
In
remental CodesYevgeniy Dodis� Shai HaleviyAbstra
tWe introdu
e the notion of in
remental 
odes. Unlike a regular 
ode of a given rate, whi
his an unordered set of elements with a large minimum distan
e, an in
remental 
ode is anordered ve
tor of elements ea
h of whose pre�xes is a good regular 
ode (of the 
orrespondingrate). Additionally, while the quality of a regular 
ode is measured by its minimum distan
e, wemeasure the quality of an in
remental 
ode C by its 
ompetitive ratio A: the minimum distan
eof ea
h pre�x of C has to be at most a fa
tor of A smaller than the minimum distan
e of thebest regular 
ode of the same rate.We �rst 
onsider in
remental 
odes over an arbitrary 
ompa
t metri
 spa
eM , and 
onstru
ta 2-
ompetitive 
ode for M . When M is �nite, the 
onstru
tion takes time O(jM j2), exhauststhe entire spa
e, and is NP-hard to improve in general. We also show optimal in
remental 
odesfor important spe
i�
 spa
es: the real interval [0; 1℄ and, most signi�
antly, the hamming spa
eFn over moderate alphabets (jF j � n). Finally, we 
on
entrate our attention on hammingspa
es Fn over small alphabets. Obtaining good 
ompetitive ratio is somewhat hard in this
ase sin
e our 
urrent knowledge of 
oding theory does not even yield very good regular 
odesof a given rate. Nevertheless, we give three eÆ
ient 
onstru
tions of in
remental 
odes over Fna
hieving 
onstant 
ompetitive ratios for various important settings of parameters.
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1 Motivating ExampleImagine the following problem whi
h was a
tually given to one of the authors. An Internet 
ompanywants to assign a

ount numbers to its 
ustomers when the latter shop on-line. An a

ount numberallows the 
ustomer to 
he
k the status of the order, get 
ustomer support, et
. In parti
ular, the
ustomer 
an enter it over the phone. Be
ause of that and several other reasons, a

ount numbersshould not be too long. On the other hand, we would like a

ount numbers to be somewhat farfrom ea
h other, so that it is unlikely for the 
ustomer to a

ess a valid number by mis-entering fewdigits. One way to a
hieve this would be to use an error-
orre
ting 
ode of reasonable minimumdistan
e (for example, a random a

ount number might work for a while). This has two problems,however. First, good distan
e implies not very good rate, and sin
e the a

ount numbers are quiteshort, we \waste" a lot possible a

ount numbers, and exhaust our small a

ount spa
e too qui
kly(thus, losing 
ustomers). Se
ondly, when the number of 
ustomers is small, the 
orresponding pre�xof our 
ode is not as good as we 
ould have made it with so few a

ount numbers.We propose a mu
h better solution to this problem, namely, to use an in
remental 
ode. Su
ha 
ode will eventually exhaust (or nearly exhaust) the whole spa
e. Indeed, when the number of
ustomers is huge, we prefer to have 
lose a

ounts numbers rather than to lose 
ustomers. On theother hand, when the number of 
ustomers is i, in
remental 
ode guarantees that the �rst i a

ountnumbers we assign will be almost as far from ea
h other as any possible i a

ount numbers 
ouldbe! In other words, the minimal distan
e of larger and larger pre�xes of the 
ode slowly de
reasesat an almost optimal pa
e.Noti
e that while it is 
ustomary to measure regular 
odes of a given rate in terms of their minimumdistan
e, a more relevant measure of in
remental 
odes is the relative behavior of minimal distan
eon larger and larger pre�xes. This leads to the notion of a 
ompetitive ratio of an in
remental 
odeC. Namely, C is A-
ompetitive if the minimum distan
e of ea
h pre�x of C is at most A timessmaller than that of the optimum 
ode of the same rate.Organization. While the main motivation for in
remental 
odes 
omes from the hamming spa
es,we start in Se
tion 2 by de�ning and studying the 
orresponding notion on arbitrary (�nite or even
ompa
t) metri
 spa
es. In parti
ular, we obtain a 2-
ompetitive 
odes for any su
h metri
 spa
e,and show that it is NP-hard (in general) to beat this 
ompetitive ratio. In Se
tion 3 we givetwo optimal 
onstru
tions for spe
i�
 important spa
es. One 
onstru
ts an optimal in
remental
ode for the real interval [0; 1℄, while the other gives a simple and eÆ
ient 1-
ompetitive 
ode forthe Hamming spa
e over moderate alphabets. In parti
ular, it gives an optimal and very pra
ti
alsolution to the \a

ount problem" de�ned above. Finally, in Se
tion 4 we 
on
entrate in more detailon the intri
a
ies of the hamming spa
e over small alphabets. While it is mu
h harder to obtain
ompetitive 
odes in this 
ase (sin
e our understanding of optimal 
odes is somewhat limited), wegive several eÆ
ient 
onstru
tions a
hieving 
onstant 
ompetitive ratios.2 General Notion and Constru
tionHere we formally de�ne the 
on
ept of in
remental 
odes and give their 
onstru
tions for general(
ompa
t) metri
 spa
es. To avoid verbosity, we �rst talk about arbitrary �nite metri
s, and laterextend our results to any (possibly in�nite) 
ompa
t metri
s.So let M = (M;D) be any �nite metri
 spa
e on point set M with metri
 D. A (regular) 
ode on1



M is simply a subset of points S �M . The minimum distan
e dM(S) of S is the smallest pairwisedistan
e between distin
t points in S. For an integer i we de�ne the quantity opt-dM(i) to be thelargest minimal distan
e of a 
ode of 
ardinality i: opt-dM(i) = maxjSj=i dM(S).An in
remental 
ode C = h
1 : : : 
ki is an ordered sequen
e of distin
t points of M . C is exhaustiveif k = jM j, i.e. the 
ode eventually runs through the entire spa
e. For every i 2 [k℄ we de�nethe i-th pre�x of C, Ci = f
1 : : : 
ig, and view it as a regular 
ode of 
ardinality i. We say thatC is A-
ompetitive, if for every i 2 [k℄, the i-th pre�x Ci of C forms a 
ode of distan
e at leastopt-dM(i)=A, i.e. opt-dM(i) � A � dM(Ci). We denote by rM(C) the (best) 
ompetitive ratioof C, and by opt-rM(k) the smallest 
ompetitive ratio of any in
remental 
ode of 
ardinality k:opt-rM(i) = minjCj=k rM(C). We de�ne opt-rM = opt-rM(jM j), and 
all it the 
ompetitive ratioof M. (We noti
e that sin
e the pre�x an A-
ompetitive in
remental 
ode is also A-
ompetitive,we have that opt-rM(k) is a non-de
reasing fun
tion of k.) We say that an in
remental 
ode C isperfe
t if C is 1-
ompetitive, and that the spa
e M is in
rementally perfe
t if it has an exhaustive1-
ompetitive 
ode (opt-rM = 1).Theorem 11. The 
ompetitive ratio of any M is at most 2: opt-rM � 2. Moreover, given M as an input,one 
an 
onstru
t an exhaustive 2-
ompetitive in
remental 
ode C for M in time O(jM j2). Infa
t, 
onstru
ting k-pre�x of C 
an be done in time O(k � jM j).2. There exist M with 
ompetitive ratio 2.3. For any A < 2 and givenM as an input, it is NP-hard to 
onstru
t A-
ompetitive in
remental
ode for M, even when the 
ompetitive ratio of M is 1. In parti
ular, it is NP-hard toapproximate to 
ompetitive ratio of M within a fa
tor less than 2.Proof: Given a point p and a �nite set of points S, de�ne the distan
e from p to S to be D(p; S) =minq2SD(p; q). We use the following simple greedy algorithm for 
onstru
ting C.1. Let 
1 be any point of M , and let C1 = f
1g.2. For k = 2 to jM j,� Let 
k be the furthest point from Ck�1, i.e. maximizing D(
k; Ck�1).� Set Ck = f
kg [ Ck�1.3. Output C = 

1 : : : 
jM j�.It is easy to see that ea
h iteration of greedy 
an be implemented in linear time O(jM j), justifyingthe running time. Indeed, having sele
ted points Ck�1 = f
1 : : : 
k�1g, for ea
h point p 2 M weonly need to maintain the 
losest point 
losest(p) in Ck�1, i.e. the one a
hieving D(p; 
losest(p)) =D(p; Ck�1). Assuming we have done this, 
k | the furthest point from f
1 : : : 
k�1g | is the pointmaximizing D(p; 
losest(p)), whi
h takes linear time to �nd. To maintain 
losest(p), initially wehave 
losest(p) = 
1, and after sele
ting 
k we update 
losest(p) to 
k only if D(p; 
losest(p)) >D(p; 
k). These jM j updates again take linear time per iteration.Now, take any 2 � k � jM j. The 2-
ompetitiveness of C follows from the two 
laims below.Claim 1: dM(Ck) = D(
k; Ck�1), i.e. the 
losest pair of points in Ck in
ludes 
k.Proof: Assume dM(Ck) = D(
i; 
j) < D(
k; Ck�1), where i < j < k. Then D(
j ; Cj�1) = D(
i; 
j) <D(
k; Ck�1) � D(
k; Cj�1), i.e. 
k should have been added before 
j , a 
ontradi
tion.2



Claim 2: D(
k; Ck�1) � 12 � opt-dM(k).Proof: Let b1 : : : bk be the optimum 
ode of 
ardinality k, i.e. D(bi; bj) � opt-dM(k) for i 6= j.Then the k open balls of radius R = 12 � opt-dM(k) around the bi's are all disjoint. Hen
e, at leastone of these k balls does not 
ontain any of the �rst (k � 1) sele
ted points 
1 : : : 
k�1. Say this isthe ball around bj . Hen
e, D(bj ; Ck�1) � R. But 
k is the furthest point from Ck�1, and, therefore,D(
k; Ck�1) � D(bj; Ck�1) � R.We next give an example ofM with opt-rM = 2. LetM = fw; x1; x2; y1; y2; zg, where D(w; xi) = 1,D(xi; yj) = 2, D(yj; z) = 1, i; j = 1; 2, and the other distan
es are the length of the shortest pathsindu
ed by the above assignments (see Figure 1). In parti
ular, the furthest 2 point are w andz of distan
e 4, and the best 4-
ode is fx1; x2; y1; y2g of minimum distan
e 2. In other words,opt-dM(2) = 4 = D(w; z) and opt-dM(4) = 2 = D(xi; yj), i; j = 1; 2. Now, for any in
remental
ode C = h
1; 
2; 
3; 
4i, unless C4 = fx1; x2; y1; y2g, one of the pairwise distan
es in C4 will be 1,giving a gap of 2=1 = 2. On the other hand, if C4 = fx1; x2; y1; y2g, then D(
1; 
2) = 2, giving againa gap of 4=2 = 2 for the 2-pre�x of C.
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Figure 1: The \shortest path" 
losure of these distan
es de�ne \bad" M.Finally, we show that it is NP-hard to 
onstru
t an A-
ompetitive 
ode for A < 2 when givenM as an input, even if opt-rM = 1. We make a redu
tion from the Maximal IndependentSet problem, whi
h is known to be NP-
omplete [GJ79℄. Given a graph G = (V;E), we de�nea metri
 spa
e M = (M;d), where M = V and D(i; j) = 1 i� (i; j) 2 E, and D(i; j) = 2otherwise. Let I = fs1 : : : skg � V be some maximal independent set of G. We 
laim that anoptimal in
remental 
ode for M is 1-
ompetitive, and should �rst list the elements of I (or anyother maximal independent set) in any order, followed by the other elements in any order. Indeed,the 
ode C 
onstru
ted this way will have dM(Ci) = 2 for i � k, and dM(Ci) = 1 for i > k. On theother hand, the optimal 
ode of 
ardinality i 
an have the minimum distan
e of 2 if and only if itis formed on the elements of some independent set in G, i.e. we must have i � k (and this 
an bea
hieved). In other words, opt-dM(i) = 2 for i � k and opt-dM(i) = 1 otherwise. To summarize,any 1-
ompetitive 
ode C for M indu
es the maximum independent set of G by looking at thelargest largest i-pre�x of C with dM(Ci) = 2.On the other hand, any 
ode whi
h is not 1-
ompetitive for M must be 2-
ompetitive. Hen
e, ifwe have a pro
edure that 
an produ
e A-
ompetitive 
ode for M, where A < 2, this pro
eduremust in fa
t produ
e an optimal 1-
ompetitive 
ode. But we just argued that in this 
ase we 
an
ompute I | the largest independent set of G, whi
h is NP-hard.Remark 1 Noti
e that the greedy algorithm above is exa
tly the same as that of Gonzalez [G85℄3



for the so 
alled k-
enter problem. This is a just a 
oin
iden
e, sin
e our problems and the analysisare quite di�erent.Remark 2 Note, while the greedy algorithm is extremely eÆ
ient for generi
 metri
 spa
es, weare mainly interested in the hamming spa
e F n. For this spa
e we 
annot a�ord to go through thewhole spa
e, and would like our algorithms to be polynomial in n log(jF j) = log(jM j). We dis
ussan eÆ
ient optimal algorithm for this 
ase when jF j � n in Se
tion 3, and eÆ
ient 
ompetitivealgorithms over small �elds in Se
tion 4.Extending to 
ompa
t spa
es. Aside from the 
omplexity 
onsiderations, we 
an extend mu
hof the dis
ussion above to in�nite metri
 spa
es. There are several things we need to ensure. First,the distan
es should be bounded, and for every �nite k there should exist an optimal 
ode of
ardinality k. Additionally, the greedy algorithm that we gave in Theorem 1 makes perfe
t sense,as long as there exists a point whi
h is furthest away from a given �nite set of points. The dis
ussionabove suggests to use 
ompa
t metri
 spa
es, whi
h satisfy ea
h of the above requirements. Forsu
h in�nite 
ompa
t spa
es, we repla
e exhaustive 
odes with 
ountably in�nite 
odes, and requireevery �nite pre�x of su
h a 
ode to be \A-
ompatible" w.r.t. the best 
ode of a given 
ardinality.We noti
e that Theorem 1 implies that there exists a 
ountably in�nite 2-
ompetitive in
remental
ode for any su
h metri
 spa
e. In fa
t, the greedy algorithm is easily implementable for \ni
e"
ompa
t subsets in Rn (sin
e on su
h sets we 
an 
ompute the furthest point from a given set ofpoints; of 
ourse, these 
omputation 
ould be
ome less and less eÆ
ient on
e we introdu
e morepoints). For example, on the interval [0; 1℄, and staring with 
1 = 0, our algorithm simply keepssubdividing the largest interval in half. Thus, after 2k points, all the intervals will be of size 1=2k,but one interval will be of size 1=2k+1, giving a ratio 2k+1=(2k + 1) ! 2. We will see in Se
tion 3that the best ratio for any 
ompetitive algorithm for [0; 1℄ is in fa
t ln 4 = loge 4 � 1:386 < 2.3 Optimal Constru
tionsIn this se
tion we give two optimal 
onstru
tions of in
remental 
odes. The �rst 
onstru
tion isover the hamming spa
e F n when jF j � n (and F is a �eld), and shows that F n is in
rementallyperfe
t. The se
ond one is for the real interval [0; 1℄ (whi
h is not in
rementally perfe
t).3.1 Optimal 1-Competitive Code for Hamming spa
e F n, jF j � nOur in
remental 
ode will be based on Reed-Solomon Codes (RS-
odes), whi
h we brie
y re
allnow. Let F be a �eld of size jF j = q. RS-
ode of dimension k and blo
k length n over F (wherejF j = q � n) maps elements of F k into 
odewords over F n via the following pro
edure. Let�1 : : : �n be arbitrary distin
t elements of F . Given a = (a0 : : : ak�1) 2 F k, assign a polynomialpa(x) = Pk�1i=0 aixi of degree at most (k � 1), and output the 
odeword (p(�1) : : : p(�n)) 2 F n.Sin
e any two distin
t polynomials of degree at most (k � 1) 
an agree on at most (k � 1) pointsin F , the distan
e of the RS-
ode at least (in fa
t, exa
tly) d = n� k + 1. On the other hand, the
lassi
al singleton bound says that any 
ode of dimension k (i.e., qk 
odewords) must have minimaldistan
e at most (n� k+1), a
hieved by the 
orresponding RS-
ode. Hen
e, RS-
odes are optimal
odes of dimension k, and, in parti
ular, opt-dM(qk) = n� k + 1 (where M = F n) when the sizeof the �eld q � n. 4



Letting F k�1[x℄ to denote the set of polynomials of degree at most (k � 1), we 
an view the RS-
ode of dimension k as mapping an element of F k�1[x℄ into F n. Viewed this way, we observe thatF 0[x℄ � F 1[x℄ : : : � F n�1[x℄, whi
h allows us to to view the RS-
ode of dimension (k � 1) andoptimal distan
e (n � k + 2) as a subset of the RS-
ode of rate k and optimal minimal distan
e(n�k+1). Thus, if we �rst en
ode (i.e., evaluate at n points) the polynomials of degree 0, followedby the polynomials of degree 1 and so on, we see that the minimal distan
e of our in
remental 
odeslowly de
reases from n to (n � 1), : : : , all the way to 1. More spe
i�
ally, at the time we areen
oding polynomials of degree k, our 
urrent 
ode has minimal distan
e (n� k+1) (being part ofthe RS-
ode of dimension k), whi
h is optimal by the singleton bound sin
e our 
urrent 
ode hasmore than qk�1 elements (as we already listed qk�1 polynomials of degree at most (k � 1)).Thus, we showed that the Hamming spa
e F n has a 1-
ompetitive exhaustive 
ode C = h
0; : : : ; 
N�1i,where N = qn. To eÆ
iently 
ompute 
i, we noti
e the following. If we write the elements of Fas numbers 0; : : : ; (q � 1) (0 being the \zero" of F ), and then interpret the representation of aninteger i 2 f0; : : : ; N � 1g base jF j as a string a(i) 2 F n, then listing i in the in
reasing order
orresponds to the lexi
ographi
 order of the a(i)'s, whi
h also lists the polynomials pa(i) in theorder of in
reasing degrees, as needed. To summarize, we getTheorem 2 F n is in
rementally perfe
t when jF j = q � n and F is a �eld. In parti
ular, thein
remental 
ode C = h
0; : : : ; 
N�1i, where 
i = (pa(i)(�1); : : : ; pa(i)(�n)) 2 F n, is exhaustive and 1-
ompetitive. Moreover, for 1 � k � n and when qk�1 � i < qk, the minimal distan
e of f
0; : : : ; 
igis (n� k + 1).Pra
ti
al Dis
ussion and Examples: We noti
e that the pro
edure of 
omputing 
i is verypra
ti
al and eÆ
ient (at most quadrati
 in n and log jF j), and does not need to keep any stateas i grows (unlike, for example, the greedy algorithm for generi
 metri
 spa
es). For example,
onsider the problem of assigning a

ount numbers to Internet shoppers. For for any n, we 
ansele
t any prime power (sin
e F is a �eld) q � n to be jF j, and be able to serve the maximalnumber of 
ustomers, qn, while having the property than when the number of 
ustomers is lessthan qk, all a

ount numbers have at least (n� k+1) distin
t symbols. For example, if q = n = 9,we get pra
ti
al s
heme for 99 = 387; 420; 489 
ustomers with 9-digit a

ounts over digits 1 : : : 9(say, 0 is a spe
ial 
hara
ter when entering on the phone), the �rst 4; 782; 969 (resp. 43; 046; 721)of whi
h have at least 3 (resp. 2) distin
t digits. And if 11 digits are a

eptable, we 
an have 1111(whi
h is more than we will ever need) a

ount numbers (say, over 0 : : : 9; �), the �rst 20 (resp.200) million of whi
h have at least 5 (resp. 4) distin
t digits. Finally, if we 
an use 25 Englishletters as 
hara
ters, even 7-
hara
ter a

ount numbers let us handle the world population (morethan 6 billion numbers), the �rst 10 (resp. 250) million of whi
h have at least 3 (resp. 2) distin
t
hara
ters.3.2 Optimal Code for [0; 1℄An in
remental 
ode over [0; 1℄ is simply a sequen
e of points C = hp1; p2; : : :i. If we let qi1 : : : qiidenote p1 : : : pi in the in
reasing order (so that qi1 � qi2 : : : � qii), then after i steps [0; 1℄ is split into(i + 1) intervals I0 = [0; qi1℄; I2 = [qi1; qi2℄; : : : ; Ii = [qii ; 1℄. Clearly, the minimal distan
e of Ci isd(Ci) = min(jI1j; : : : ; jIi�1j)), while the optimum distan
e is opt-d(i) = 1=(i � 1) (by spreading thepoints uniformly). When adding pi+1 we simply subdivide one of the Ij 's into two subintervals. Ifwe assume that p1 = 0 and p2 = 1 (whi
h will happen in our solution and will be the \worst 
ase"5



in the lower bound proof), then the \border" intervals I0 and Ii+1 disappear, and our obje
tive isto pla
e the points p3; p4; : : : on [0; 1℄ in su
h a manner that the length of the smallest interval afterea
h pi is as 
lose to 1=(i � 1) as possible. We noti
e that the dual \maximal interval" version ofthe latter problem | make the largest interval as 
lose to 1=(i � 1) as possible | is a well knowndispersion problem (see [DT97, C00, M99℄). While our lower bound and its proof will be somewhatdi�erent for our \minimal interval" version, it will turn out that the optimal sequen
e for bothversions will be the same, whi
h is not at all 
lear a-priori.Let H(k) = (1 + 12 + : : :+ 1k ) denote the kth harmoni
 series.Lemma 1 In
remental 
ode of (2i+1) points in [0; 1℄ 
annot be A-
ompetitive for A < 2 � [H(2i)�H(i+ 1)℄.Proof: Consider a 
ode of 2i+1 points in [0; 1℄ with 
ompetitive ratio A. For every j � i, 
onsiderthe distan
es between adja
ent points after pla
ing the �rst j points. Let `j1 � `j2 � : : : `jj�1 bethese distan
es, sorted in in
reasing order. We need the following 
laim:Claim: `jk � `j+1k+2 for 1 � k � j � 2.Proof: Adding a point (in this 
ase, (j + 1)-st point) 
an either add one more distan
e to the listof interval distan
es (if the new point is the rightmost or the leftmost), or it 
an remove one lengthfrom the list, repla
ing it with two others (if the new point lies between two old points). In either
ase, there are at most two new lengths that are added to list. This means that among the �rstk+2 lengths on the new list, there are at least k lengths that were already on the old list before weadded the last point. Hen
e, the k + 2'nd smallest length on the new list 
annot be smaller thanthe k'th smaller length on the old list.By iterating the above 
laim, we get for all 0 � j � i � 1; `2i+1�j1 � `2i+11+2j . Noti
e, `2i+1�j1 is thelength of the smallest interval after adding (2i + 1 � j) points. Sin
e our 
ode is A-
ompetitive(and sin
e the optimal arrangement of 2i + 1 � j points has distan
e 1=(2i � j)), we must have1=(2i�j)`2i+1�j1 � A, whi
h means that `2i+11+2j � `2i+1�j1 � 1=(A(2i � j)). Summing the last inequality forj = 0 : : : i� 1, we geti�1Xj=0 `2i+11+2j � 1A � � 12i + 12i� 1 + : : :+ 1i+ 2� = 1A � [H(2i) �H(i+ 1)℄ (1)On the other hand, sin
e `2i+11+2j � `2i+12+2j and all the 2i intervals sum to at most 1, so we geti�1Xj=0 `2i+11+2j � i�1Xj=0 `2i+11+2j + `2i+12+2j2 ! � 12 (2)Combining Equation (1) and Equation (2), we get A � 2 � [H(2i) �H(i+ 1)℄.Sin
e 2 � [H(2i) �H(i+ 1)℄ � 2 ln� 2ii+1� i!1�! ln 4, we getCorollary 2 If C is an in�nite A-
ompetitive 
ode, then A � ln 4 � 1:386.6



We now show an in
remental 
ode a
hieving the bound above. We let p0 = 0, p1 = 1, and expli
itlytell the lengths of the i intervals after the �rst (i + 1) points. They are (in in
reasing order):log2(1 + 12i�1 ); log2(1 + 12i�2); : : : ; log2(1 + 1i ). Noti
e, Pij=1 log2(1 + 12i�j ) = log2(Qij=1 2i�j+12i�j ) =log2(2ii ) = 1, indeed. Also, for i = 1 our only interval is indeed of size 1 = log2(1 + 11 ). To add the(i+ 2)nd point, we subdivide the 
urrently largest interval of size log2(1 + 1i ) into two intervals ofsizes log2(1 + 12i) and log2(1 + 12i+1 ) (again, arithmeti
 works), as 
laimed. We see that the lengthof the smallest interval after (i + 1) points is log2(1 + 12i�1) � 1i ln 4 (the latter is easy to 
he
k),proving that this sequen
e have 
ompetitive ratio ln 4.Remark 3 The above argument and 
onstru
tion 
an be adjusted to the 
ase of the 
losed 
ir
le S1(where distan
e is the shortest ar
 of the 
ir
le), and give the same 
ompetitive ratio. The �rst twopoints of the 
ode are put diametri
ally opposite to ea
h other, and then we interleave the \interval"
onstru
tion above on the lower and upper semi-
ir
les. The lower bound extends as well.4 Hamming Spa
e (Error-Corre
ting Codes)In this se
tion we dis
uss the hamming spa
e F n. We refer the reader to [MS81℄ for more informationon some of the fa
ts we use in this 
hapter. Re
all, we showed in Theorem 2 that F n is in
rementallyperfe
t when jF j = q � n (and F is a �eld). We now 
onsider the more diÆ
ult 
ase whenjF j = q � n (in parti
ular, binary). As we will see, obtaining tight bounds for this 
ase is expe
tedto be harder (see below), but �rst let us re
all some terminology that we will need later.A 
ode with K 
odewords and minimal distan
e d over F is said to have rate � = logqK=n,dimension k = logqK and relative distan
e Æ = d=n. We omit the subs
ript to the spa
e from thequantities opt-r and opt-d when the hamming spa
e is 
lear from the 
ontext, and otherwise writeopt-r(K; q; n) and opt-d(K; q; n) to emphasize the spa
e. We let opt-Æ(� ; q; n) = 1n �opt-d(q�n; q; n)be the largest possible relative distan
e of a 
ode of rate � over F . We let Vq(R; n) denote thevolume of an n-dimensional sphere of radius R in F n, and noti
e that asymptoti
ally, we have1n � logq Vq(�n; n) � Hq(�) = � logq(q � 1) � � logq � � (1 � �) logq(1 � �), where Hq(�) above isthe q-ary entropy fun
tion (in parti
ular, Vq(�n; n) � qnHq(�)).As a �rst observation, we noti
e below the the Hamming spa
e is not in
rementally perfe
t:Lemma 3 If q < n, then the Hamming spa
e [q℄n is not in
rementally perfe
t, unless q = 2; n = 4.Proof: Let q < n and assume that [q℄n is in
rementally perfe
t. Sin
e the words 1n : : : qn havepairwise distan
e n, we have that opt-d(q) = n. Hen
e, if [q℄n has a 1-
ompetitive in
remental
ode C, it must be that d(Cq) = n. Namely, any two of the �rst q words of C must di�er in all the
oordinates 1 � i � n. In fa
t, we 
an assume w.l.o.g. that the words 0n : : : (q � 1)n are the �rst qwords in C.1 This means, however, that the (q+1)'st word of C must agree with one of the �rst qwords in at least lnq m positions, implying that d(Cq+1) � n� lnq m.On the other hand, we now show that the optimal (q+1)-word 
ode in [q℄n has minimum distan
e atleast n�l 2nq(q+1)m. Consider a (q+1)�n matrix, whose rows would 
orrespond to q+1 
odewords.We des
ribe how to �ll this matrix so that every two rows would agree in at most d2n=(q(q + 1))e1This is true sin
e we 
an always permute the symbols in 
oordinate i of all the words of C, without 
hanging anyof the distan
es of the 
ode. 7




oordinates. Spe
i�
ally, we �ll the 
olumns of this matrix in \
hunks" of �q+12 � at a time, makingsure that in ea
h \
hunk" every two rows agree in at most one 
oordinate. This is done as follows:the �q+12 � 
olumns in ea
h \
hunk" 
orrespond to all pairs of distin
t indi
es 1 � i < j � q + 1.Namely, the 
olumn v(i; j) 
orresponding to the pair (i; j) has symbol q in positions i and j, andall the other symbols 1 : : : (q � 1) in the other (q � 1) positions of v(i; j) (in arbitrary order). Sowithin 
olumn v(i; j), the only two positions that agree are positions i and j. It follows that withinthe 
urrent \
hunk", any two rows i and j agree only in the 
olumn v(i; j). And as there at most�n=�q+12 �� = l 2nq(q+1)m su
h \
hunks", any two rows agree in at most l 2nq(q+1)m 
oordinates.Sin
e we assume that C is 1-
ompetitive, we must haven� � 2nq(q + 1)� � opt-d(q + 1) = d(Cq+1) � n� �nq �i.e. lnq m � l 2nq(q+1)m. It is not hard to see that the only pair n > q that satis�es this inequalityis n = 4 and q = 2, i.e. no other spa
e 
an be in
rementally perfe
t. As for f0; 1g4, it is indeedin
rementally perfe
t via the optimal 
ode f0000; 1111; all words with two 1's; all the restg.How good is the optimal 
ode? One small problem with the notion of 
ompetitive ratio oversmall alphabets, is that we need to 
ompare the performan
e of the 
ode with these of the optimal
ode of the same rate. For 
odes over small alphabets, we only have bounds on the minimal distan
eof the optimal 
ode, rather than a 
losed-form formula. Hen
e, the 
ompetitive ratio that we 
anprove depends not only on the performan
e of the 
ode in question, but also on the quality of thesebounds.On a brighter side, the dis
repan
y between the known upper- and lower-bounds on the optimaldistan
e as a fun
tion of rate is at most a small 
onstant fa
tor. In fa
t, the ratio between theHamming bound (an upper-bound) and the Gilbert-Varshamov bound (a lower-bound) is a fa
torof 2 \in spirit". To see that, re
all that the Hamming bound says that for any 
ode with K
odewords and minimum distan
e d over [q℄n, it holds thatK �Vq(d=2; n) � qn, i.e. opt-d(K; q; n) �2V �1q (qn=K; n). The Gilbert-Varshamov bound, on the other hand, says that there exists aK-word
ode with minimum distan
e d satisfying K � Vq(d; n) � qn, i.e. opt-d(K; q; n) � V �1q (qn=K; n).In prin
iple, this means that when we use the Hamming bound as our estimate for the performan
eof the optimal 
ode, we only lose a fa
tor of two (or less). However, noti
e that when we use thatbound, we usually use some estimate for V �1q (sin
e working with V �1q itself is too hard), so wemay lose some small additional fa
tor there (see Se
tion 4.3 for an example).What is an \eÆ
ient" 
onstru
tion? As opposed to the generi
 
ase, where we are given theentire metri
 spa
e as input and need to produ
e as output the \
ode" itself (as a list of points), inthe 
ase of the Hamming spa
e we usually think of entire spa
e as being exponential in the relevantparameters, and we think of the 
ode as having some impli
it small representation. What we mayrequire in terms of eÆ
ien
y is to have a representation of the 
ode whose length is polynomial in nand log q, and an eÆ
ient pro
edure that given this representation and an index i, produ
es 
i, thei'th 
odeword. For example, viewed in this light, a random 
ode is not an \eÆ
ient 
onstru
tion",but a random linear 
ode is.Constru
tions. We now turn to the question of eÆ
ient 
onstru
tions of in
remental 
odes.As a most trivial 
onstru
tion, 
onsider a regular 
ode with K 
odewords, minimum distan
e d8



and relative distan
e Æ = d=n. How well does it perform as an in
remental 
ode (under arbitraryordering)? Without any additional knowledge about the 
ode, the best 
ompetitive ratio we 
an getis n=d = 1=Æ. Still, if we take a family of asymptoti
ally good 
odes2, we get a family of in
remental
odes with 
onstant rate and 
onstant 
ompetitive ratio. Of 
ourse, this simplisti
 
onstru
tionhas several short
omings. First, there is a pretty stringent tradeo� between the rate and therelative distan
e of the 
ode, so we will either sa
ri�
e the rate (make the 
ode very sparse), or the
ompetitive ratio. In parti
ular, if the rate is 
lose to 1, the 
ompletive ratio tends to1. Se
ondly,even on small pre�xes our 
ode 
an have the same minimal distan
e d, i.e. the distan
e does notne
essarily \gradually de
rease". Be
ause of that, there is no point in using more sophisti
atedbounds than n on the optimal 
ode's minimal distan
e. Thus, this approa
h does not address theessen
e of the problem at all.Therefore, we use more sophisti
ated te
hniques that will give us better tradeo�s between the rateand the 
ompetitive ratio of in
remental 
odes. Spe
i�
ally, we examine three eÆ
ient 
onstru
-tions: (1) using algebrai
-geometri
 
odes (AG-
odes) as a natural generalization of the RS-
odesto small �elds, (2) using 
on
atenation theorem to redu
e the alphabet size, and (3) using ran-dom linear 
odes. The latter 
onstru
tion will let us a
hieve our ultimate goal: have an absolute
onstant 
ompetitive ratio (slightly more than 2), even when the rate is 1� o(1).4.1 Algebrai
-Geometri
 CodesAlgebrai
-Geometri
 Codes (AG-
odes) are natural extensions of the RS-
odes to small �elds.Detailed treatment of AG-
odes is beyond the s
ope of this paper, so we informally 
on
entrateon the essentials only (see [S93℄ for more information). Rather than talking about polynomials ofdegree at most � whi
h 
an be evaluated at n points in the �eld, AG-
odes deal with algebrai
fun
tions with at most � \poles" at the \point of in�nity" whi
h 
an be evaluated at n \rationalpoints" of the fun
tion �eld. In both 
ases, the valuation map returns n elements of F , and agiven polynomial/algebrai
 fun
tion 
an have at most � zeros. We let L(�;1) denote the spa
e ofsu
h fun
tions, whi
h turns out to be a linear spa
e over F . The famous Riemann-Ro
h theoremsays that the dimension of this spa
e is at least �� g + 1, where g is the \genus" of the algebrai
�eld (for the RS-
odes we 
an a
hieve g = 0, but for smaller �elds g 
annot be very small; seebelow). All together, AG-
odes given by the spa
e L(�;1) have the following parameters: thedimension k � � � g + 1, the distan
e d � n � �. Like with the RS-
odes, we observe thatL(0;1) � L(1;1) � : : : � L(n� 1;1), whi
h implies that AG-
odes of in
reasing pole orders atin�nity de�ne an in
remental 
ode, the �rst (qk � 1) 
odewords of whi
h have minimal distan
e atleast (n � k � g + 1). Sin
e the singleton bound still says that the optimum distan
e is at most(n� k + 1), we getTheorem 3 The 
ompetitive ratio of AG-
odes of dimension k (listed in the order spe
i�ed above)is at least n�k+1n�k�g+1 . In parti
ular, setting k = n�2g+1 gives an in
remental 
ode with qk 
odewordsand 
ompetitive ratio at most 2.While the main advantage of the AG-
odes is the fa
t that they are de�ned on small (e.g. 
onstantsize) alphabets, we brie
y point out their limitations. In parti
ular, the bound above is meaningfulonly when k < n� g, i.e. the rate 
an be at most (1 � gn). It is known that g � n=(pq � 1),3 sothe maximal rate we 
an hope to a
hieve is roughly (1� 1pq�1).2Re
all, family of 
odes fCngn2N is asymptoti
ally good if both the relative distan
e and the rate of Cn is 
(1).3When n grows w.r.t. q, and this bound is tight for 
ertain q's. The general bound is g � (n � q � 1)=(2pq).9



4.2 Con
atenation TheoremWe next address a general method of 
onstru
ting an in
remental 
ode over small alphabet fromthe one over a large alphabet and a good regular error-
orre
ting 
ode over a small alphabet.This method is 
ompletely analogous to the one used when 
onstru
ting regular 
odes over smallalphabets, and is 
alled the 
on
atenation of 
odes.Let C = h
1 : : : 
Ki be an in
remental 
ode in [q℄n, with 
ompetitive ratio A and rate � = (logqK)=n.Let T = ft(1) : : : t(q)g be a regular 
ode in [q2℄n2 (q2 � q), with distan
e d2, relative distan
eÆ2 = d2=n2, and rate �2 = (logq2 q)=n2. An in
remental 
ode C� = C � T = h
�(1) : : : 
�(K)i �[q2℄n�n2 , the 
on
atenation of C and T , is de�ned as follows. If we write the i-th 
odeword of C as
i = 
i;1 : : : 
i;n 2 [q℄n, and interpret q symbols as integers 1 : : : q, then the i-th 
odeword of C� is
�i = t(
i;1) : : : t(
i;n) 2 [q2℄nn2 . The 
ode C is 
alled the \outer 
ode", and T is 
alled the \inner
ode".Theorem 4 C� is an in
remental 
ode in [q2℄nn2 with K 
odewords, rate �� = (logq2 K)=(nn2) =(logqK � logq2 q)=(nn2) = ��2, and 
ompetitive ratio A� satisfying:A� � Ad2 �maxi�K opt-d(i; q2; nn2)opt-d(i; q; n) = AÆ2 �max��� opt-Æ(��2; q2; nn2)opt-Æ(�; q; n) (3)Proof: Take the i-pre�x C�i of C�. We 
laim that d(C�i ) � d(Ci) � d2, whi
h is 
lear from the
onstru
tion of C�. Using also A-
ompetiveness of C (i.e. opt-d(Ci) � A � d(Ci)), we getA� = maxi�K opt-d(i; q2; nn2)d(C�i ) � maxi�K opt-d(i; q2; nn2)opt-d(i; q; n) � opt-d(i; q; n)d(Ci) � d2 � Ad2 �maxi�K opt-d(i; q2; nn2)opt-d(i; q; n)Clearly, we 
an try to substitute some known upper (resp. lower) bounds in pla
e of opt-d(i; q2; nn2)(resp. opt-d(i; q; n)), to get a more algenrai
 expression in the bound above. For example, in theasympototi
 sense we 
an use the Hamming bound in the numerator, and the Gilbert-Varshamovbound in the denominator, and getmax��� opt-Æ(��2; q2; nn2)opt-Æ(�; q; n) - max��� 2 �H�1q2 (1� ��2)H�1q (1� �) = 2 �H�1q2 (1� ��2)H�1q (1� �)(re
all, Hq is the q-ary entropy fun
tion). However, su
h generi
 bound are often not mu
h easierto work with, and di�erent su
h bounds 
ould be more 
onvenient for di�erent 
onstru
tion.Below we illustrate the bound from Theorem 4 for the 
ase where the outer 
ode is the in
rementalRS-
ode 
onstru
ted in Se
tion 3.1, whi
h is perhaps the most attra
tive 
ase to 
onsider. Re
all,from Se
tion 3.1 that these in
remental 
odes are 1-
ompetitive, 
an be used with any rate � � 1,and have the restri
tion that q � n.Corollary 4 Let C be the 1-
ompetitive RS-
ode of rate � , and T be as before. Then C� has rate�� = ��2 and 
ompetitive ratio A� � 1� ��2Æ2(1� �) (4)10



Proof: We noti
e that for the RS-
ode we have A = 1 and opt-Æ(�; q; n) = 1 � � + 1=n. Nowthe most 
onvenient bound to use for opt-Æ(��2; q2; nn2) seems to be the (very loose in general)singleton bound, whi
h says that opt-Æ(��2; q2; nn2) � 1� ��2+1=(nn2). Using Equation (3) now,we get max��� 1� ��2 + 1nn21� �+ 1n � max��� 1� ��21� � = 1� ��21� �We noti
e the tradeo� that we obtain. In parti
ular, 1���2Æ2 � 1��2Æ2 � 1 (the latter part follows fromthe singleton bound applied to T ). Thus, our guarantee on A� 
annot be better than 1=(1 � �).This implies that if we want a 
onstant 
ompetitive ratio from C�, we 
annot make � = 1 � o(1).In other words, even though we 
an extend the RS-
ode to all the rates up to 1, our analysis 
anno longer provide a 
onstant guarantee on A�. On a positive note, we 
an make the rate �� = ��2of C� arbitrarily 
lose to 1 (at the expense of A�). Finally, it is also interesting to 
ompare thebound in Equation (4) with the trivial bound we get by simply viewing C� as a 
ode of minimalrelative distan
e Æ� = Æ2(1� �). We see that we would get the ratio 1=(Æ2(1� �)), whi
h is a fa
tor(1� ��2) worse than our bound.4.3 Random Linear CodesWe saw that the expli
it (and eÆ
ient) 
onstru
tions from the previous se
tions failed to a
hieve a
onstant 
ompetitive ratio for rates (1� o(1)). On the other hand, Theorem 1 shows the existen
e(and ineÆ
ient 
onstru
tion) of an exhaustive 2-
ompetitive 
odes for any [q℄n. In this se
tion weshow that, with high probability, a random linear 
ode will a
hieve a 
ompetitive rate 2(1 + �) (forarbitrarily small �, and possibly better if of understanding of optimal 
odes will improve), evenfor rate (1 � o(1)) (spe
i�
ally, dimension up to n � �(logq n)). This gives an eÆ
ient (albeitrandomized) pro
edure to generate 
ompetitive and almost exhaustive in
remental 
odes.Re
all that a (standard) random linear 
ode of dimension k in [q℄n, is the set of words whi
h arespanned by the rows of a k � n random matrix G over [q℄. As we are interested in ordered 
odes,we 
onsider these words in a 
anoni
al order of their 
oeÆ
ients. Namely, for a given matrix G,the order between two 
odewords 
 = xG and 
0 = x0G is determined by the lexi
ographi
 orderbetween x and x0.4 We note that with this ordering, all the 
odewords that are spanned by the�rst i rows of G, appear before all the 
odewords that depend also the i + 1'st row. This meansthat for any m � k, the pre�x Cqm is itself a (random) linear 
ode.We �rst re
all an easy lemma that bounds the minimum distan
e of a random linear 
ode.Lemma 5 For k � n, let G be a random k � n q-ary matrix, and let C = C(G) = f
1 : : : 
qkg bethe ordered linear 
ode that is spanned by G. Then for every � < 1� 1q , we havePr [d(C) < �n℄ < 2k�n(1�Hq(�))Proof: Let S(�n) be the sphere of radius �n around the origin in Hamming spa
e [q℄n. We knowthat S(�n) 
ontains Vq(�n; n) � qnHq(�) words. For a �xed k-ve
tor x 6= �0, we have PrG[xG 24Noti
e, this is the same lexi
ographi
 order we used with the RS-
odes in Se
tion 3.1.11



S(�n)℄ � qnH(�)�n. Using the union bound, we getPr [d(C) < �n℄ = Pr[9x 6= �0; xG 2 S(�n)℄ < qk � q�n(1�H(�))Corollary 6 Let k < n, Æ > 0, and G be a random k�n q-ary matrix. With probability of at least1� Æ (over the 
hoi
e of G), the minimum distan
e of C(G) is at least nH�1q �n�k�logq(1=Æ)n �.Below we prove that a random linear 
ode has 
ompetitive ratio of at most 2(1 + �) for rates up to1��( logq nn ). For this proof, we �rst re
all a somewhat weak variant of the Hamming bound, andone fa
t about the (inverse of the) q-ary entropy fun
tion Hq.Hamming bound. For any q and k � n, opt-d(qk; q; n) � 2nH�1q �n�k�1+logq nn �.Proposition 7 For any 
onstant � > 0, there exists a 
onstant \threshold" � = �(�) > 0, so thatfor all Æ � �, all z � 2Æ=� and all q � 2, it holds that H�1q (z + Æ)=H�1q (z) < 1 + �.Theorem 5 For any q, any 
onstant � > 0, any large enough n, and any k � n� (2 + 6� ) logq n,a random linear 
ode of dimension k in [q℄n has 
ompetitive ratio A � 2(1 + �), with probability atleast 1� 1n .Proof: Let G be a random k�n q-ary matrix and let C = C(G) be the ordered linear 
ode spannedby G. For ea
h integer m � k, Corollary 6 with Æ = 1=n2 tells us that with probability at least1� 1=n2, the minimum distan
e of Cqm (i.e., the 
ode spanned by the �rst m rows of G) is at leastdm = nH�1q �n�m� 2 logq nn �Taking the union bound, we 
on
lude that with probability at least 1� k=n2 > 1� 1=n, the aboveholds for all 1 � m � k. This, in turn, implies that for any m and any i 2 �qm�1 + 1; : : : ; qm	, theminimum distan
e of Ci is at least dm.On the other hand, the Hamming bound tells us that the minimum distan
e of the optimal qm�1-word 
ode 
annot be more thand�m�1 = 2nH�1q �n� (m� 1)� 1 + logq nn � = 2nH�1q �n�m+ logq nn �This implies that also for every i 2 �qm�1 + 1; : : : ; qm	, the minimum distan
e of the optimali-word 
ode 
annot be more than d�m�1. We 
on
lude that with probability at least 1 � 1=n, the
ompetitive ratio of C is bounded below by maxm(d�m�1=dm).Fix any m � k, and denote Æ = 3 logq nn and z = n�m�2 logq nn . Sin
e m � k � n � (2 + 6� ) logq n,it follows that z � (6� logq n)=n = 2Æ=�. Also, for large enough n we have Æ � �(�) (where � is the\threshold" fun
tion from Proposition 7), we 
an use Proposition 7 to 
on
lude thatd�m�1dm = 2nH�1(z + Æ)nH�1(z) � 2(1 + �)As the inequality above holds for any m � k, this 
ompletes the proof of the theorem.12
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