d(p71e; go,nn2) < 1—pro+1/(nng). Using Equation (3) now,
we get

1—/07'24‘%“2 1 —pmy 1—177

max ————— < max =

p<t 1—p+ = p<t l—0p 1—-7

O

We notice the tradeoff that we obtain. In particular, 1_5% > % > 1 (the latter part follows from
the singleton bound applied to T'). Thus, our guarantee on A* cannot be better than 1/(1 — 7).
This implies that if we want a constant competitive ratio from C*, we cannot make 7 = 1 — o(1).
In other words, even though we can extend the RS-code to all the rates up to 1, our analysis can
no longer provide a constant guarantee on A*. On a positive note, we can make the rate 7% = 77,
of C* arbitrarily close to 1 (at the expense of A*). Finally, it is also interesting to compare the
bound in Equation (4) with the trivial bound we get by simply viewing C* as a code of minimal
relative distance §* = d2(1 — 7). We see that we would get the ratio 1/(d2(1 — 7)), which is a factor
(1 — 77%) worse than our bound.

4.3 Random Linear Codes

We saw that the explicit (and efficient) constructions from the previous sections failed to achieve a
constant competitive ratio for rates (1 —o(1)). On the other hand, Theorem 1 shows the existence
(and inefficient construction) of an exhaustive 2-competitive codes for any [¢]”. In this section we
show that, with high probability, a random linear code will achieve a competitive rate 2(1 + ¢€) (for
arbitrarily small €, and possibly better if of understanding of optimal codes will improve), even
for rate (1 — o(1)) (specifically, dimension up to n — ©(log,n)). This gives an efficient (albeit
randomized) procedure to generate competitive and almost exhaustive incremental codes.

Recall that a (standard) random linear code of dimension £ in [g]", is the set of words which are

spanned by the rows of a k£ X n random matrix G over [g]. As we are interested in ordered codes,
we consider these words in a canonical order of their coefficients. Namely, for a given matrix G,
the order between two codewords ¢ = G and ¢ = 2'G is determined by the lexicographic order
between = and z’.* We note that with this ordering, all the codewords that are spanned by the
first 7 rows of GG, appear before all the codewords that depend also the ¢ + 1’st row. This means

that for any m < k, the prefix Cym is itself a (random) linear code.

We first recall an easy lemma that bounds the minimum distance of a random linear code.

Lemma 5 For k < n, let G be a random k x n q-ary matriz, and let C = C(G) = {c1...cp} be
the ordered linear code that is spanned by G. Then for every e <1 — %, we have

Pr[d(C) < en] < 2F—n(1=H4()

Proof: Let S(en) be the sphere of radius en around the origin in Hamming space [¢]". We know
that S(en) contains V(en; n) < ¢"H4(9 words. For a fixed k-vector z # 0, we have Prg[zG €

“Notice, this is the same lexicographic order we used with the RS-codes in Section 3.1.

11

S(en)] < ¢"#(9=", Using the union bound, we get
Pr[d(C) <en] = Pr[dz #0, G € S(en)] < qF - q*"(lfH(e))
O

Corollary 6 Let k <n, 0 >0, and G be a random k X n q-ary matriz. With probability of at least
1 — 6 (over the choice of G), the minimum distance of C(G) is at least nH " <M>

n

Below we prove that a random linear code has competitive ratio of at most 2(1 + €) for rates up to
1 . . .

1- @(%). For this proof, we first recall a somewhat weak variant of the Hamming bound, and

one fact about the (inverse of the) g-ary entropy function Hj.

n—k—1+log, n
)

Hamming bound. For any ¢ and k < n, opt-d(¢*; ¢,n) < 2an_1 (

Proposition 7 For any constant € > 0, there exists a constant “threshold” p = p(e) > 0, so that
for all § < p, all z > 26/e and all ¢ > 2, it holds that H;'(z 4+ 0)/H, ' (z) <1 +e.

Theorem 5 For any q, any constant € > 0, any large enough n, and any k < n — (2 + %) log, n,
a random linear code of dimension k in [q]" has competitive ratio A < 2(1 + €), with probability at
least 1 — L.

n

Proof: Let G be a random k X n g-ary matrix and let C = C(G) be the ordered linear code spanned
by G. For each integer m < k, Corollary 6 with § = 1/n? tells us that with probability at least
1 —1/n?, the minimum distance of Cgm (i.e., the code spanned by the first m rows of G) is at least

n—m—2log,n
dm:an_1< gq >

n

Taking the union bound, we conclude that with probability at least 1 — k/n? > 1 — 1/n, the above
holds for all 1 < m < k. This, in turn, implies that for any m and any ¢ € {qm_1 +1,... ,qm}, the
minimum distance of C; is at least d,,.

On the other hand, the Hamming bound tells us that the minimum distance of the optimal ¢ !-

word code cannot be more than

n—(m-—1)—1+1og, n n—m+log,n
d;‘n_1:2an—1(() 8) = 2nH;" (—gq)

n n

This implies that also for every i € {qm_1 +1,... ,qm}, the minimum distance of the optimal
i-word code cannot be more than d}, ;. We conclude that with probability at least 1 — 1/n, the
competitive ratio of C is bounded below by max,, (d},_,/dm).

n—m—2log, n

- . Since m < k < n—(2+ %)log,n,
it follows that z > (¢ log,n)/n = 2§/e. Also, for large enough n we have § < p(e) (where p is the
“threshold” function from Proposition 7), we can use Proposition 7 to conclude that

Fix any m < k, and denote § = and z =

3log, n
n

dy, 1 2nH (2 +96)
dn nH71(2)

<2(1+e¢)
As the inequality above holds for any m < k, this completes the proof of the theorem.]

12

References

[C00] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, 2000.

[DT97] M. Drmota, R. Tichy. Sequences, Discrepancies, and Applications Lecture Notes in Math-
ematics 1651, Springer, Berlin, 1997.

[GJ79] M. Garay, D. Johnson. Computers and Intractability. W.H. Freeman and Company, New
York, 1979.

[G85] T. Gonzalez. Clustering to minimize the maximum inter-cluster distance. Theoretical
Computer Science, (38)293-306, 1985.

[MS81] F. MacWilliams, J. Sloane. Theory of Error-Correcting Codes, Amsterdam, 1981.
[M99] J. Matousek. Geometric Discrepancy (An Illustrated Guide). Springer-Verlag, Berlin, 1999.

[S93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, Berlin, 1993.

13

