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Abstract

We provide formal definitions and efficient secure technicfioe
e turning noisy information into keys usable fany cryptographic application, and, in particular,
e reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, tauany keying material that, unlike tradi-
tional cryptographic keys, is (1) not reproducible prelgisad (2) not distributed uniformly. We propose
two primitives: afuzzy extractoreliably extracts nearly uniform randomnegrom its input; the ex-
traction is error-tolerant in the sense thatwill be the same even if the input changes, as long as it
remains reasonably close to the original. Thiscan be used as a key in a cryptographic application.
A secure sketclproduces public information about its inputthat does not reveal, and yet allows
exact recovery ofv given another value that is close#o Thus, it can be used to reliably reproduce
error-prone biometric inputs without incurring the setyrisk inherent in storing them.

We define the primitives to be both formally secure and véesateneralizing much prior work. In
addition, we provide nearly optimal constructions of batimitives for various measures of “closeness”
of input data, such as Hamming distance, edit distance, etraifierence.

*A preliminary version of this work appeared in Eurocrypt 2004 [DR|S04
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1 Introduction

Cryptography traditionally relies on uniformly distributed and preciselyadpcible random strings for its
secrets. Reality, however, makes it difficult to create, store, and reliatsigve such strings. Strings that
are neither uniformly random nor reliably reproducible seem to be moréifpler-or example, a random
person’s fingerprint or iris scan is clearly not a uniform random stnirog does it get reproduced precisely
each time itis measured. Similarly, a long pass-phrase (or answers tostbgag¢FJ01] or a list of favorite
movies [JS02]) is not uniformly random and is difficult to remember for a huoser. This work is about
using such nonuniform and unreliable secrets in cryptographic apphsat@ur approach is rigorous and
general, and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consideskt® fFassword authen-
tication. A user Alice has a passwordand wants to gain access to her account. A trusted server stores
some informatiory = f(w) about the password. When Alice entersthe server lets Alice in only if
f(w) = y. In this simple application, we assume that it is safe for Alice to enter the pasd$arche veri-
fication. However, the server’s long-term storage is not assumed tchess(e.g.y is stored in a publicly
readablég et ¢/ passwd file in UNIX [MT79]). The goal, then, is to design an efficiefitthat is hard to
invert (i.e., giveny it is hard to findw’ s.t. f(w’) = y), so that no one can figure out Alice’s password from
y. Recall that such functions are callecbne-way functions

Unfortunately, the solution above has several problems when used veslwpedsw available in real
life. First, the definition of a one-way function assumes thas truly uniform, and guarantees nothing if
this is not the case. However, human-generated and biometric passavertis from uniform, although
they do have some unpredictability in them. Second, Alice has to reprodugembswvordexactlyeach
time she authenticates herself. This restriction severely limits the kinds of paissthat can be used.
Indeed, a human can precisely memorize and reliably type in only relativety gaisswords, which do not
provide an adequate level of security. Greater levels of security hirevad by longer human-generated and
biometric passwords, such as pass-phrases, answers to questisnmandwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humanwidegroy nature, possibly in
combination (see [Fry00] for a survey). These measurements seemmtaircsmuch more entropy than
human-memaorizable passwords. However, two biometric readings algidsetical, even though they are
likely to be close; similarly, humans are unlikely to precisely remember their andaenultiple question
from time to time, though such answers will likely be similar. In other words, thityako tolerate a
(limited) number of errors in the password while retaining security is cruciakifare to obtain greater
security than provided by typical user-chosen short passwords.

The password authentication described above is just one example qitagmgphic application where
the issues of nonuniformity and error-tolerance naturally come up. Oxaenmes include any crypto-
graphic application, such as encryption, signatures, or identificaticerenhe secret key comes in the form
of noisy nonuniform data.

OuR DEFINITIONS. As discussed above, an important general problem is to convert mamgniform in-
puts into reliably reproducible, uniformly random strings. To this end, vw@@se a new primitive, termed
fuzzy extractarlt extracts a uniformly random string from its inputw in a noise-tolerant way. Noise tol-
erance means that if the input changes to sarmeut remains close, the stririgycan be reproduced exactly.
To assist in reproducing from w’, the fuzzy extractor outputs a non-secret stidhdt is important to note
R remains uniformly random even givep. (Strictly speaking,R will be e-close to uniform rather than
uniform; e can be made exponentially small, which makeas good as uniform for the usual applications.)
Our approach is generalR? extracted fromw can be used as a key in a cryptographic application,
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Figure 1: (a) secure sketch(b) fuzzy extractor;(c) a sample application: user who encrypts a sensitive
record using a cryptographically strong, uniform kigyextracted from biometriew via a fuzzy extractor;
both P and the encrypted record need not be kept secret, because narodearypt the record without a
w’ that is close.

but, unlike traditional keys, need not be stored (because it can beerecbfrom anyw’ that is close to
w). We define fuzzy extractors to bheformation-theoreticallysecure, thus allowing them to be used in
cryptographic systems without introducing additional assumptions (o&eotlre cryptographic application
itself will typically have computational, rather than information-theoretic, sggur

For a concrete example of how to use fuzzy extractors, in the passwtirerdication case, the server
can store( P, f(R)). When the user inputs’ close tow, the server reproduces the actiialising P and
checks if f(R) matches what it stores. The presenceoWill help the adversary inverf(R) only by
the additive amount of, becauseR is e-close to uniform even giveﬂ?E Similarly, R can be used for
symmetric encryption, for generating a public-secret key pair, or ohglications that utilize uniformly
random secrets.

As a step in constructing fuzzy extractors, and as an interesting objectawiitgight, we propose
another primitive, termedecure sketchlt allows precise reconstruction of a noisy input, as follows: on
inputw, a procedure outputs a sketehThen, givens and a valuev’ close tow, it is possible to recove.
The sketch is secure in the sense that it does not reveal muchwabautetains much of its entropy even
if s is known. Thus, instead of storing for fear that later readings will be noisy, it is possible to store
instead, without compromising the privacy ©f A secure sketch, unlike a fuzzy extractor, allows for the
precise reproduction of the original input, but does not addressnifononity.

Secure sketches, fuzzy extractors and a sample encryption applicatitingtrated in Figure 1.

! To be precise, we should note that because we do not requatad henceP, to be efficiently samplable, we need thais a
one-way function even in the presence of samples fugrthis is implied by security against circuit families.

2 Naturally, the security of the resulting system should be properly definggeoven, and will depend on the possible ad-
versarial attacks. In particular, in this work we do not consider actieelks onP or scenarios in which the adversary can force
multiple invocations of the extractor with relatedand gets to observe the differeftvalues. See [Boy(}ﬁ, BDKO05, DKRS06]
for follow-up work that considers attacks on the fuzzy extractor itself.



Secure sketches and extractors can be viewed as providing fuzatd@ge: they allow recovery of
the secret keyy or R) from a faulty readingy’ of the passwordv, by using some public information (
or P). In particular, fuzzy extractors can be viewed as error- and nforumty-tolerant secret kekey-
encapsulation mechanisrfsho01].

Because different biometric information has different error patteresdavnot assume any particular
notion of closeness betweert andw. Rather, in defining our primitives, we simply assume thatomes
from some metric space, and thatis no more than a certain distance framin that space. We consider
particular metrics only when building concrete constructions.

GENERAL RESULTS Before proceeding to construct our primitives for concrete metricanalee some
observations about our definitions. We demonstrate that fuzzy extsa&nrbe built out of secure sketches
by utilizing strongrandomness extractof®Z96], such as, for example, universal hash functions [CW79,
WC81] (randomness extractors, defined more precisely below, are fawillgash which “convert” a high
entropy input into a shorter, uniformly distributed output). We also providergeral technique for con-
structing secure sketches from transitive families of isometries, which isiregied in concrete construc-
tions later in the paper. Finally, we define a notion dbiametric embeddingf one metric space into
another, and show that the existence of a fuzzy extractor in the targe¢,spombined with a biometric
embedding of the source into the target, implies the existence of a fuzzytexirathe source space.

These general results help us in building and analyzing our constructions

OuR CONSTRUCTIONS We provide constructions of secure sketches and fuzzy extractitmemmetrics:
Hamming distance, set difference, and edit distance. Unless stated isthealithe constructions are new.

Hamming distance (i.e., the number of symbol positions that differ betweandw’) is perhaps the
most natural metric to consider. We observe that the “fuzzy-commitmentircotion of Juels and Wat-
tenberg [JW99] based on error-correcting codes can be viewethaady optimal) secure sketch. We then
apply our general result to convert it into a nearly optimal fuzzy extradtéile our results on the Ham-
ming distance essentially use previously known constructions, they seareimportant stepping stone for
the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two inpsittlsendw’) is appropriate
whenever the noisy input is represented as a subset of features fuminerse of possible featuresWe
demonstrate the existence of optimal (with respect to entropy loss) séeticbes and fuzzy extractors for
this metric. However, this result is mainly of theoretical interest, becauseréles on optimal constant-
weight codes, which we do not know how construct, and (2) it progis&etches of length proportional to
the universe size. We then turn our attention to more efficient construdtiottss metric in order handle
exponentially large universes. We provide two such constructions.

First, we observe that the “fuzzy vault” construction of Juels and S[i&02] can be viewed as a secure
sketch in this metric (and then converted to a fuzzy extractor using ourgessult). We provide a new,
simpler analysis for this construction, which bounds the entropy lost frogiven s. This bound is quite
high unless one makes the size of the outputry large. We then improve the Juels-Sudan construction to
reduce the entropy loss and the lengtts &d near optimal. Our improvement in the running time and in the
length ofs is exponential for large universe sizes. However, this improved JRuedsin construction retains
a drawback of the original: it is able to handle only sets of the same fixedisiparticular,|«w’| must equal

|wl.)
3A perhaps unexpected application of the set difference metric wasregito[JS02]: a user would like to encrypt a file (e.g.,

her phone number) using a small subset of values from a largersei{eg., her favorite movies) in such a way that those and only
those with a similar subset (e.g., similar taste in movies) can decrypt it.




Second, we provide an entirely different construction, called PinSktahmaintains the exponential
improvements in sketch size and running time and also handles variable séficsiigtain it, we note that
in the case of a small universe, a set can be simply encoded as its chstiactector (1 if an element is
in the set, O if it is not), and set difference becomes Hamming distance. Ewegttlthe length of such a
vector becomes unmanageable as the universe size grows, we detedhstréis approach can be made
to work quite efficiently even for exponentially large universes (in padigiecause it is not necessary to
ever actually write the vector down). This involves a result that may be ejpi@addent interest: we show
that BCH codes can be decoded in time polynomial invlegghtof the received corrupted word (i.e., in
sublineartime if the weight is small).

Finally, edit distance (i.e., the number of insertions and deletions neededvertone string into the
other) comes up, for example, when the password is entered as a strentp typing errors or mistakes
made in handwriting recognition. We discuss two approaches for seleeiighes and fuzzy extractors for
this metric. First, we observe that a recent low-distortion embedding of @&yand Rabani [OR05]
immediately gives a construction for edit distance. The construction pesfarell when the number of
errors to be corrected is very small (s&y for « < 1) but cannot tolerate a large number of errors. Second,
we give a biometric embedding (which is less demanding than a low-distortion eimbebut suffices for
obtaining fuzzy extractors) from the edit distance metric into the set diféerenetric. Composing it with a
fuzzy extractor for set difference gives a different constructaretlit distance, which does better when
large; it can handle as many @§n/ log? n) errors with meaningful entropy loss.

Most of the above constructions are quite practical; some implementationgdedbke [HIR].

EXTENDING RESULTS FORPROBABILISTIC NOTIONS OFCORRECTNESS The definitions and construc-
tions just described use a very strong error model: we require thatessketches and fuzzy extractors
accepteverysecretw’ which is sufficiently close to the original secret with probability 1. Such a strin-
gent model is useful, as it makes no assumptions on the stochastic and doonpupaoperties of the error
process. However, slightly relaxing the error conditions allows corstng which tolerate a (provably)
much larger number of errors, at the price of restricting the settings in vihechonstructions can be ap-
plied. In Section 8, we extend the definitions and constructions of eartéoss to several relaxed error
models.

It is well-known that in the standard setting of error-correction for a fyi@mmunication channel,
one can tolerate many more errors when the errors are random anema@ep than when the errors are
determined adversarially. In contrast, we present fuzzy extractdndet Shannon’s bounds for correcting
random errors and, moreover, can correct the same number of ewer when errors are adversarial. In our
setting, therefore, under a proper relaxation of the correctnesstioon@dversarial errors are no stronger
than random ones. The constructions are quite simple, and draw on etetgques from the coding
literature [BBR88, DGL04, Gur03, Lan04, MPSWO05].

RELATION TO PREVIOUS WORK. Since our work combines elements of error correction, randomness
extraction and password authentication, there has been a lot of relatied wo

The need to deal with nonuniform and low-entropy passwords has leag kealized in the security
community, and many approaches have been proposed. For exampley el [KRSHW97] suggested
using f (w, r) in place ofw for the password authentication scenario, wheiga public random “salt,” to
make a brute-force attacker’s life harder. While practically useful, thisageh does not add any entropy
to the password, and does not formally address the needed propérfieAmother approach, more closely
related to ours, is to add biometric features to the password. For examplenElial. [EHMSO00] proposed
asking the user a series ofpersonalized questions, and using these answers to encrypt the™actya




random secreR. A similar approach using user’s keyboard dynamics (and, substyjueice [MRLWO01a,
MRLWO1b]) was proposed by Monrose et al. [MRW99]. These apphes require the design of a secure
“fuzzy encryption.” The above works proposed heuristic desigssi§uvarious forms of Shamir’s secret
sharing), but gave no formal analysis. Additionally, error toleranceadaressed only by brute force search.

A formal approach to error tolerance in biometrics was taken by Juels attbMderg [JW99] (for
less formal solutions, see [DFMP99, MRW99, EHMSO00]), who providesimple way to tolerate errors
in uniformly distributedpasswords. Frykholm and Juels [FJ01] extended this solution anddptben-
tropy analysis to which ours is similar. Similar approaches have been edparéer in seemingly unre-
lated literature on cryptographic information reconciliation, often in the comteguantum cryptography
(where Alice and Bob wish to derive a secret key from secrets that $raall Hamming distance), particu-
larly [BBR88, BBCS91]. Our construction for the Hamming distance is d&drthe same as a component
of the quantum oblivious transfer protocol of [BBCS91].

Juels and Sudan [JS02] provided the first construction for a metric dthearHamming: they con-
structed a “fuzzy vault” scheme for the set difference metric. The maierdifice is that [JS02] lacks a
cryptographically strong definition of the object constructed. In partictiiair construction leaks a signifi-
cant amount of information about their analogiyfeven though it leaves the adversary with provably “many
valid choices” forR. In retrospect, their informal notion is closely related to our secure ségtcDur con-
structions in Section 6 improve exponentially over the construction of [J8@2forage and computation
costs, in the setting when the set elements come from a large universe.

Linnartz and Tuyls [LT03] defined and constructed a primitive very similaa fazzy extractor (that
line of work was continued in [VTDLO03].) The definition of [LTO3] focusen the continuous spaé&’,
and assumes a particular input distribution (typically a known, multivariates§au). Thus, our definition
of a fuzzy extractor can be viewed as a generalization of the notion dfielding function” from [LTO3].
However, our constructions focus on discrete metric spaces.

Other approaches have also been taken for guaranteeing the mfvaaigy data. Csirmaz and Katona
considered quantization for correcting errors in “physicald@n functions.” (This corresponds
roughly to secure sketches with no public storage.) Barral, Coron andashe [BCNO04] proposed a
system for offline, private comparison of fingerprints. Although seelisignilar, the problem they study
is complementary to ours, and the two solutions can be combined to yield systéchsamjoy the benefits
of both.

Work on privacy amplification, e.g., [BBR88, BBCM95], as well as workderandomization and hard-
ness amplification, e.g., [HILL99, NZ96], also addressed the need tacéxtniform randomness from a
random variable about which some information has been leaked. A majes &dollow-up research has
been the development of (ordinary, not fuzzy) extractors with stemtls (see [Sha02] for a survey). We
use extractors in this work (though for our purposes, universdlihgss sufficient). Conversely, our work
has been applied recently to privacy amplification: Ding [Din05] usedyfiextractors for noise tolerance
in Maurer’s bounded storage model [Mau93].

Independently of our work, similar techniques appeared in the literatun@tryptographic informa-
tion reconciliation [MTZ03, CT04] (where the goal is communication efficyerather than secrecy). The
relationship between secure sketches and efficient information rectinaiiexplored further in Section 9,
which discusses, in particular, how our secure sketches for setatiiffes provide more efficient solutions
to the set and string reconciliation problems.

FoLLow-UP WORK. Since the original presentation of this paper [DRS04], several follpworks have
appeared (e.g., [Boy04, BDK05, DS05, DORS06, Smi07, CL06, LSM06, CFL06]). We refer the eesal
a recent survey about fuzzy extractors [DRS07] for more information




2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are 2asehe Hamming weigh{or justweigh)

of a string is the number of nonzero characters in it. Wellis® denote the uniform distribution ofbit
binary strings. If an algorithm (or a functiorf)is randomized, we use the semicolon when we wish to make
the randomness explicit: i.e., we denote fiy; r) the result of computing on inputx with randomness

r. If X is a probability distribution, therf(X) is the distribution induced on the image py applying

the (possibly probabilistic) functiofi. If X is a random variable, we will (slightly) abuse notation and also
denote byX the probability distribution on the range of the variable.

2.1 Metric Spaces

A metric space is a se¥t with a distance functiodis : M x M — RT = [0,00). For purposes of this
of work, M will always be a finite set, and the distance function will only take on integkeresa(with
dis(z,y) = 0 ifand only if x = y), and will obey symmetrdis(z, y) = dis(y, =) and the triangle inequality
dis(z, z) < dis(z,y) + dis(y, z) (we adopt these requirements for simplicity of exposition, even though the
definitions and most of the results below can be generalized to remove ds¢ietions).

We will concentrate on the following metrics.

1. Hamming metric Here M = F" for some alphabef, anddis(w, w’) is the number of positions in
which the stringsv andw’ differ.

2. Set difference metric Here M consists of all subsets of a universe For two setsw, w’, their

symmetric differencev Aw’ o {r ewUw' | z ¢ wnw'}. The distance between two setsw’ is
|wAw’|ﬂ We will sometimes restricM to contain onlys-element subsets for some

3. Edit metric Here M = F*, and the distance betweeanandw’ is defined to be the smallest num-
ber of character insertions and deletions needed to transioirnto w’.@ (This is different from
the Hamming metric because insertions and deletions shift the charactersethatlze right of the
insertion/deletion point.)

As already mentioned, all three metrics seem natural for biometric data.

2.2 Codes and Syndromes

Since we want to achieve error tolerance in various metric spaces, wese#ror-correcting codegor

a particular metric. A cod€’ is a subsefwy,...,wx_1} of K elements ofM. The map fromi to w;,
which we will also sometimes denote B, is calledencoding Theminimum distancef C is the smallest

d > 0 such that for ali # j we havedis(w;, w;) > d. In our case of integer metrics, this means that one
can detect up t@d — 1) “errors” in an element of\. The error-correcting distanceof C'is the largest
numbert > 0 such that for everyw € M there exists at most one codewarih the ball of radiug around

w: dis(w, ¢) < t for at most one: € C. This means that one can correct ug &rrors in an element of

M; we will use the terndecodingfor the map that finds, givem, thec € C such thatis(w, ¢) < ¢ (note

“In the preliminary version of this work [DRS04], we worked with this metdaled by%, that is the distance Walzfs{wAw’L
Not scaling makes more sense, particularly wheandw’ are of potentially different sizes sin¢ge Aw’| may be odd. It also
agrees with the hamming distance of characteristic vectors; see Section 6.

SAgain, in [DRS04], we worked with this metric scaled @y Likewise, this makes little sense when strings can be of different
lengths, and we avoid it here.



that for somew, suchc may not exist, but if it exists, it will be unique; note also that decoding is ret th
inverse of encoding in our terminology). For integer metrics by triangle iakg§uve are guaranteed that

t > |(d—1)/2]. Since error correction will be more important than error detection in opiicgtions, we
denote the corresponding codes a4, K, t)-codes. For efficiency purposes, we will often want encoding
and decoding to be polynomial-time.

For the Hamming metric oveF™, we will sometimes calk = logw K thedimensiorof the code, and
denote the code itself as &n k, d = 2t+1] z-code, following the standard notation in the literature. We will
denote byA, r|(n, d) the maximumk possible in such a code (omitting the subscript whgh= 2), and
by A(n,d, s) the maximumk for such a code ovel0, 1}" with the additional restriction that all codewords
have exactlys ones.

If the code is linear (i.e.F is a field, 7™ is a vector space ovefF andC is a linear subspace), then
one can fix a parity-check matri as any matrix whose rows generate the orthogonal spaceThen

for anyv € F", the syndromeyn(v) ' v, The syndrome of a vector is its projection onto subspace
that is orthogonal to the code, and can thus be intuitively viewed as ther veottulo the code. Note that
v € C' < syn(v) = 0. Note also thaf{ is an(n — k) x n matrix, and thasyn(v) isn — k bits long.

The syndrome captures all the information necessary for decoding. isfrauppose a codewordis
sent through a channel and the ward= ¢ + ¢ is received. First, the syndrome ofis the syndrome of:
syn(w) = syn(c) + syn(e) = 0 + syn(e) = syn(e). Moreover, for any value, there is at most one wokd
of weight less tham /2 such thatyn(e) = u (because the existence of a pair of distinct wards would
mean that; — e is a codeword of weight less thah but since0™ is also a codeword and the minimum
distance of the code 8, this is impossible). Thus, knowing syndromya(w) is enough to determine the
error patterre if not too many errors occurred.

2.3 Min-Entropy, Statistical Distance, Universal Hashing, ad Strong Extractors

When discussing security, one is often interested in the probability that trezsady predicts a random
value (e.g., guesses a secret key). The adversary’s best stitegyrse, is to guess the most likely value.
Thus,predictability of a random variablel is max, Pr[A = a], and, correspondinglynin-entropyH . (A)

is — log(max, Pr[A = a]) (min-entropy can thus be viewed as the “worst-case” entropy [CG88]atso
Section 2.4).

Min-entropy of a distribution tells us how many nearly uniform random bitstzaextracted from it.
The notion of “nearly” is defined as follows. Thatistical distance betwedwo probability distributions
AandBisSD (4,B) = £ >, | Pr(4 =v) — Pr(B = v)|.

Recall the definition otrong randomness extractgidZ96].

Definition 1. Let Ext : {0,1}" — {0, 1} be a polynomial time probabilistic function which usesits of

randomness. We say tHatt is an efficien{n, m, ¢, ¢)-strong extractoif for all min-entropym distributions
Won{0,1}", SD ((Ext((W; X), X), (Us, X)) < ¢, whereX is uniform on{0, 1}".

Strong extractors can extract at mést m — 2log (1) + O(1) nearly random bits [RTS00]. Many
constructions match this bound (see Shaltiels’ survey [Sha02] forerefes). Extractor constructions are
often complex since they seek to minimize the length of the séelor our purposes, the length &f will
be less important, so universal hash functions [CW79, WC81] (definéite lemma below) will already
give us the optimal = m —21log (1) +2, as given by théeftover hash lemmbelow (see [HILL99, Lemma
4.8], as well as references therein for earlier versions):



Lemma 2.1 (Universal Hash Functions and the Leftover-Hash / Privacy-Amglifoc Lemma) Assume a
family of functions{ H,, : {0,1}" — {0,1}},cx is universal for all a # b € {0,1}", Pryex[H.(a) =
H,(b)] = 27%. Then, for any random variabld’

SD ((Hx (W), X) , (U, X)) <

< 3V RSy (2)

In particular, universal hash functions ate, m, £, €)-strong extractors whenevér< m — 2log (1) + 2.

2.4 Average Min-Entropy

Recall thatpredictability of a random variabled is max, Pr[A = a], and itsmin-entropyH.(A) is

— log(max, Pr[A = a]). Consider now a pair of (possibly correlated) random variables. If the
adversary finds out the valueof B, then predictability ofA becomeanax, Pr[A = a | B = b]. On
average, the adversary’s chance of success in predidtisghenE;. 5 [max, Pr[A = a | B = b]]. Note
that we are taking thaverageover B (which is not under adversarial control), but therst caseover A
(because prediction od is adversarial onceé is known). Again, it is convenient to talk about security in
log-scale, which is why we define tleverage min-entroppf A given B as simply the logarithm of the
above:

H.(A| B) & —log <EbHB {m:?XPr[A =a|B= b]D = —log (EbHB {27H°°(A|B:b)D .

Because other notions of entropy have been studied in cryptographatuitera few words are in order
to explain why this definition is useful. Note the importance of taking the logarithien taking the average
(in contrast, for instance, to conditional Shannon entropy). One may ithimére natural to define average
min-entropy ask,. p [H (A | B = b)], thus reversing the order défg andE. However, this notion is
unlikely to be useful in a security application. For a simple example, consideratbe wheml and B are
1000-bit strings distributed as follows3 = Ujggp and A is equal the valué of B if the first bit of b is
0, andUj g (independent of3) otherwise. Then for half of the values &fH.,(A | B = b) = 0, while
for the other halfH, (A | B = b) = 1000, SOE;._p [Hoo(A | B =0b)] = 500. However, it would be
obviously incorrect to say that has 500 bits of security. In fact, an adversary who knows the vatiie3
has a slightly greater tha@®% chance of predicting the value df by outputtingb. Our definition correctly
captures this0% chance of prediction, becau]%l’a)o(A | B) is slightly less than 1. In fact, our definition of
average min-entropy is simply the logarithm of predictability.

The following useful properties of average min-entropy are provengpeidix A. We also refer to
Appendix B for a generalization of average min-entropy and a discuséitire relationship between this
notion and other notions of entropy.

Lemma 2.2. Let A, B, C be random variables. Then

(a) Foranys > 0, the conditional entropH .. (A|B = b) is at leastH, (A|B) — log(1/4§) with proba-
bility at leastl — ¢ over the choice af.

(b) If B has at mose* possible values, theH . (4 | (B, C)) > Hoo((4, B) | C)—A > Hyo(A | C)—A.
In particular, Hyo (A | B) > Hoo((A,B)) — A > Hoo(4) — A

®In [HILL99], this inequality is formulated in terms of @yi entropy of order two ofV; the change td..(C) is allowed
because the latter is no greater than the former).



2.5 Average-Case Extractors

Recall from Definition 1 that a strong extractor allows one to extract almiasteamin-entropy from some
non-uniform random variabl&’. In many situationsJ¥’ represents adversary’s uncertainty about some
secretw conditioned on some side informatién Since this side informationis often probabilistic, we
shall find the following generalization of a strong extractor useful (sarha 4.1).

Definition 2. Let Ext : {0,1}" — {0,1}* be a polynomial time probabilistic function which uses
bits of randomness. We say thatt is an efficientaverage-casén, m, ¢, €)-strong extractor if for all
pairs of random variable§/V, I) such thati¥ is ann-bit string satifyingH..(W | I) > m, we have
SD ((Ext(W; X), X, I), (U, X, I)) < ¢, whereX is uniform on{0, 1}".

To distinguish the strong extractors of Definition 1 from average-casegsgxtractors, we will some-
times call the formeworst-casestrong extractors. The two notions are closely related, as can be seen fr
the following simple application of Lemma 2.2(a).

Lemma 2.3. For anyd > 0, if Ext is a (worst-casejn, m — log (%) , £, €)-strong extractor, theifxt is also
an average-casén, m, ¢, € + ¢)-strong extractor.

Proof. Assume(WV, I) are such thaH (W | I) > m. LetW; = (W | I = i) and let us call the valug¢
“bad” if Hoo(W;) < m —log (). Otherwise, we say thatis “good”. By Lemma 2.2(a)Pr(i is bad < é.
Also, for any goodi, we have thaExt extracts/ bits that aree-close to uniform fromi¥;. Thus, by
conditioning on the “goodness” df we get

SD ((Ext(W; X), X, 1), (U, X, 1)) = Y Pr(i)-SD ((Ext(Wi; X), X), (Up, X))

< Pr(iisbad -1+ Y Pr(i) - SD ((Ext(Wi; X), X), (Us, X))

< d+e
O

However, for many strong extractors we do not have to suffer this addltaiependence ah because
the strong extractor may be already average-case. In particular, tgsfboextractors obtained via univer-
sal hashing.

Lemma 2.4 (Generalized Leftover Hash Lemmassume{ i, : {0,1}" — {0,1}*},cx is a family of
universal hash functions. Then, for any random variabiésind 7,

SD ((Hx(W), X, 1), (U, X, 1)) < V2 AWt )

In particular, universal hash functions asverage-casén, m, ¢, €)-strong extractors whenevér< m —
2log (%) + 2.
Proof. LetW; = (W | I =1). Then

SD ((Hx(W), X, I) ) (va X, I)) = E; [SD ((HX<WZ)7 X) ) (va X))]

< %Ei [\/Q—Hoo(wi)ge

1
< 5\/& [2-Hoo(W2) 2]

— lx/QfI:Ioo(W\I)2£.
2




In the above derivation, the first inequality follows from the standardadvef Hash Lemma (Lemma 2.1),
and the second inequality follows from Jensen’s inequality (nariﬁe[ﬂ} < VE[Z)). O

3 New Definitions

3.1 Secure Sketches

Let M be a metric space with distance functidis.

Definition 3. An (M, m,m,t)-secure sketcls a pair of randomized procedures, “sketcB5) and “re-
cover” (Rec), with the following properties:

1. The sketching procedus on inputw € M returns a bit string € {0, 1}*.

2. The recovery procedurRec takes an element’ € M and a bit strings € {0,1}*. The correct-
nessproperty of secure sketches guarantees thdis{fw, w’) < t, thenRec(w’,SS(w)) = w. If
dis(w, w’) > t, then no guarantee is provided about the outpireat

3. Thesecurityproperty guarantees that for any distributidhover M with min-entropym, the value
of W can be recovered by the adversary who obsesweith probability no greater tha2~". That
is, Hoo (W | SS(W)) > m.

A secure sketch isfficientif SS andRec run in expected polynomial time.

AVERAGE-CASE SECURESKETCHES. In many situations, it may well be that the adversary’s information
about the password is probabilistic, so that sometimésgeveals a lot about, but most of the timev stays
hard to predict even given In this case, the previous definition of secure sketch is hard to apphpvides
no guarantee iH ., (1717) is not fixed to at least: for some bad (but infrequent) valuesiofA more robust
definition would provide the same guarantee for all pairs of varia¥¥éd ) such that predicting the value
of W given the value of is hard. We therefore define anerage-cassecure sketch as as follows:

Definition 4. An average-casé M, m,m,t)-secure sketcks a secure sketch (as defined in Definition 3)
whose security property is strengthened as follows: for any randaablesiV over M andI over{0,1}*
such thatf, (W | I) > m, we haveH..(W | (SS(W), I)) > 7n. Note that an average-case secure sketch
is also a secure sketch (takéo be empty).

This definition has the advantage that it composes naturally, as shown in Lérimall of our con-
structions will in fact be average-case secure sketches. Howewerilloften omit the term “average-case”
for simplicity of exposition.

ENTROPYLOSS The quantitym is called theesidual (min-)entropypf the secure sketch, and the quantity

A = m — m is called theentropy lossof a secure sketch. In analyzing the security of our secure sketch
constructions below, we will typically bound the entropy loss regardless,ahus obtaining families of
secure sketches that work for all. Specifically, for a given construction 865, Rec and a given value,

we will get a value\ for the entropy loss, such that, fany m, (SS, Rec) is an(M,m, m — A, t)-secure
sketch. In fact, the most common way to obtain such secure sketches veaigldbdund the entropy loss by
the length of the secure sket86(w), as given in the following simple lemma:
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Lemma 3.1. Assume some algorithn$$ and Rec satisfy the correctness property of a secure sketch for
some value of, and that the output range 65 has size at most* (this holds, in particular, if the length

of the sketch is bounded By. Then, for any min-entropy threshotd, (SS, Rec) form an average-case
(M, m,m — A, t)-secure sketch faM. In particular, for anym, the entropy loss of this construction is at
MostA.

Proof. The result follows immediately from Lemma 2.2(b), sir&®(1V) has at mose* values: for any

(W’I)’HOO(W’ (SS(W)’I)) ZI:IOO(W|I)_)" O

The above observation formalizes the intuition that a good secure sketghl ¢ie as short as possible.
In particular, a short secure sketch will likely result in a better entropy. Iddore discussion about this
relation can be found in Section 9.

3.2 Fuzzy Extractors

Definition 5. An (M, m, ¢, t,€)-fuzzy extractois a pair of randomized procedures, “generateén) and
“reproduce” Rep), with the following properties:

1. The generation procedu@n on inputw € M outputs an extracted string € {0, 1} and a helper
string P € {0,1}*.

2. The reproduction proceduRep takes an element’ € M and a bit string? € {0, 1}* as inputs. The
correctnesproperty of fuzzy extractors guarantees thalisfw, w’) < t andR, P were generated by
(R, P) «— Gen(w), thenRep(w’, P) = R. If dis(w,w’) > t, then no guarantee is provided about the
output ofRep.

3. Thesecurityproperty guarantees that for any distributidhon M of min-entropym, the stringR is
close to uniform even to those who obseRenamely, if(R, P) < Gen(W), thenSD ((R, P), (Uy, P))
<e

A fuzzy extractor isefficientif Gen andRep run in expected polynomial time.

In other words, fuzzy extractors allow one to extract some randonfdéssn w and then successfully
reproduceR from any stringw’ that is close tav. The reproduction uses the helper stridfgroduced during
the initial extraction; yet”? need not remain secret, becauséoks truly random even giveR. To justify
our terminology, notice that strong extractors (as defined in Section 2pndard be seen as “non-fuzzy”
analogs of fuzzy extractors, corresponding te 0, P = X, andM = {0, 1}".

We reiterate that the nearly-uniform random bits output by a fuzzy drir@an be used in any cryp-
tographic context that requires uniform random bits (e.g., for seeget)k The slight nonuniformity of the
bits may decrease security, but by no more than their distafiem uniform. By choosing negligibly
small (e.g.27%° should be enough in practice), one can make the decrease in seculéyginte

Similarly to secure sketches, the quantity— ¢ is called theentropy lossof a fuzzy extractor. Also
similarly, a more robust definition is that of amerage-caséizzy extractor, which requires thatﬁIOO(W |
I) > m,thenSD ((R, P,I), (Uy, P, 1)) < ¢ for any auxiliary random variablé.
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4 Metric-Independent Results

In this section we demonstrate some general results that do not depepelificsnetric spaces. They will
be helpful in obtaining specific results for particular metric spaces belowaddlition to the results in this
section, some generic combinatorial lower bounds on secure sketathdgzay extractors are contained
in Appendix C. We will later use these bounds to show the near-optimality of sbo& constructions for
the case of uniform inpuEs.

4.1 Construction of Fuzzy Extractors from Secure Sketches

Not surprisingly, secure sketches are quite useful in constructizg fxtractors. Specifically, we construct
fuzzy extractors from secure sketches and strong extractors awgolpplySS to w to obtains, and a
strong extractoExt with randomness to w to obtainR. Store(s, x) as the helper string. To reproduce
R fromw" andP = (s, z), first useRec(w’, s) to recoverw and therExt(w, x) to getR.

»X X
r—> P w
SS —>s} §—> >
| ’ , Rec | x Ext [»R
w w—> |"
L——> Ext |—R
X—>

A few details need to be filled in. First, in order to apght to w, we will assume that one can represent
elements ofM usingn bits. Second, since after leaking the secure sketch vgltle passwordv only
hasconditional min-entropy, technically we need to use #eerage-casetrong extractor, as defined in
Definition/2. The formal statement is given below.

Lemma 4.1(Fuzzy Extractors from SketcheshssumeSS, Rec) is an(M, m, m, t)-secure sketch, and let
Ext be anaverage-casg, m, ¢, €)-strong extractor. Then the followin@en, Rep) is a (M, m, ¢, t, €)-fuzzy
extractor:

e Gen(w;r,x): setP = (SS(w;r),z), R = Ext(w;z), and output R, P).
e Rep(w’, (s,z)): recoverw = Rec(w’, s) and outputR = Ext(w; z)

Proof. From the definition of secure sketch (Definitidn 3), we know Hat (W | SS(W)) > 7. And since
Ext is an average-casg:, m, ¢, €)-strong extractorSD ((Ext(W; X),SS(W), X), (Uy,SS(W), X)) =
SD ((R7P>a(U€7P)) <e ]

On the other hand, if one would like to use a worst-case strong extracarawapply Lemma 2.3 to
get

Corollary 4.2. If (SS, Rec) is an (M, m, 7, t)-secure sketch anBixt is an (n, i — log (%) , ¢, €)-strong
extractor, then the above constructi@@en, Rep) is a (M, m, ¢, t, e + §)-fuzzy extractor.

Both Lemma 4.1 and Corollary 4.2 hold (with the same proofs) for buildiveyage-caséuzzy extrac-
tors fromaverage-cassecure sketches.

While the above statements work for general extractors, for our pespes can simply use univer-
sal hashing, since it is an average-case strong extractor that atieveptimal [RTS00] entropy loss of
2log (%) In particular, using Lemma 2.4, we obtain our main corollary:

"Although we believe our constructions to be near optimal for non-unifioputs as well, and our combinatorial bounds in
AppendiX C are also meaningful for such inputs, at this time we can oelyhese bounds effectively for uniform inputs.
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Lemma 4.3. If (SS, Rec) is an (M, m, m, t)-secure sketch ant is an(n, m, ¢, €)-strong extractor given
by universal hashing (in particular, arfy< 1 —2log (1) +2 can be achieved), then the above construction
(Gen, Rep) is a(M,m, (,t, €)-fuzzy extractor. In particular, one can extract up(th —21log (1) +2) nearly
uniform bits from a secure sketch with residual min-entropy

Again, if the above secure sketch is average-case secure, then soréstiiting fuzzy extractor. In
fact, combining the above result with Lemma 3.1, we get the following genenatiuction of average-case
fuzzy extractors:

Lemma 4.4. Assume some algorithn$$ and Rec satisfy the correctness property of a secure sketch for
some value of, and that the output range &S has size at mos2* (this holds, in particular, if the
length of the sketch is bounded hy. Then, for any min-entropy threshoid, there exists an average-
case(M,m,m — XA — 2log (%) + 2. t,€)-fuzzy extractor forM. In particular, for anym, the entropy loss

of the fuzzy extractor is at most+ 2log (1) — 2.

4.2 Secure Sketches for Transitive Metric Spaces

We give a general technique for building secure sketcheamsitivemetric spaces, which we now define. A
permutationrT on a metric spacé is anisometryif it preserves distances, i.dis(a, b) = dis(w(a), 7(b)).

A family of permutationdI = {m;},.; actstransitivelyon M if for any two elements:, b € M, there
existsm; € II such thatr;(a) = b. Suppose we have a family of transitive isometries foA (we will
call suchM transitive). For example, in the Hamming space, the set of all shif{sv) = w @ «x is such a
family (see Section/5 for more details on this example).

Construction 1 (Secure Sketch For Transitive Metric Spacesgt C' be an(M, K, t)-code. Then the
general sketching scheri8 is the following: given an inpuy € M, pick uniformly at random a codeword
b € C, pick uniformly at random a permutation € II such thatr(w) = b, and outpuSS(w) = = (itis
crucial that eachr € II should have a canonical description that is independent offwas chosen, and in
particular independent éfandw; the number of possible outputs  should thus béll|). The recovery
procedureRec to find w givenw’ and the sketch, is as follows: find the closest codewdrdo 7 (w’), and
outputr—1(d').

LetI' be the number of elementse II such thatnin,, ;, [{7|7(w) = b}| > I'. l.e., for eachw andb,
there are at leadt choices forr. Then we obtain the following lemma.

Lemma 4.5. (SS, Rec) is an average-caséM, m,m — log |II| + logI" + log K, t)-secure sketch. It is
efficient if operations on the code, as wellmand=~!, can be implemented efficiently.

Proof. Correctness is clear: whetis(w,w’) < ¢, thendis(b, 7(w’)) < t, so decodingr(w’) will result
in ¥ = b, which in turn means that~!(’) = w. The intuitive argument for security is as follows:
we addlog K + logI' bits of entropy by choosing and, and subtractog |II| by publishingz. Since
givent, w andb determine each other, the total entropy loskis|II| — log K — logI". More formally,
H. (W | SS(W), I) = Hoo (W, SS(W)) | I) — log |TI| by Lemma 2.2(b). Given a particular valuewof
there arel equiprobable choices fér and further at leadt equiprobable choices for onceb is picked,
and hence any given permutatiaris chosen with probability at modt/(KT') (because different choices
for b result in different choices for). Therefore, for all, w, andm, Pr[W = w ASS(w) =7 | I = 1] <
Pr[W =w | I =i]/(KT), henceHu.(W,SS(W)) | I) > Hoo (W | I) + log K + logT. O

Naturally, security loss will be smaller if the codéis denser.
We will discuss concrete instantiations of this approach in Selction 5 and §éctio
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4.3 Changing Metric Spaces via Biometric Embeddings

We now introduce a general technique that allows one to build fuzzy ¢xtsaend secure sketches in some
metric spaceM; from fuzzy extractors and secure sketches in some other metric dgac8elow, we let
dis(-, -), denote the distance function ift;. The technique is tembedM; into M so as to “preserve”
relevant parameters for fuzzy extraction.

Definition 6. A function f : M; — M, is called a(t1, t2, m1, mo)-biometric embedding if the following
two conditions hold:

e foranyw;,w] € M, such thatis(w,w}), < ti, we havedis(f(w1), f(w2))y < ta.
e for any distributioni?’; on M; of min-entropy at least:;, (/1) has min-entropy at leasts.

The following lemma is immediate (correctness of the resulting fuzzy extradtowifrom the first con-
dition, and security follows from the second):

Lemma 4.6. If f is a (1, t2, m1, m2)-biometric embedding o#; into My and (Gen(-), Rep(-,-)) is an
(Mo, ma, £, ta, €)-fuzzy extractor, thetGen(f()),Rep(f(-),-)) isan(My, my, ¢, ty, €)-fuzzy extractor.

It is easy to definaverage-cas@iometric embeddings (in whicH (W1 | I) > m; = He (f(W)) |
I) > my), which would result in an analogous lemma for average-case fuzzcsots.

For a similar result to hold for secure sketches, we need biometric embedditmgan additional prop-
erty.

Definition 7. A function f : M; — My is called at;, t2, A)-biometric embedding with recovery informa-
tion g if:

e foranyw;,w| € M such thadis(w:, w}), < t1, we havedis(f(w1), f(w2)), < to.

e g: M; — {0,1}* is a function with range size at magt, andw; € M; is uniquely determined by

(f(wl)a g(wl))
With this definition, we get the following analog of Lemmal4.6.

Lemma 4.7. Let f be(t;, t2, A) biometric embedding with recovery informatignLet (SS, Rec) be (Mo,
m1 — A, ma,ty) average-case secure sketch. I8t(w) = (SS(f(w)),g(w)). LetRec (w',(s,7)) be
the function obtained by computirRec(w’, s) to get f(w) and then inverting f(w),r) to getw. Then
(SS’,Rec’) is a (M, my, s, t1) average-case secure sketch.

Proof. The correctness of this construction follows immediately from the two propgegiien in Defi-
nition 7. As for security, using Lemma 2.2(b) and the fact that the rangghafs size at mos?*, we
get thatH. (W | g(W)) > my — )\, wheneverH.. (W) > m;. Moreover, sincé¥V is uniquely re-
coverable fromf (W) and g(W), it follows that H. (f(W) | g(W)) > mi — X as well, whenever
H. (W) > m;. Using the fact tha{SS, Rec) is anaverage-casé My, m; — A, Mo, t2) secure sketch,
we get thatf. (f(W) | (SS(W), g(W))) = Huo(f(W) | SS'(W)) > 1. Finally, since the application
of £ can only reduce min-entrop¥. (W | SS'(W)) > 1 WheneveH (W) > m;. O

As we saw, the proof above critically used the notion of average-caseessketches. Luckily, all our
constructions (for example, those obtained via Lemma 3.1) are averaggesoahis subtlety will not matter
too much.

We will see the utility of this novel type of embedding in Section 7.
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5 Constructions for Hamming Distance

In this section we consider constructions for the sp&te= 7" under the Hamming distance metric. Let
F =|F|landf = log, F.

SECURE SKETCHES. THE CODE-OFFSETCONSTRUCTION For the case aF = {0, 1}, Juels and Wat-
tenberg [JW99] considered a notion of “fuzzy commitmeRitGiven a[n, k, 2t + 1], error-correcting code
C' (not necessarily linear), they fuzzy-commit toby publishingw @ C(x). Their construction can be
rephrased in our language to give a very simple construction of seketehss for generaf.

We start with &n, k, 2t + 1] error-correcting cod€' (not necessarily linear). The idea is to uSe
to correct errors inv even thougho may not be inC. This is accomplished by shifting the code so that a
codeword matches up with, and storing the shift as the sketch. To do so, we need to #i@as an additive
cyclic group of orderF (in case of most common error-correcting codésyill anyway be a field).

Construction 2 (Code-Offset Construction)On inputw, select a random codewoedthis is equivalent to
choosing a random € F* and computing”(x)), and setSS(w) to be the shift needed to get froeto
w: SS(w) = w — ¢. ThenRec(w', s) is computed by subtracting the shiffrom w’ to getc’ = v’ — s;
decoding’ to getc (note that becaussis(w’, w) < t, so isdis(c, ¢)); and computingu by shifting back to
getw = c + s.

+s oW

Ne— "

In the case ofF = {0,1}, addition and subtraction are the same, and we get that computation of the
sketch is the same as the Juels-Wattenberg commitréiity) = w @ C(z). In this case, to recoven
givenw’ ands = SS(w), compute’’ = w’ & s, decode’ to gete, and computer = ¢ & s.

When the codé€’ is linear, this scheme can be simplified as follows.

P

C

Construction 3 (Syndrome Construction)SetSS(w) = syn(w). To computeRec(w’, s), find the unique
vectore € F™ of Hamming weight< ¢ such thasyn(e) = syn(w') — s, and outputv = w' — e.

As explained in Section|2, finding the short error-veetdrom its syndrome is the same as decoding
the code. It is easy to see that two constructions above are equivalersgn(w) one can sample from
w — ¢ by choosing a random stringwith syn(v) = syn(w); converselysyn(w — ¢) = syn(w). To show
that Rec finds the correctw, observe thatlis(w’ — e, w’) < ¢ by the constraint on the weight ef and
syn(w’ —e) = syn(w’) — syn(e) = syn(w’) — (syn(w’) — s) = s. There can be only one value within
distancet of w’ whose syndrome is (else by subtracting two such values we get a codeword that is closer
than2t + 1 to 0, but O is also a codeword), 80 — e must be equal ta.

As mentioned in the introduction, the syndrome construction has appedmd bs a component of
some cryptographic protocols over quantum and other noisy chanr@3981, Ce97], though it has not
been analyzed the same way.

Both schemes areF", m, m — (n — k) f,t) secure sketches. For the randomized scheme, the intuition
for understanding the entropy loss is as follows: we adandom elements of and publishn elements of
F. The formal proof is simply Lemma 4.5, because additiofFihis a family of transitive isometries. For
the syndrome scheme, this follows from Lemma 3.1, because the syndréme i8) elements ofF.

We thus obtain the following theorem.

8In their interpretation, one commits oby picking a randomu and publishingsS (w; ).
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Theorem 5.1.Given an[n, k, 2t+1] = error-correcting code, one can construct an average-¢&se m, m—
(n—k)f,t) secure sketch, which is efficient if encoding and decoding are effiéiarthermore, if the code
is linear, then the sketch is deterministic and its outpytis- k) symbols long.

In Appendix C we present some generic lower bounds on secure ekedol fuzzy extractors. Recall
that Ar(n,d) denotes the maximum numbéf of codewords possible in a code of distantever n-
character words from an alphabet of sizeThen by Lemma C.1, we obtain that the entropy loss of a secure
sketch for the Hamming metric is at least — log, Ar(n, 2t + 1) when the input is uniform (that is, when
m = nf), becausek (M, t) from Lemma C.1 is in this case equal ty-(n, 2t + 1) (since a code that
correctst Hamming errors must have minimum distance at |@ast 1). This means that if the underlying
code is optimal (i.e.X = Ap(n, 2t + 1)), then the code-offset construction above is optimal for the case of
uniform inputs, because its entropy lossiis— logp K logy, F' = nf —log, K. Of course, we do not know
the exact value ofip(n, d), let alone efficiently decodable codes which meet the bound, for manygsettin
of F', n andd. Nonetheless, the code-offset scheme gets as close to optimality as idgfrssibcoding
constraints. If better efficient codes are invented, then better (i.e., loggor higher error-tolerance) secure
sketches will result.

Fuzzy EXTRACTORS As awarm-up, consider the case whé&mis uniform (n = n) and look at the code-
offset sketch construction: = w — C(z). For Gen(w), outputR = x, P = v. ForRep(w’, P), decode
w’ — P to obtainC(z) and applyC~! to obtainz. The result, quite clearly, is ai", nf, kf,t,0)-fuzzy
extractor, since is truly random and independent.ofiwhenw is random. In fact, this is exactly the usage
proposed by Juels and Wattenberg [JW99] except they viewed the &lmmy extractor as a way to use
to “fuzzy commit” toz, without revealing information about

Unfortunately, the above construction settiRg= = only works for uniform¥/, since otherwise
would leak information about.

In general, we use the construction in Lemmad 4.3 combined with Theorem 5.1aia e following
theorem.

Theorem 5.2. Given anyn, k, 2t + 1] codeC and anym, ¢, there exists an average-cag®t, m, ¢, t, €)-
fuzzy extractor, wheré= m+kf —nf —2log (1) 4+ 2. The generatioiGen and recoveryRep are efficient
if C' has efficient encoding and decoding.

6 Constructions for Set Difference

We now turn to inputs that are subsets of a univérséet n = |U{|. This corresponds to representing an
object by a list of its features. Examples include “minutiae” (ridge meetingseaduhgs) in a fingerprint,
short strings which occur in a long document, or lists of favorite movies.

Recall that the distance between two sets’ is the size of their symmetric differenceis(w, w’) =
lwAw'|. We will denote this metric space BDif(1/). A setw can be viewed as itsharacteristic vectom
{0, 1}", with 1 at positionz € U if = € w, and0 otherwise. Such representation of sets makes set difference
the same as the Hamming metric. However, we will mostly focus on settings whsnauch larger than
the size of thev, so that representing a setby n bits is much less efficient than, say, writing down a list of
elements in thev, which requires onlyw|log n bits.

LARGE VERSUSSMALL UNIVERSES More specifically, we will distinguish two broad categories of
settings. Lets denote the size of the sets that are given as inputs to the secure skdiakryoextractor)
algorithms. Most of this section studies situations where the universe s&izsuper-polynomial in the set
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sizes. We call this the “large universe” setting. In contrast, the “small un&/esstting refers to situations
in whichn = poly(s). We want our various constructions to run in polynomial time and use polyhomia
storage space. In the large universe settingntioé string representation of a set becomes too large to be
usable—we will strive for solutions that are polynomiakiandlog .

In fact, in many applications—for example, when the input is a list of book titiesspossible that the
actual universe is not only large, but also difficult to enumerate, makatiffittult to even find the position
in the characteristic vector correspondingrtee w. In that case, it is natural to enlarge the universe to a
well-understood class—for example, to include all possible strings oftaicdength, whether or not they
are actual book titles. This has the advantage that the positiorirofhe characteristic vector is simply
itself; however, because the universe is now even larger, the dependf running time on becomes even
more important.

FIXED VERSUS FLEXIBLE SET SIZE. In some situations, all objects are represented by feature sets of
exactly the same size while in others the sets may be of arbitrary size. In particular, the origetab s

and the corrupted set’ from which we would like to recover the original need not be of the same ‘Wiee
refer to these two settings fisgedandflexibleset size, respectively. When the set size is fixed, the distance
dis(w, w’) is always evendis(w,w’) = t if and only if w andw’ agree on exactly — £ points. We will
denote the restriction &Dif (/) to s-element subsets [BDif s (/).

SUMMARY . As a point of reference, we will see below thag () — log A(n, 2t + 1, s) is a lower bound
on the entropy loss of any secure sketch for set difference (whetheat the set size is fixed). Recall that
A(n,2t + 1, s) represents the size of the largest code for Hamming space with minimum digtancke

in which every word has weight exactly In the large universe setting, wherex< n, the lower bound is
approximatelyt log n. The relevant lower bounds are discussed at the end of Sectionsd612an

In the following sections we will present several schemes which meet ther loaund. The setting of
small universes is discussed in Section 6.1. We discuss the codearffsgtuction (from Section| 5), as
well as a permutation-based scheme which is tailored to fixed set size. Thedttene is optimal for this
metric, but impractical.

In the remainder of the section, we discuss schemes for the large @ngedting. In Section 6.2 we
give an improved version of the scheme of Juels and Sudan [JS02)ve@sion achieves optimal entropy
loss and storagelog n for fixed set size (notice the entropy loss doesn’t depend on the set, sithough
the running time does). The new scheme provides an exponential improveveethe original parameters
(which are analyzed in Appendix D). Finally, in Section|6.3 we describe tocadapt syndrome decoding
algorithms for BCH codes to our application. The resulting scheme, callek&ui§ has optimal storage
and entropy losslog(n + 1), handles flexible set sizes, and is probably the most practical of thensshe
presented here. Another scheme achieving similar parameters (butflees#y) can be adapted from
information reconciliation literature [MTZ03]; see Section 9 for more details.

We do not discuss fuzzy extractors beyond mentioning here that eastessketch presented in this
section can be converted to a fuzzy extractor using Lemma 4.3. We hasdyaeen an example of such
conversion in Sectian 5.

Table 1 summarizes the constructions discussed in this section.

6.1 Small Universes

When the universe size is polynomialdnthere are a number of natural constructions. The most direct one,
given previous work, is the construction of Juels and Sudan [JSQ&prtuinately, that scheme requires a
fixed set size and achieves relatively poor parameters (see Appendix D
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| | Entropy Loss \ Storage \ Time | Setsize]] Notes |

Juels-Sudan|| tlogn + log ((:‘)/(Z:j)) +2 rlogn poly(rlog(n)) | Fixed r is a parameter
JS02] s<r<n
Generic n —log A(n,2t + 1) n —log A(n,2t + 1) poly(n) Flexible || ent. lossx tlog(n)
syndrome (for linear codes) whent < n
Permutation-|| log () — log A(n,2t + 1, s) O(nlogn) poly(n) Fixed ent. lossx tlogn
based whent < n
Improved tlogn tlogn poly(slogn) Fixed
JS
PinSketch tlog(n + 1) tlog(n +1) poly(slogn) | Flexible See Section 6.3
for running time

Table 1. Summary of Secure Sketches for Set Difference.

We suggest two possible constructions: first, to represent setbiastrings and use the constructions of
Section 5. The second construction, presented below, requires aéikside but achieves slightly improved
parameters by going through “constant-weight” codes.

PERMUTATION-BASED SKETCH. Recall the general construction of Section 4.2 for transitive metric space
Let IT be a set of all permutations di. Givenn € II, make it a permutation oBDif¢(/) naturally:
m(w) = {m(z)|x € w}. This makedI is a family of transitive isometries &8Dif;({/), and thus the results
of Section 4.2 apply.

Let C C {0,1}" be anyn, k,2t + 1] binary code in which all words have weight exactly Such
codes have been studied extensively (see, e.g., [AVZ00, BSSS%ktonmary of known upper and lower
bounds). View elements of the code as sets of sizé/e obtain the following scheme, which produces a
sketch of lengttO(n log n).

Construction 4 (Permutation-Based Sketchn inputw C U of sizes, chooseh C U/ at random from
the codeC, and choose a random permutation ¢/ — U such thatr(w) = b (that is, choose a random
matching betweemw andb and a random matching betwegh— w andi/ — b). OutputSS(w) = = (say,
by listing (1), ..., m(n)). To recoverw from w’ such thadis(w,w’) < t andw, computel = 7~ (w’),
decode the characteristic vectortoto obtainb, and outputv = 7(b).

This construction is efficient as long as decoding is efficient (everytbisg takes time(n log n)).
By Lemma 4.5, its entropy loss Isg () — k: here|[II| = n! andT’ = s!(n — s)!, solog|II| — logI" =
logn!/(s!(n — s)!).
COMPARING THEHAMMING SCHEME WITH THE PERMUTATION SCHEME. The code-offset construction
was shown to have entropy logs— log A(n, 2t + 1) if an optimal code is used; the random permutation
scheme has entropy loksg; (Z) —log A(n, 2t + 1, s) for an optimal code. The Bassalygo-Elias inequality
(see [vL92]) shows that the bound on the random permutation schemwagsaht least as good as the
bound on the code offset schemé(n,d) - 27" < A(n,d, s) - (’;)_1. This implies thaty — log A(n,d) >
log (Z) —log A(n, d, s). Moreover, standard packing arguments give better constructionssfant-weight
codes than they do of ordinary codsln fact, the random permutations scheme is optimal for this metric,
just as the code-offset scheme is optimal for the Hamming metric.

We show this as follows. Restri¢tto be even, becaugks(w, w’) is always even ifw| = |w’|. Then
the minimum distance of a code ov&Dif(U{) that corrects up to errors must be at lea8t + 1.Indeed,

9This comes from the fact that the intersection of a ball of radiusth the set of all words of weight is much smaller than
the ball of radius itself.
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suppose not. Then take two codewordsandcs such thatdis(c;, ca) < 2t. There arek elements inc;
that are not in, (call their sete; — ¢2), andk elements inc, that are not ine; (call their setcs — ¢1), with

k < t. Starting withc;, removet/2 elements of; — ¢ and add:/2 elements otz — ¢; to obtain a set
w (note that here we are using thais even; ifk < ¢/2, then usek elements). Thedis(c;,w) < ¢ and
dis(cg, w) < t, and so if the received word is, the receiver cannot be certain whether the sent word-yas
or c2, and hence cannot correcerrors.

Therefore by Lemma C.1, we get that the entropy loss of a secure skesthbmat leastog (Z) —
log A(n,2t+1, s), in the case of a uniform input. Thus in principle, itis better to use the random permuta-
tion scheme. Nonetheless, there are caveats. First, we do not kreoyli@itly constructed constant-weight
codes that beat the Elias-Bassalygo inequality and would thus lead to bdtipyeloss for the random
permutation scheme than for the Hamming scheme (see [BSSS90] for moragiructions of constant-
weight codes and [AVZ00] for upper bounds). Second, much moned&k about efficient implementation
of decoding for ordinary codes than for constant-weight codegxXample, one can find off-the-shelf hard-
ware and software for decoding many binary codes. In practice, thentitag-based scheme is likely to be
more useful.

6.2 Improving the Construction of Juels and Sudan

We now turn to the large universe setting, wheris super-polynomial in the set sizeand we would like
operations to be polynomial inandlog n.

Juels and Sudan [JS02] proposed a secure sketch for the segmliffenetric with fixed set size (called
a “fuzzy vault” in that paper). We present their original scheme here avithnalysis of the entropy loss in
Appendix D. In particular, our analysis shows that the original scheragbad entropy loss only when the
storage space is very large.

We suggest an improved version of the Juels-Sudan scheme which is simgpkecldeves much better
parameters. The entropy loss and storage space of the new schemtharedn, which is optimal. (The
same parameters are also achieved by the BCH-based constructiontEingkeection 6.3.) Our scheme
has the advantage of being even simpler to analyze, and the computatieime@les. As with the original
Juels-Sudan scheme, we assume |I/| is a prime power and work ovef = GF(n).

An intuition for the scheme is that the numbets, ..., ¥, from the JS scheme need not be chosen at
random. One can instead evaluate theny;as p/(x;) for some polynomiap’. One can then represent the
entire list of pairgx;, y;) implicitly, using only a few of the coefficients @f. The new sketch is determin-
istic (this was not the case for our preliminary version in [DRS04]). Its impteat®n is available [HIR].

Construction 5 (Improved JS Secure Sketch for Sets of Sige
To computeSS(w):

1. Letp’() be the unique monic polynomial of degree exastuch thap'(xz) = 0 for all = € w.

(Thatis, lety/(2) ' [1,en(z — 2).)

2. Output the coefficients gf () of degrees — 1 down tos — t.
This is equivalent to computing and outputting the firsymmetric polynomials of the values i,
ie. ifw={xy,...,xs}, then output

e Yy, Y (m)

i i#j SCls],|S|=t \i€S

To computeRec(w’, p'), wherew’ = {ay, aq, ..., as},
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1. Create a new polynomiak;.1, of degrees which shares the top+ 1 coefficients ofp/, that is let
def s—1 :
Phigh(2) = 2+ > 12, aiz".

2. Evaluatepyig, on all points inw’ to obtains pairs(a;, b;).

3. Use[s, s — t,t + 1], Reed-Solomon decoding (see, e.g., [Bla83, vL92]) to search for apalial
plow Of degrees — ¢ — 1 such thatp, (a;) = b; for at leasts — ¢/2 of the a; values. If no such
polynomial exists, then stop and output “fail.”

4. Output the list of zeroes (roots) of the polynomigl,, — piow (S€€, €.9., [Sho05] for root-finding
algorithms; they can be sped up by first factoring out the known rootsrelya(z — a;) for thes —¢/2
values ofa; that were not deemed erroneous in the previous step).

To see that this secure sketch can toletatet difference errors, supposie(w, w’) < ¢. Letp’ be asin
the sketch algorithm, that j$(2) = [],,,(¢# — ). The polynomial’ is monic, that is its leading term is
z®. We can divide the remaining coefficients into two groups: the high coeftieenoted.; ¢, ..., as_1,
and the low coefficients, denoted by; ..., bs_+_1:

s—1 s—t—1
p(z) = 2+ Z a;?' + Z bz
i=0

i=s—t =
———
phigh(z) Q(z)

We can writep” aspnigh + ¢ Whereq has degree — t — 1. The recovery algorithm gets the coefficients of
Phigh as input. For any point in w, we haved = p'(z) = puigh(z) + ¢(). Thus,pyie, and—gq agree at all
points inw. Since the se intersectsy’ in at leasts —¢/2 points, the polynomial-¢ satisfies the conditions
of Step 3 inRec. That polynomial is unique, since no two distinct polynomials of degree— 1 can get the
correcth; on more thars —t/2 a;s (else, they agree on at least ¢ points, which is impossible). Therefore,
the recovered polynomial,,, must be—g; hencepyign(x) — piow(x) = p'(x). Thus,Rec computes the
correctp’ and therefore finds correctly the setwhich consists of the roots of.

Since the output i8S is ¢ field elements, the entropy loss of the scheme is at mogt: by Lemma 3.1.
(We will see below that this bound is tight, since any sketch must lose attleast in some situations.)
We have proved:

Theorem 6.1(Analysis of Improved JS)Construction 5 is an average-cageDif s (/), m, m — tlogn,t)
secure sketch. The entropy loss and storage of the scheme aretatiogos and both the sketch generation
SS() and the recovery procedufRec() run in time polynomial irs, t andlog n.

LOWERBOUNDS FORFIXED SET SIZE IN A LARGE UNIVERSE. The short length of the sketch makes this
scheme feasible for essentially any ratio of set size to universe sizenjwaeedlog n to be polynomial in
s). Moreover, for large universes the entropy loks n is essentially optimal for uniform inputs (i.e., when
m = log (). We show this as follows. As already mentioned in the Section 6.1, Lemma C.X shatv
for a uniformly distributed input, the best possible entropy loss is m’ > log (") — log A(n, 2t + 1, s).
By Theorem 12 of Agrellet al. [AVZ00], A(n,2t + 2,s) < E‘t; Noting thatA(n,2t + 1,s) =
s—t

A(n,2t + 2, s) because distances $Dif ;(1/) are even, the entropy loss is at least:

m —m' > log <Z> —log A(n,2t + 1, 5) > log (Z) ~log <<Sr_lt>/<sit>> ~log <n—:+t>.

Whenn > s, this last quantity is roughlylog n, as desired.
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6.3 Large Universes via the Hamming Metric: Sublinear-Time Deoding

In this section, we show that the syndrome construction of Section 5 cactindadapted for small sets in
large universe, using specific properties of algebraic codes. Wehuail shat BCH codes, which contain
Hamming and Reed-Solomon codes as special cases, have these mopsmigposed to the constructions
of the previous section, the construction of this section is flexible and capaimput sets of any size.

Thus we obtain a sketch for sets of flexible size, with entropy loss andystoleg(n + 1). We will
assume that is one less than a power of 2: = 2" — 1 for some integefn, and will identify/ with the
nonzero elements of the binary finite field of degneel/ = GF(2™)*.

SYNDROME MANIPULATION FOR SMALL -WEIGHT WORDS.  Suppose now that we have a small set
w C U of sizes, wheren > s. Let z,, denote the characteristic vector of (see the beginning of
Section 6). Then the syndrome construction says$B8&ty) = syn(z,,). This is an(n — k)-bit quantity.
Note that the syndrome construction gives us no special advantageéhevesde-offset construction when
the universe is small: storing thebit x,, + C(r) for a randomk-bit » is not a problem. However, it's a
substantial improvement when>> n — k.

If we want to usesyn(z,,) as the sketch ofy, then we must choose a code with- £ very small. In
particular, the entropy af is at mostlog (') &~ slogn, and so the entropy loss— k had better be at most
slogn. Binary BCH codes are suitable for our purposes: they are a family,@f J], linear codes with
0 =2t +1andk = n — tm (assumingr = 2™ — 1) (see, e.g. [vL92]). These codes are optimaltfex n
by the Hamming bound, which implies thiat< n — log (’}) [vL92].1° Using the syndrome sketch with a
BCH codeC, we get entropy loss — k& = tlog(n + 1), essentially the same as thieg n of the improved
Juels-Sudan scheme (recall that 2¢ + 1 allows us to correct set difference errors).

The only problem is that the scheme appears to require computatioftimesince we must compute
syn(x,) = Hzy, and, later, run a decoding algorithm to recowgr. For BCH codes, this difficulty can be
overcome. A word of small weight can be described by listing the positions on which it is nonzero. We
call this description theupportof x,, and writesupp(z,,) (note thatupp(x,,) = w; see the discussion of
enlarging the universe appropriately at the beginning of Section 6).

The following lemma holds for general BCH codes (which include binary BG#es and Reed-Solomon
codes as special cases). We state it for binary codes since that isategant to the application:

Lemma 6.2. For a [n, k, 6] binary BCH code” one can compute:
e syn(z), givensupp(x), in time polynomial iny, log n, and |supp(z)|
e supp(x), givensyn(x) (whenz has weight at most — 1)/2), in time polynomial iy andlog n.

The proof of Lemma 6.2 requires a careful reworking of the standard B€coding algorithm. The
details are presented in Appendix E. For now, we present the resultingessketch for set difference.

Construction 6 (PinSketch)

To computeSS(w) = syn(xy):
1. Lets; = ., =" (computations inGF (2™)).
2. OutputSS(w) = (s1, 83, S5, -, S20—1)-

To recoverRec(w', (s1, 83, - .., S2t—1)):

19The Hamming bound is based on the observation that for any code afickstathe balls of radiug (6 — 1)/2] centered at
various codewords must be disjoint. Each such ball conais’;, , ) points, and sa” ((5_1y/2)) < 2" Inourcase = 2t+1

and so the bound yields < n — log (7).
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Computg(sy, 5, ..., Sy_1) = SS(w') = syn(zyy);

Leto; = s, — s; (in GF(2™), so “—" is the same as+").

Computesupp(v) such thatyn(v) = (01,03, ...,02—1) and|supp(v)| < ¢t by Lemma 6.2.
If dis(w, w’) < t, thensupp(v) = wAw'. Thus, outpuiv = w’ Asupp(v).

PwnbdPE

An implementation of this construction, including the reworked BCH decodirayidign, is available [HIR].
The bound on entropy loss is easy to see: the outgubign + 1) bits long, and hence the entropy loss
is at most log(n + 1) by Lemma 3.1. We obtain:

Theorem 6.3.PinSketch is an average-ca&Dif (U/ ), m, m—t log(n+1), t) secure sketch for set difference
with storagef log(n + 1). The algorithmsSS and Rec both run in time polynomial im andlog n.

7 Constructions for Edit Distance

The space of interest in this section is the spAtdor some alphabeF, with distance between two strings
defined as the number of character insertions and deletions neededftmgene string to the other. Denote
this space b¥ditz(n). Let F' = | F]|.

First, note that applying the generic approach for transitive metric sggasesith the Hamming space
and the set difference space for small universe sizes) does nkthgoe, because the edit metric is not
known to be transitive. Instead, we consider embeddings of the edit metfit, ®}" into the Hamming or
set-difference metric of much larger dimension. We look at two types: statala-distortion embeddings,
and “biometric” embeddings as defined in Section 4.3.

For the binary edit distance space of dimensignve obtain secure sketches and fuzzy extractors cor-
rectingt errors with entropy loss roughly:°"), using a standard embedding, ah@8¢/tn log n, using a
relaxed embedding. The first technique works better whisrsmall, say»!~7 for a constanty > 0. The
second technique is better wheis large; it is meaningful roughly as long as ﬁ.

7.1 Low-Distortion Embeddings

A (standard) embedding with distortial is an injectiony) : M; — M,y such that for any two points
z,y € My, the ratiow is at least 1 and at mo#2.

When the preliminary version of this paper appeared [DRS04], no mdatembeddings were known
mapping edit distance int&y or the Hamming metric (i.e. known embeddings had distortign)). Re-
cently, Ostrovsky and Rabani [OR05] gave an embedding of the edit nes®icF = {0, 1} into ¢; with
subpolynomial distortion. It is an injective, polynomial-time computable embegddihigh can in be inter-
preted as mapping to the Hamming spé6el }¢ whered = poly(n).@

Fact 7.1([ORO5]). There is a polynomial-time computable embedding : Edit{o 11(n) — {0, 1}p01Y(n)
with distortion Deq(n) & 20(Viegnloglogn)

We can compose this embedding with the fuzzy extractor constructions fétahmening distance to
obtain a fuzzy extractor for edit distance which will be good whdahe number of errors to be corrected, is
quite small. Recall that instantiating the syndrome fuzzy extractor constry@morem 5.2) with a BCH
code allows one to corre¢terrors out ofd at the cost of’ log d + 2 log (%) — 2 bits of entropy.

1The embedding of [OR05] produces strings of integers in the space, O(logn)}*°¥ ™, equipped with; distance. One
can convert this into the Hamming metric with only a logarithmic blowup in lengtrepyesenting each integer in unary.
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Construction 7. For any lengtm and error threshold let).q be the embedding of Fact 7.1 frdfdityo 1y (n)
into {0, 1} (whered = poly(n)) and letsyn be the syndrome of a BCH code correctihg- tD.q(n) errors
in {0,1}%. Let {H,}.,cx be a family of universal hash functions froff, 1}¢ to {0, 1}¢ for some/. To

computeGen on inputw € Edity ;,(n), pick a randome and output

R= Ha:(@bed(w)) P = (Syn(wed(w))’x) :

To computeRep on inputsw’ and P = (s, z-), computey = Rec(1eq(w’), s), whereRec is from Construc-
tion[3, and outpul? = H,(y).

Because).q is injective, a secure sketch can similarly be construc&{w) = syn(¢(w)), and to
recoverw from w’ ands, computey ;' (Rec(1eqa(w'))). However, it is not known to be efficient, because it
is not known how to compute_; efficiently.

Proposition 7.2. For any n, t,m, there is an average-casé&dit, ;1(n), m, m’, t)-secure sketch and an
efficient average-cas&dit(g 1} (n), m, £, ¢, e)-fuzzy extractor where)' = m — t20(vicenloglogn) gndy =

m’ —2log (%) + 2. In particular, for anya < 1, there exists an efficient fuzzy extractor toleratirfgerrors

with entropy los: o) + 21og ().

Proof. Construction 7 is the same as the construction of Thebrem 5.2 (instantiatedB@H-aode-based
syndrome construction), acting afiq(w). Because/).q is injective, the min-entropy ofi.q(w) is the
same as the min-entropy. of w. The entropy loss in Construction 3 instantiated with BCH codes is is
t'logd = t20Wlognloglogn) 160 poly(n). Because2?(Vieenloglogn) grows faster tharog n, this is the
same a$20(\/10gn10g logn)_ n

Note that the peculiar-looking distortion function from 7.1 increases slowly than any polyno-
mial in n, but still faster than any polynomial ing n. In sharp contrast, the best lower bound states that any
embedding oEdity ;1(n) into ¢; (and hence Hamming) must have distortion at l€a3bg n/ log logn)
[AKO7]. Closing the gap between the two bounds remains an open problem.

GENERAL ALPHABETS. To extend the above construction to genefalwe represent each character of
F as a string ofog F bits. This is an embedding™ into {0, 1}"!°8 " which increases edit distance by a
factor of at mostog F'. Thent’ = ¢(log F')D.q(n) andd = poly(n,log F'). Using these quantities, we get
the generalization of this Proposition 7.2 for larger alphabets (again, lsathe embedding) by changing

the formula form’ to m’ = m — t(log F)20(V1os(nlog F) loglog(nlog )

7.2 Relaxed Embeddings for the Edit Metric

In this section, we show that a relaxed notion of embedding, call@draetric embeddingh Section 4.3,
can produce fuzzy extractors and secure sketches that are betteritabone can get from the embedding
of [OR05] whent is large (they are also much simpler algorithmically, which makes them more piactica
We first discuss fuzzy extractors and later extend the technique tcesslcetches.

Fuzzy EXTRACTORS Recall that unlike low-distortion embeddings, biometric embeddings do met ca
about relative distances, as long as points that were “close” (closet;thd@o not become “distant” (farther
apart thant;). The only additional requirement of a biometric embedding is that it presssme min-
entropy: we do not want too many points to collide together. We now dessuitiean embedding from the
edit distance to the set difference.
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A c-shingle(Broder, [Bro97]) is a lengthl-consecutive substring of a given strimg A c-shingling[Bro97]
of a stringw of lengthn is the set (ignoring order or repetition) of &t — ¢ + 1) ¢-shingles ofw. (For
instance, a 3-shingling of “abcdecdeah™{isbc, bcd, cde, dec, ecd, dea, Eahhus, the range of the
shingling operation consists of all nonempty subsets of size atmest + 1 of F¢. Let SDif(F*) stand
for the set difference metric over subsets7f andSH. stand for thec-shingling map fromEdit(n) to
SDif (F¢). We now show tha$H, is a good biometric embedding.

Lemma 7.3. For anyc, SH.. is an average-cas@, to = (2c — 1)t1,m1,mo = my — [2]logy(n —c+1))-
biometric embedding dditz(n) into SDif (F¢).

Proof. Let w,w’ € Editg(n) be such thatlis(w,w’) < ¢; andI be the sequence of at mastinser-
tions and deletions that transformsinto w’. It is easy to see that each character deletion or insertion
adds at most2c — 1) to the symmetric difference betwe&t.(w) and SH.(w’), which implies that
dis(SH.(w), SH.(w")) < (2¢ — 1)t1, as needed.

Forw € F™, defineg.(w) as follows. ComputéH_.(w) and store the resulting shingles in lexicographic
orderhy ... hy (k < n —c+1). Next, naturally partitionv into [n/c| c-shingless; . . . sy, ], all disjoint
except for (possibly) the last two, which overlap &y:/c| — n characters. Next, for < j < [n/c], set
p; to be the index € {0...k} such thats; = h;. In other wordsp; tells the index of thej-th disjoint
shingle ofw in the alphabetically-orderekd-setSH.(w). Setg.(w) = (p1,-..,pP[n/e)- (FOr instance,
g3(“abcdecdeah’ = (1,5,4,6), representing the alphabetical order of “abc”, “dec”, “dea” anahein
SH3(“abcdecdeal’) The number of possible values fgr(w) is at most(n — ¢ + 1)/ ¢!, andw can be
completely recovered fro®H.(w) andg.(w).

Now, assuméV is any distribution of min-entropy at least; on Edit+(n). Applying Lemma 2.2(b),
we getH oo (W | go(W)) > my — [%]1logy(n —c+1). SincePr(W = w | g.(W) = g) = Pr(SH.(W) =
SH.(w) | g.(W) = g) (because givep.(w), SH.(w) uniquely determines and vice versa), by applying
the definition ofH.,, we obtainH . (SH.(W)) > Hoo (SH(W) | g(W)) = Hoo (W | go(W)). The same
proof holds for average min-entropy, conditioned on some auxiliary nmégion /. O]

By Theorem 6.8, for universé&* of size F** and distance threshold = (2¢ — 1)¢;, we can construct
a secure sketch for the set difference metric with entropydgdeg(F° + 1)] ([-| because Theorem 6.3
requires the universe size to be one less than a power of 2). By Lemmaeican obtain a fuzzy extractor
from such a sketch, with additional entropy l@dsg (%) —2. Applying Lemma 4.6 to the above embedding
and this fuzzy extractor, we obtain a fuzzy extractorfdit ~(n), any input entropyn, any distance, and
any security parameter with the following entropy loss:

n 1
[z—‘ logy(n —c+1) + (2¢ — D)t[log(F° 4+ 1)] + 2log <e> -2

(the first component of the entropy loss comes from the embedding, thedséom the secure sketch for
set difference, and the third from the extractor). The above sequanemmas results in the following

construction, parameterized by shingle lengénd a family of universal hash functiohs= {SDif (F¢) —
{0,1}'} e x, wherel is equal to the input entropy. minus the entropy loss above.

Construction 8 (Fuzzy Extractor for Edit Distance)
To computeGen(w) for |w| = n:

1. ComputéSH,.(w) by computingn — ¢ + 1 shingles(vy, ve, . .., v,—+1) @and removing duplicates to
form the shingle set from w.
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2. Computes = syn(z,) as in Construction 6.

3. Select a hash functioH, € H and outpu{ R = H,(v), P = (s, x)).
To computeRep(w/’, (s, x)):

1. ComputéSH.(w’) as above to gat'.

2. UseRec(v', s) from in Construction 6 to recover.

3. OutputR = H(v).

We thus obtain the following theorem.

Theorem 7.4. For anyn,m,c and0 < e < 1, there is an efficient average-caséditr(n), m,m —
[2]logy(n — ¢+ 1) — (2¢ — 1)t[log(F® + 1)] — 2log (1) + 2, ¢, €)-fuzzy extractor.

Note that the choice afis a parameter; by ignoring| and replacing: — ¢ + 1 with n, 2¢ — 1 with 2¢
andF°¢ + 1 with ¢, we get that the minimum entropy loss occurs near

nlogn 1/3
C =
4t log F
and is abou?.38 (tlog F')'/3 (nlog n)?® (2.38 is really /4+1//2). In particular, if the original string has
a linear amount of entrop(n log F), then we can tolerate= Q(nlog? F/ log? n) insertions and deletions
while extractingd(n log F') — 2 log (%) bits. The number of bits extracted is linear; if the string lengih

polynomial in the alphabet siz&, then the number of errors tolerated is linear also.

SECURE SKETCHES Observe that the proof of Lemma 7.3 actually demonstrates that our biomatric e
bedding based on shingling is an embedding with recovery informgtio®bserve also that it is easy to
reconstructw from SH.(w) and g.(w). Finally, note that PinSketch (Construction 6) is an average-case
secure sketch (as are all secure sketches in this work). Thus, comBingorem 6.3 with Lemma 4.7 we
obtain the following theorem.

Construction 9 (Secure Sketch for Edit Distanceyor SS(w), computev = SH.(w) ands; = syn(z,) as
in Construction 8. Compute, = g.(w), writing eachp; as a string offlog n| bits. Outputs = (s1, s2).
ForRec(w’, (s1, s2)), recovern as in Construction 8, sort it in alphabetical order, and recoMey stringing
along elements of according to indices iR-.

Theorem 7.5. For any n,m,c and0 < ¢ < 1, there is an efficient average-caséditr(n), m,m —
[%]1logy(n — c+ 1) — (2¢ — 1)t[log(F° + 1)],t) secure sketch.

The discussion about optimal valuescdfom above applies equally here.

Remark 1. In our definitions of secure sketches and fuzzy extractors, we exfjthe originakv and the
(potentially) modifiedw’ to come from the same spadd. This requirement was for simplicity of exposi-
tion. We can allomv’ to come from a larger set, as long as distance from well-defined. In the case of
edit distance, for instance;’ can be shorter or longer than all the above results will apply as long as it is
still within ¢ insertions and deletions.
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8 Probabilistic Notions of Correctness

The error model considered so far in this work is very strong: we redufat secure sketches and fuzzy
extractors accemverysecretw’ within distance of the original inputw, with no probability of error.

Such a stringent model is useful as it makes no assumptions on either thetexhastic properties of
the error process or the adversary’s computational limits. However, Lethihshows that secure sketches
(and fuzzy extractors) correctingerrors can only be as “good” as error-correcting codes with minimum
distance2t + 1. By slightly relaxing the correctness condition, we will see that one caretelenany more
errors. For example, there is no good code which can corrgtterrors in the binary Hamming metric:
by the Plotkin bound (see, e.g., [Sud01, Lecture 8]) a code with minimum desgneater than/2 has at
most2n codewords. Thus, there is no secure sketch with residual entndpy log n which can correct
n/4 errors with probability 1. However, with the relaxed notions of correctrigdow, one can tolerate
arbitrarily close ton/2 errors, i.e., correotz(% — ) errors for any constant > 0, and still have residual
entropyQ(n).

In this section, we discuss three relaxed error models and show howrbkgeiions of the previous
sections can be modified to gain greater error-correction in these modelsilMbcus on secure sketches
for the binary Hamming metric. The same constructions yield fuzzy extradigregmma 4.1). Many of
the observations here also apply to metrics other than Hamming.

A common point is that we will only require that the a corrupted inpube recovered with probability at
leastl —a < 1 (the probability space varies). We describe each model in terms of the adtlagsumptions
made on the error process. We describe constructions for each makelsabsequent sections.

Random Errors. Assume there is &nowndistribution on the errors which occur in the data. For the
Hamming metric, the most common distribution is the binary symmetric chanfi€l,: each bit of
the input is flipped with probability and left untouched with probability — p. We require that for
any inputw, Rec(W’,SS(w)) = w with probability at least — « over the coins 06S and overlV’
drawn applying the noise distribution te.

In that case, one can correct an error rate up to Shannon’s boumaisy channel coding. This bound
is tight. Unfortunately, the assumption of a known noise process is too dwongpst applications:
there is no reason to believe we understand the exact distribution os ain@h occur in complex
data such as biometri@.However, it provides a useful baseline by which to measure resultgtfer o
models.

Input-dependent Errors. The errors are adversarial, subject only to the conditions that (a)ridvel&i(w, w')
is bounded to a maximum magnitudetpfand (b) the corrupted wordepends only on the input,
and not on the secure sket88(w). Here we require that for any pair, w’ at distance at most we
haveRec(w’, SS(w)) = w with probability at least — « over the coins 08S.

This model encompasses any complex noise process which has beemdlis@ever introduce more
thant errors. Unlike the assumption of a particular distribution on the noise, thedomu magnitude
can be checked experimentally. Perhaps surprisingly, in this model wileaate just as large an
error rate as in the model of random errors. That is, we can tolerate@nrate up to Shannon’s
coding bound and no more.

2Since the assumption here only plays a role in correctness, it is still maserrable than assuming we know exact distributions
on the data in proofs ofecrecy However, in both cases, we would like to enlarge the class of distributmmeHich we can
provably satisfy the definition of security.
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Computationally-bounded Errors. The errors are adversarial and may depend on#aihd the publicly
stored informatiorsS(w). However, we assume that the errors are introduced by a processraféxd
computational power. Thatis, there is a probabilistic circuit of polynomial Gizthe lengtin) which
computesy’ from w. The adversary cannot, for example, forge a digital signature aredtbasrror
pattern on the signature.

Itis not clear whether this model allows correcting errors up to the Shammamd, as in the two mod-
els above. The question is related to open questions on the constructifficiohdy list-decodable
codes. However, when the error rate is either very high or very low,ttheeappropriate list-decodable
codes exist and we can indeed match the Shannon bound.

ANALOGUES FORNOISY CHANNELS AND THE HAMMING METRIC. Models analogous to the ones
above have been studied in the literature on codes for noisy binary elsagwith the Hamming met-
ric). Random errors and computationally-bounded errors both makeuwsbgense in the coding con-
text [Sha48, MPSWO05]. The second model — input-dependent erratses not immediately make sense
in a coding situation, since there is no data other than the transmitted codewattdah errors could de-
pend. Nonetheless, there is a natural, analogous model for noisyetbanne can allow the sender and
receiver to share either (1) common, secret random coins (see [R&B004] and references therein) or
(2) a side channel with which they can communicate a small number of neisgsfcret bits [Gur03].

Existing results on these three models for the Hamming metric can be transpootgdctuntext using
the code-offset construction:

SS(w;z) =wd C(x).

Roughly, any code which corrects errors in the models above will lead &x@res sketch (resp. fuzzy
extractor) which corrects errors in the model. We explore the consegsiéor each of the three models in
the next sections.

8.1 Random Errors

The random error model was famously considered by Shannon [Fhdd&howed that for any discrete,
memoryless channel, the rate at which information can be reliably transmittearactérized by the maxi-
mum mutual information between the inputs and outputs of the channel. For #irg birmmetric channel
with crossover probability, this means that there exist codes encodirgts inton bits, tolerating error
probability p in each bit if and only if

Y1) - o)

whereh(p) = —plogp — (1 — p)log(1 — p) andd(n) = o(1). Computationally efficient codes achieving
this bound were found later, most notably by Forney [For66]. We cantlus code-offset construction
SS(w;z) = w @ C(x) with an appropriate concatenated code [For66] or, equivalesiyy) = syn-(w)
since the codes can be linear. We obtain:

Proposition 8.1. For any error rate0 < p < 1/2 and constant > 0, for large enoughn there exist
secure sketches with entropy Idésp) + d)n, which correct error rate op in the data with high probability
(roughly2~¢™ for a constants > 0).

The probability here is taken over tleerorsonly (the distribution on input strings can be arbitrary).

The quantityh(p) is less than 1 for any in the range(0,1/2). In particular, one can get non-trivial
secure sketches even for a very high error paés long as it is less thay/2; in contrast, no secure sketch
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which corrects errors with probability 1 can tolerate- n/4. Note that several other works on biometric
cryptosystems consider the model of randomized errors and obtain sinsldtsrethough the analyses
assume that the distribution on inputs is uniform [TG04, CZ04].

A MATCHING IMPOSSIBILITY RESULT. The bound above is tight. The matching impossibility result also
applies to input-dependent and computationally-bounded errors, sindem errors are a special case of
both more complex models.

We start with an intuitive argument: If a secure sketch allows recoverarg fandom errors with high
probability, than it must contain enough information aboub describe the error pattern (since giverand
SS(w), one can recover the error pattern with high probability). Describing tieome ofn independent
coin flips with probabilityp of heads requiresh(p) bits, and so the sketch must reveal(p) bits aboutw.

In fact, that argument simply shows thédt(p) bits of Shannon information are leaked aboutwhereas
we are concerned with min-entropy loss as defined in Section 3. To makeythment more formal, I’
be uniform over{0, 1}"™ and observe that with high probability over the output of the sketching algarith
v = SS(w), the conditional distributioV, = W|ssy)—, forms a good code for the binary symmetric
channel. That is, for most valuesif we sample a random string from W{ssy-)—, and send it through a
binary symmetric channel, we will be able to recover the correct valu€hat means there exists some
such that both (a)V/, is a good code and (B, (W,) is close taH. (W|SS(W)). Shannon’s noisy coding
theorem says that such a code can have entropy atrbst h(p) + o(1)). Thus the construction above is
optimal:

Proposition 8.2. For any error rate0 < p < 1/2, any secure sketc$t which corrects random errors (with
rate p) with probability at least2/3 has entropy loss at leasi(h(p) — o(1)); that is Hoo (W[SS(W)) <
n(1l — h(p) — o(1)) whenW is drawn uniformly from{0, 1}".

8.2 Randomizing Input-dependent Errors

Assuming errors distributed randomly according to a known distribution sgergdimiting. In the Ham-
ming metric, one can construct a secure sketch which achieves the satt@sesith random errors for
every error process where the magnitude of the error is boundedngsi$othe errors are independent of
the output ofSS(1W). The same technique was used previously by Bennett et al. [BBR8&6pa@d, in a
slightly different context, Lipton [Lip94, DGLO4].

The idea is to choose a random permutation[n| — [n], permute the bits ofv before applying the
sketch, and store the permutatioralong withSS(7(w)). Specifically, letC be a linear code toleratingza
fraction of random errors with redundaney- k ~ nh(p). Let

SS(w;m) = (7, sync(m(w)))

wherer : [n] — [n] and, forw = wy - - -w, € {0,1}", 7(w) denotes the permuted string )wy (o) - - Wr(n)-
The recovery algorithm operates in the obvious way: it first permutes pluirt according tar, then runs
the usual syndrome recovery algorithm to recaven).

For any particular paitv, w’, the differencew @ w’ will be mapped to a random vector of the same
weight by, and any code for the binary symmetric channel (with gate ¢ /n) will correct such an error
with high probability.

Thus we can construct a sketch with entropy la$5(¢/n) — o(1)) which corrects any flipped bits
with high probability. This is optimal by the lower bound for random erroro®sition 8.2), since a
sketch for data-dependent errors will also correct random eritdssalso possible to reduce the amount of
randomness, so that t&eof the sketch meets the same optimal bound [Smi07].
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An alternative approach to input-dependent errors is discussed irsthgalagraph of Section 8.3.

8.3 Handling Computationally-Bounded Errors Via List Decoding

As mentioned above, many results on noisy coding for other error modelanmrthg space extend to
secure sketches. The previous sections discussed random, andhized, errors. In this section, we
discuss constructions [GurQ3, Lan04, MPSWO05] which transforistalecodablecode, defined below,
into uniquely decodable codes for a particular error model. These dramsfions can also be used in the
setting of secure sketches, leading to better tolerance of computationafigdsberrors. For some ranges
of parameters, this yields optimal sketches, that is, sketches which medtahiedd bound on the fraction
of tolerated errors.

LisT-DeEcoDABLE CODES. A codeC' in a metric spaceM is calledlist-decodablewith list size L and
distance if for every pointx € M, there are at modt codewords within distanceof M. A list-decoding
algorithm takes as input a word and returns the corresponding list, ¢z, ... of codewords. The most
interesting setting is wheh is a small polynomial (in the description sik& |M|), and there exists an
efficient list-decoding algorithm. It is then feasible for an algorithm to ga @azh word in the list and
accept if it has some desirable property. There are many examplesto€ades for the Hamming space;
for a survey see Guruswami's thesis [Gur01]. Recently there hasdigeificant progress in constructing
list-decodable codes for large alphabets, e.g. [PV05, GR06].

Similarly, we can define bst-decodable secure sketefith size L and distance as follows: for any pair
of wordsw, w’ € M at distance at most the algorithmRec(w’, SS(w)) returns a list of at mosk points
in M; if dis(w,w’) < t, then one of the words in the list must beitself. The simplest way to obtain a
list-decodable secure sketch is to use the code-offset constructi@ctdi$5 with a list-decodable code for
the Hamming space. One obtains a different example by running the improgksdSudan scheme for set
difference (Construction/5), replacing ordinary decoding of RegldfBon codes with list decoding. This
yields a significant improvement in the number of errors tolerated at the gfriegurning a list of possible
candidates for the original secret.

SIEVING THE LIST. Given a list-decodable secure skef& all that's needed is to store some additional in-
formation which allows the receiver to disambiguatérom the list. Let's suggestively name the additional
information7ag(w; R), whereR is some additional randomness (perhaps a key). Given a list-decodable
codeC, the sketch will typically look like:

SS(w;z) = (w @ C(x), Tag(w) ).

On inputsw’ and(A, tag), the recovery algorithm consists of running the list decoding algorithm’anA
to obtain a list of possible codeword¥z,),...,C(x). There is a corresponding list of candidate inputs
w1, ..., wr, Wherew; = C(x;)®A, and the algorithm outputs the firsf in the list such thal'ag(w;) = tag.
We will choose the functiofi'ag() so that the adversary can not arrange to have two values in the list with
valid tags.

We consider twd ag() functions, inspired by [Gur03, Lan04, MPSWO05].

1. Recall that for computationally bounded errors, the corrupted siridgpends obothw andSS(w),
butw’ is computed by a probabilistic circuit of size polynomiakin

ConsiderT'ag(w) = hash(w), wherehash is drawn from a collision-resistant function family. More
specifically, we will use some extra randomneds choose a keyey for a collision-resistant hash
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family. The output of the sketch is then
SS(U}, x, T) = ( w D C(l‘), key(r), haShkey('r) (w) )

If the list-decoding algorithm for the cod€ runs in polynomial time, then the adversary succeeds
only if he can find a valuey; # w such thathashy., (w;) = hashy, (w), that is only by finding a
collision for the hash function. By assumption, a polynomially-boundedradwesucceeds only with
negligible probability.

The additional entropy loss, beyond that of the code-offset parea§kbtch, is bounded above by the
output length of the hash function. df is the desired bound on the adversary’s success probability,
then for standard assumptions on hash functions this loss will be polynonhigj(iry «v).

In principle this transformation can yield sketches which achieve the optirtralgrossn(h(t/n) —
o(1)), since codes with polynomial list size are known to exist for error rates approaching the
Shannon bound. However, in order to use the construction the codeateagbe equipped with a
reasonably efficient algorithm for finding such a list. This is necessatty $o0 that recovery will be
efficient and, more subtly, for the proof of security to go through (the&y we can assume that the
polynomial-time adversary knows the list of words generated during tloweeg procedure). We do
not know ofefficient(i.e. polynomial-time constructible and decodable) binary list-decodablescode
which meet the Shannon bound for all choices of parameters. Howetven the error rate is negr
such codes are known [GS00]. Thus, this type of construction yietgméally optimal sketches when
the error rate is nealr/2. This is quite similar to analogous results on channel coding [MPSWO5].
Relatively little is known about the performance of efficiently list-decodabties in other parameter
ranges for binary alphabets [Gur01].

. A similar, even simpler, transformation can be used in the setting of inpendept errors (i.e.,
when the errors depend only on the input and not on the sketch, butitleesary is not assumed
to be computationally bounded). One can stbrgy(w) = (I, hy(w)) where{h;},., comes from a
universal hash family mapping fromt to {0, 1}¢, where/ = log (1) +1og L and« is the probability
of an incorrect decoding.

The proof is simple: the values, ..., w;, do not depend o, and so for any value; # w, the prob-
ability thath;(w;) = hr(w) is 27¢. There are at most possible candidates, and so the probability
that any one of the elements in the list is accepted is at o8t ¢ = « The additional entropy loss
incurred is at most = log (1) + log(L).

In principle, this transformation can do as well as the randomization agpodalce previous section.
However, we do not know of efficient binary list-decodable codes mgdtia Shannon bound for
most parameter ranges. Thus, in general, randomizing the errors (a&sprethious section) works
better in the input-dependent setting.

9 Secure Sketches and Efficient Information Reconciliation

Suppose Alice holds a setand Bob holds a set’ that are close to each other. They wish to reconcile the
sets: to discover the symmetric differeneé\w’ so that they can take whatever appropriate (application-
dependent) action to make their two sets agree. Moreover, they wish to dmthisunication-efficiently,
without having to transmit entire sets to each other. This problem is knovet esconciliation and naturally
arises in various settings.
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Let (SS, Rec) be a secure sketch for set difference that can handle distance;fprtihermore, suppose
that|wAw’| < t. Then if Bob receives = SS(w) from Alice, he will be able to recover, and therefore
wAw', from s andw’. Similarly, Alice will be able findwAw" upon receivings’ = SS(w’) from Bob.
This will be communication-efficient ifs| is small. Note that our secure sketches for set difference of
Sections 6.2, 6/3 are indeed short—in fact, they are secure precisalydeethey are short. Thus, they also
make good set reconciliation schemes.

Conversely, a good (single-message) set reconciliation scheme makesl aarure sketch: simply
make the message the sketch. The entropy loss will be at most the length ofsbageewhich is short
in a communication-efficient scheme. Thus, the set reconciliation schengy@Pbf [MTZ03] makes a
good secure sketch. In fact, it is quite similar to the secure sketch of SécBpexcept instead of the tap
coefficients of the characteristic polynomial it uses the values of the palighatt points.

PinSketch of Sectioh 6.3, when used for set reconciliation, achievesiuthe garameters as CPISync
of [MTZ03], except decoding is faster, because instead of spenditigne to solve a system of linear
equations, it spendg time for Euclid’s algorithm. Thus, it can be substituted wherever CPISynsdd,u
such as PDA synchronization [STA03] and PGP key server updates. [Furthermore, optimizations that
improve computational complexity of CPISync through the use of interactioFOR}ican also be applied
to PinSketch.

Of course, secure sketches for other metrics are similarly related to informmaconciliation for those
metrics. In particular, ideas for edit distance very similar to ours were amtgntly considered in the
context of information reconciliation by [CT04].
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A Proof of Lemma/2.2

Recall, Lemma 2.2 considered random variable®3, C' and consisted of two parts, which we prove one
after another.

Part (a) stated that for ady> 0, the conditional entropi . (A|B = b) is at leasH ., (A| B) —log(1/4)
with probability at least — § (the probability here is taken over the choicebpf Letp = 2~ Heo(AlB) —
E, [27H(AIB=b)] By the Markov inequality2 —H=(415=t) < p/§ with probability at least — 4. Taking
logarithms, part (a) follows.
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Part (b) stated that i has at most* possible values, theH (A | (B, C)) > Ho((A,B) | C) =\ >
H. (A | C) — X\ Inparticular,Ho (A | B) > Hoo((A, B)) — A > H(A) — . Clearly, it suffices to
prove the first assertion (the second follows from takihtp be constant). Moreover, the second inequality
of the first assertion follows from the fact that[A = a AB =0 | C =] < Pr[A =a | C = ¢, for anyec.
Thus, we only prove thafl.(A | (B,C)) > Hy((A,B) | C) — A

Ho(A| (B,C) = —logEpe (5.0 [max PrlA=a|B=bAC = c]]
= —lomeaxPr[A:a\B:bAC:c]Pr[B:b/\C:c]
(b.c)
= —lomeaxPr[A:a/\B:b]C:C]Pr[C:c]
(bc)

— _logZEC%C [mC?XPr[A:a/\BZb | C'ZC]}
b

> —logZEa_c [r{ll%ler[A =aANB=V|C= c]]
- :

= —log) 27 H=((4BIO) > _1og 22~ Ha((ABDIO) = F((4,B) | O) - A.
b

The first inequality in the above derivation holds since taking the maximumativeairs(a,b’) (instead of
over pairs(a, b) whereb is fixed) increases the the terms of the sum, and hence decreases tieeriega
of the sum.

B On Smooth Variants of Average Min-Entropy and the Relationship to
Smooth Rényi Entropy

Min-entropy is a rather fragile measure: a single high-probability elementwia the min-entropy of an
otherwise good distribution. This is often circumvented within proofs byidenisig a distribution which is
close to the distribution of interest, but which has higher entropy. Remaénalf [RWO04] systematized this
approach with the notion efsmoothmin-entropy (they use the term &8Ryi entropy of orderc” instead of
“min-entropy”), which considers all distributions that arelose:
Hoo(4) = B: sgl(i},{B)geHoo(B) '

Smooth min-entropy very closely relates to the amount of extractable ne@fbrra randomness: if one
can mapA to a distribution that is-close toU,,, thenHS_(A) > m; conversely, from anyl such that
H<¢_(A) > m, and for any,, one can extract—2 log (é) bits that are+¢,-close to uniform (see [RW04]
for a more precise statement; the proof of the first statement follows bydesimgy the inverse map, and
the proof of the second from the leftover hash lemma, which is discussed@detail in Lemma 2.4). For
some distributions, considering the smooth min-entropy will improve the numbeguaality of extractable
random bits.

A smooth version of average min-entropy can also be considered, dleine

S (A| B) = H.(C | D).

max
(C,D): SD((A,B),(C,D))<e
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It similarly relates very closely to the number of extractable bits that look neauifprm to the adversary
who knows the value o3, and is therefore perhaps a better measure for the quality of a seetch tkat
is used to obtain a fuzzy extractor. All our results can be cast in terms afthnemtropies throughout,
with appropriate modifications (if input entropy éssmooth, then output entropy will also laesmooth,
and extracted random strings will leefurther away from uniform). We avoid doing so for simplicity of
exposition. However, for some input distributions, particularly ones with deements of relatively high
probability, this will improve the result by giving more secure sketches a@dooutput fuzzy extractors.
Finally, a word is in order on the relation of average min-entropy to conditimiraentropy, introduced
by Renner and Wolf in [RW05], and defined Bb,.(A | B) = —logmax,, Pr(A = a | B = b) =
min, Hy (A | B = b) (ane-smooth version is defined analogously by considering all distributioh®)
that are withine of (A, B) and taking the maximum among them). This definition is too strict: it takes
the worst-caseé, while for randomness extraction (and many other settings, such astpt@litie by an
adversary), average-cassuffices. Average min-entropy leads to more extractable bits. Neveshafesr
smoothing the two notions are equivalent up to an additgg(1) term: HS (A | B) > H_(A | B)

andH, (A | B) > H (A | B) — log (é) (for the case ok = 0, this follows by constructing

a new distribution that eliminates allfor which Hoo(A | B = b) < Hao(A | B) — log (L) which

will be within e, of the (A, B) by Markov’s inequality; fore > 0, an analogous proof works). Note that
by Lemma 2.2(b), this implies a simple chain rule ¥f_ (a more general one is given in [RWO05, Section

2.4): H (A | B) > HS_ ((A, B)) — Hyo(B) — log (é) whereH,(B) is the logarithm of the number
of possible values oB.

C Lower Bounds from Coding

Recall that a M, K, t) code is a subset of the metric spakewhich cancorrectt errors (this is slightly
different from the usual notation of coding theory literature).

Let K (M, t) be the largesis for which there exists aiM, K, t)-code. Given any sef of 2™ points
in M, we let K (M, t, S) be the largesk such that there exists dM, K, t)-code all of whoséx points
belong toS. Finally, we letL(M,t,m) = log(min|g—om K(n,t,S)). Of course, whemn = log | M|, we
getL(M,t,n) =log K(M,t). The exact determination of quantiti&y M, t) and K (M, ¢, S) is a central
problem of coding theory, and is typically very hard. To the best of oomkedge, the quantity(M, ¢, m)
was not explicitly studied in any of three metrics that we study, and its exéatndi@ation seems hard as
well.

We give two simple lower bounds on the entropy loss (one for securengsetihie other for fuzzy extrac-
tors) which show that our constructions for the Hamming and set differemgtrics output as much entropy
m’ as possible when the original input distribution is uniform. In particularabse the constructions have
the same entropy loss regardlessrgfthey are optimal in terms of the entropy loss— m/. We conjecture
that the constructions also have the highest possible valder all values ofm, but we do not have a good
enough understanding éf M, t, m) (whereM is the Hamming metric) to substantiate the conjecture.

Lemma C.1. The existence afM, m, m’,t) secure sketch implies that’ < L(M,t, m). In particular,
whenm = log | M| (i.e., when the password is truly uniformy), < log K (M, t).

Proof. AssumeSS is such a secure sketch. Lg&tbe any set of sizeé™ in M, and letW be uniform over
S. Then we must havél..(W | SS(W)) > m/. In particular, there must be some valuesuch that
H, (W | SS(W) = v) > m/. But this means that conditioned 66(1) = v, there are at lea®™ points
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w in S (call this setl") which could produc&S(W) = v. We claim that these™' values ofw form a code
of error-correcting distance Indeed, otherwise there would be a pairite M such thatis(wg, w’) < ¢
anddis(wy, w'") < t for somewy, w; € T. But then we must have th&ec(w’, v) is equal to bothuy and
w1, which is impossible. Thus, the sBtabove must form aM, 2™ t)-code insideS, which means that
m’ <log K(M,t,S). SinceS was arbitrary, the bound follows. O

Lemma C.2. The existence dfM, m, ¢, t, €)-fuzzy extractors implies thét< L(M, t, m)—log(1 —¢). In
particular, whenm = log | M| (i.e., when the password is truly unifornd)< log K (M, t) — log(1 — ¢€).

Proof. Assume(Gen, Rep) is such a fuzzy extractor. L&t be any set of sizé™ in M, let W be uniform
over S and let(R, P) « Gen(WW). Then we must hav8D ((R, P), (Uy, P)) < e. In particular, there
must be some valug of P such thatR is e-close toU, conditioned onP = p. In particular, this means
that conditioned orP = p, there are at leagil — ¢)2¢ pointsr € {0, 1} (call this setT’) which could be
extracted with? = p. Now, map every € T to some arbitraryw € .S which could have producedwith
nonzero probability give® = p, and call this mag’. C' must define a code with error-correcting distance
t by the same reasoning as in LemmalC.1. O

Observe that, as long as< 1/2, we have) < —log(1 —¢) < 1, so the lower bounds on secure sketches
and fuzzy extractors differ by less than a bit.

D Analysis of the Original Juels-Sudan Construction

In this section we present a new analysis for the Juels-Sudan seetok &k set difference. We will assume
thatn = || is a prime power and work over the fiefl= GF(n). On input setw, the original Juels-Sudan
sketch is a list of- pairs of pointqz;, y;) in F, for some parameter, s < r < n. Itis computed as follows:

Construction 10 (Original Juels-Sudan Secure Sketch [JS02])
Input: a setw C F of sizes and parameterse {s + 1, ...,n},t € {1, ..., s}

1. Choose() at random from the set of polynomials of degree at niosts — ¢t — 1 over F.
Write w = {z1, ..., zs}, and lety; = p(z;) fori =1, ..., s.

2. Choose" — s distinct pointszs. 1, ..., z, at random froniF — w.

3. Fori =s+1,...,r, choosey; € F at random such that # p(z;).

4. OutputSS(w) = {(z1,v1), ..., (zr, yr)} (in lexicographic order of:;).

The parametet measures the error-tolerance of the scheme: gd&m) and and a set’ such that
wAw' < t, one can recovew by considering the paire;, y;) for z; € w’ and running Reed-Solomon
decoding to recover the low-degree polynomiél). When the parameter is very small, the scheme
corrects approximately twice as many errors with good probability (in the tidppendent” sense from
Section 8). Whenm is low, however, we show here that the bound on the entropy loss becameseak.

The parameter dictates the amount of storage necessary, one on hand, and alsouhty s#che
scheme (thatis, far = s the scheme leaks all information and for larger and lardkere is less information
aboutw). Juels and Sudan actually propose two analyses for the scheme. Eysintilyze the case where
the secretw is distributed uniformly over all subsets of size Second, they provide an analysis of a
nonuniform password distribution, but only for the case- n (that is, their analysis only applies in the
small universe setting, whef@(n) storage is acceptable). Here we give a simpler analysis which handles
nonuniformity and any: < n. We get the same results for a broader set of parameters.
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Lemma D.1. The entropy loss of the Juels-Sudan scheme is atmhest + log () — log (~7) + 2.

Proof. This is a simple application of Lemma 2.2(bH..((W,SS(W))) can be computed as follows.
Choosing the polynomigh (which can be uniquely recovered fromandSS(w)) requiress — ¢ random
choices fromF. The choice of the remaining;’s requireslog (:f:j) bits, and choosing thgs requires
r— s random choices fronf — {p(z;)}. Thus,Hoo ((W,SS(W))) = Hoo (W) + (s —t) log n+log (" ~3) +
(r — s)log(n — 1). The output can be describedlisg ((”)n") bits. The result follows by Lemma 2.2(b)
after observing thatr — s) log .y < nlog ;7 < 2. O

In the large universe setting, we will have< n (since we wish to have storage polynomialsin In
that setting, the bound on the entropy loss of the Juels-Sudan schemedsvarfalarge. We can rewrite
the entropy loss aslogn — log (7) + log () + 2, using the identity") (%) = (%) (~?). Now the entropy
of W is at most("!), and so our lower bound on the remaining entropflég (\) — tlogn — 2). To make
this quantity large requires makimgvery large.

E BCH Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be ndowdifiein in time polynomial
in the length of the syndrome. This works for BCH codes over any fightl¢), which include Hamming
codes in the binary case and Reed-Solomon for the ¢aseq — 1. BCH codes are handled in detail in
many textbooks (e.g., [vL92]); our presentation here is quite terse.ifplisity, we only discuss primitive,
narrow-sense BCH codes here; the discussion extends easily to #ralgsase.

The algorithm discussed here has been revised due to an error pourttbegl Ari Trachtenberg. Its
implementation is available [HIR].

We'll use a slightly non-standard formulation of BCH codes. ket ¢™ — 1 (in the binary case
of interest in Section 6.3; = 2). We will work in two finite fields: GF(¢q) and a larger extension field
F = GF(q"). BCH codewords, formally defined below, are then vector&/i(q)™. In most common
presentations, one indexes thgositions of these vectors by discrete logarithms of the elements' of
positioni, for 1 < i < n, corresponds ta‘, wherea generates the multiplicative grod§y. However, there
is no inherent reason to do so: they can be indexed by elemerfiddotctly rather than by their discrete
logarithms. Thus, we say that a word has valyet positionz, wherez € F*. If one ever needs to write
down the entirex-character word in an ordered fashion, one can choose arbitrariyveenient ordering of
the elements ofF (e.g., by using some standard binary representation of field elementsirfpurposes
this is not necessary, as we do not store entii@t words explicitly, but rather represent them by their
supports:supp(v) = {(z,pz) | p= # 0}. Note that for the binary case of interest in Section 6.3, we can
definesupp(v) = {z | p» # 0}, because, can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: & thore common representa-
tion, the last step of the decoding algorithm requires one to find the positbthe error from the field
elementa’. However, no efficient algorithms for computing discrete logarithm arevknid ¢ is large
(indeed, a lot of cryptography is based on the assumption that suciemffadgorithm does not exist). In
our representation, the field elemeritwill in fact be the position of the error.

Definition 8. The (narrow-sense, primitive) BCH code of designed distarmer GF'(q) (of lengthn > §)
is given by the set of vectors of the for(”nm)xef* such that each, is in the smaller field7F(q), and the

vector satisfies the constraints, . cx’ =0, fori = 1,...,0 — 1, with arithmetic done in the larger
field F.
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To explain this definition, let us fix a generatorof the multiplicative group of the large field@*. For
any vector of coefficientéc, ) we can define a polynomial

c(z) = Z cp 208

z€GF(qgm)*

zeF*’

wheredlog(x) is the discrete logarithm of with respect ton. The conditions of the definition are then
equivalent to the requirement (more commonly seen in presentations of Ba@¢s)cthate(a’) = 0 for
i=1,...,0 — 1, becauséa’)do8(*) = (qdlog(*))i — 4,

We can simplify this somewhat. Because the coefficieptare in GF(q), they satisfycl = c,. Using
the identity(z + y)? = x? + y%, which holds even in the large fielel, we havec(a’)? = 3, cla™ =
c(a). Thus, roughly d /q fraction of the conditions in the definition are redundant: we only need ttkche
that they hold fori € {1, ..., — 1} such thay /i.

The syndrome of a word (not necessarily a codewpd) .c - € GF(q)™ with respect to the BCH
code above is the vector

syn(p) =p(a'),...,p(e’™"), where p(a’)= > pa'.
zeF*

As mentioned above, we do not in fact have to include the val(®9 such that|i.

COMPUTING WITH Low-WEIGHT WORDS. A low-weight wordp € GF(q)™ can be represented either as
a long string or, more compactly, as a list of positions where it is nonzergsawdlues at those points. We
call this representation the support listpofnd denote isupp(p) = {(x,px)}zzp#o.

Lemma E.1. For a ¢g-ary BCH codeC of designed distancg one can compute:
e syn(p) fromsupp(p) in time polynomial iry, log n, and|supp(p)|, and
e supp(p) fromsyn(p) (whenp has weight at mos — 1)/2), in time polynomial iny andlog n.

Proof. Recall thatsyn(p) = (p(a),...,p(e’~")) wherep(a’) = Y, p.z'. Part (1) is easy, since to
compute the syndrome we only need to compute the powers ©his requires about - weight(p) multi-
plications inF. For Part (2), we adapt Berlekamp’s BCH decoding algorithm, baset$ gnesentation in
[vL92]. Let M = {z € F*|p, # 0}, and define

o(z) « H (1—22z) and w(z) def o(2) Z DaX2

zEM zEM (1 —2z)

Since(1 — zz) divideso(z) for z € M, we see thab(z) is in fact a polynomial of degree at mgst/| =
weight(p) < (6 — 1)/2. The polynomialsr(z) andw(z) are known as the error locator polynomial and
evaluator polynomial, respectively; observe that(o(z),w(z)) = 1.

We will in fact work with our polynomials modula®. In this arithmetic the inverse dfl — zz) is
Zgzl(xz)efl, that is

5

(1 —x2) Z(wz)e_l =1 mod 2°.

/=

We are giverp(af) for £ = 1,..,0. Let S(z) = Y91 p(a’)z’. Note thatS(z) = S een Porn
mod 2°. This implies that

—

S(2)o(z) = w(z) mod 2.
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The polynomialsr(z) andw(z) satisfy the following four conditions: they are of degree at njéstl ) /2
each, they are relatively prime, the constant coefficient & 1, and they satisfy this congruence. In fact,
let w'(z),0’(z) be any nonzero solution this congruence, where degrees(ef ando’(z) are at most
(06 —1)/2. Thenw'(2)/0'(2) = w(z)/o(2). (To see why this is so, multiply the initial congruenceddy)
to getw(z)o’(2) = o(2)w’(z) mod 2°. Since the both sides of the congruence have degree atmost
they are in fact equal as polynomials.) Thus, there is at most one solutignw(z) satisfying all four
conditions, which can be obtained from any(z),«w’(z) by reducing the resulting fractian’(z)/o’(z) to
obtain the solution of minimal degree with the constant term efual to 1.

Finally, the roots o () are the pointg:~! for = € M, and the exact value @f, can be recovered from
w(@™") = pe [T enryz. (1 — y2~") (this is only needed fog > 2, because fog = 2, p, = 1). Note that
it is possible that a solution to the congruence will be found even if the inpuireme is not a syndrome
of any p with weight(p) > (6 — 1)/2 (it is also possible that a solution to the congruence will not be found
at all, or that the resulting (z) will not split into distinct nonzero roots). Such a solution will not give
the correcp. Thus, if there is no guarantee thedight(p) is actually at mosto — 1)/2, it is necessary to
recomputesyn(p) after finding the solution, in order to verify thais indeed correct.

Representing coefficients ef(z) andw’(z) as unknowns, we see that solving the congruence requires
only solving a system of linear equations (one for each degree dfom 0 tod—1) involving 6+ 1 variables
over.F, which can be done i®»(5%) operations inF using, e.g., Gaussian elimination. The reduction of the
fractionw’(2)/o’(2) requires simply running Euclid’s algorithm for finding the g.c.d. of two polyieds of
degree less thaf which takesD(52) operations inF. Suppose the resultinghas degree. Then one can
find the roots ofr as follows. First test that indeed has distinct roots by testing that(z)|z9" — z (this
is a necessary and sufficient condition, because every elemgnisad root ofz¢" — = exactly once). This
can be done by computirig?” mod o(z)) and testing if it equals mod o; it takesm exponentiations of a
polynomial to the powey, i.e.,O((mlog q)e?) operations inF. Then apply an equal-degree-factorization
algorithm (e.g., as described in [Sho05]), which also takégn log q)e?) operations inF. Finally, after
taking inverses of the roots ¢f and findingp,. (which takesO(e?) operations inF), recomputeyn(p) to
verify that it is equal to the input value.

Becausen log ¢ = log(n + 1) ande < (6§ — 1)/2, the total running time i€ (52 + 6% log n) operations
in F; each operation itF can done in time)(log® n), or faster using advanced techniques.

One can improve this running time substantially. The error locator polynantjatan be found in
O(log ) convolutions (multiplications) of polynomials ovér of degree(é — 1)/2 each [Bla83, Section
11.7] by exploiting the special structure of the system of linear equatiang kelved. Each convolution
can be performed asymptotically in timig ¢ log § log log §) (see, e.g., [vzGG03]), the total time required to
find o gets reduced t@ (5 log? § loglog §) operation inF. This replaces thé® term in the above running
time.

While this is asymptotically very good, Euclidean-algorithm-based decodikgifg5], which runs
in O(62) operations inF, will find o(z) faster for reasonable values dfcertainly for§ < 1000). The
algorithm findso as follows:

set Roa(z) « 2°7Y  Rew(2) « S(2)/2, Vou(z) < 0, Vewr(2) « 1.

whil e deg(Reur(2)) > (6 —1)/2:
di vide Roq(z) by Reur(z) to get quotient g¢(z) and remai nder Ryew(2);
set Vnew(z) — old(z) - Q(z)‘/cur(z);
set Rold(z) — Rewr Z)7 Rcur(z) — RHeW(Z)7 ‘/;)1(1(2) — ‘/CUI“(Z)7 V;:ur(z) — Vnew(z)-

set ¢« Vowe(0); set o(z) « Vew(z)/c and w(z) <« z- Rewr(2)/c
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In the above algorithm, it = 0, then the correct(z) does not exist, i.eweight(p) > (§ — 1)/2. The
correctness of this algorithm can be seen by observing that the cogisie:)o(2) = w(z) (mod 2°) can
havez factored out of it (becausg(z), w(z) andz® are all divisible byz) and rewritten agS(z)/z)o(z) +
u(2)2°~ = w(z)/z, for someu(z). The obtained is easily shown to be the correct one (if one exists at all)
by applying [Sho05, Theorem 18.7] (to use the notation of that theoram, sez’~!,y = S(z)/z,t* =
r*=(0-1)/2," =w(2)/z,8 =u(z),t = o(2)).

The root finding ofc can also be sped up. Asymptotically, detecting if a polynomial dver=
GF(¢™) = GF(n + 1) of degreee hase distinct roots and finding these roots can be performed in
time O(e!815(1og n)?407) operations inF using the algorithm of Kaltofen and Shoup [KS95], or in time
O(e? + (logn)elogelogloge) operations inF using the EDF algorithm of Cantor and Zassenhdus
For reasonable values ef the Cantor-Zassenhaus EDF algorithm with Karatsuba’s multiplication algo-
rithm [KO63] for polynomials will be faster, giving root-finding running time@(e? + €'°%23 log n) oper-
ations inF. Note that if the actual weight of p is close to the maximum tolerat¢d — 1)/2, then finding
the roots ofr will actually take longer than finding. O

A DuAL VIEwW OF THEALGORITHM. Readers may be used to seeing a different, evaluation-based formu-
lation of BCH codes, in which codewords are generated as followsZFlagain be an extension 6tF (q),

and letn be the length of the code (note tH&t*| is not necessarily equal to in this formulation). Fix
distinctxy, zo,...,x, € F. For every polynomiat over the large fieldF of degree at most — ¢, the
vector (c(x1), c(x2), ... c(xy)) is a codeword if and only if every coordinate of the vector happens to be in
the smaller fieldc(x;) € GF(q) for all i. In particular, whenF = GF(q), then every polynomial leads to

a codeword, thus giving Reed-Solomon codes.

The syndrome in this formulation can be computed as follows: given a vecter(yi,ya, ..., Yn)
find the interpolating polynomiaP = p,,_12" ' 4 p,_22" "2 + - - - + py over F of degree at most — 1
such thatP(z;) = y; for all i. The syndrome is then the negative ®p- 1 coefficients ofP: syn(y) =
(=Pn—1, —Pn-2,---, —Pn—(s5-1))- (Itis easy to see that this is a syndrome: it is a linear function that is zero
exactly on the codewords.)

Whenn = |F| — 1, we can index the-component vectors by elementsBf, writing codewords as
(¢(x))zer«. In this case, the syndrome 0§, ).c++ defined as the negative t@p— 1 coefficients of P
such thatvz € F*, P(x) = y, is equal to the syndrome defined following Definition 8%s, » yx* for
i=1,2,...,0 —1.* Thus, whem = |F| — 1, the codewords obtained via the evaluation-based definition
areidenticalto the codewords obtain via Definition 8, because codewords are simplyrekewieh the zero
syndrome, and the syndrome maps agree.

This is an example of a remarkable duality between evaluations of polynomialhein coefficients:
the syndrome can be viewed either as the evaluation of a polynomial whe#ieats are given by the
vector, or as the coefficients of the polynomial whose evaluations age giv a vector.

The syndrome decoding algorithm above has a natural interpretation imah@ton-based view. Our
presentation is an adaptation of Welch-Berlekamp decoding as presergegl ifiSud01, Chapter 10].

133ee([Sho05, Section 21.3], and substitute the most efficient knowngroigl arithmetic. For example, the procedures de-
scribed in [vzGGO03] take timé& (e log e log log e) instead of timeD(e?) to perform modular arithmetic operations with degeee-
polynomials.

1 This statement can be shown as follows: because both maps are lirieayfficient to prove that they agree on a vector
(Yz)zer~ such thaly, = 1 for somea € F* andy, = 0 for x # a. For such a vectoi Y.z = a'. On the other hand,
the interpolating polynomiaP(z) such thatP(z) = v, is —az"™' — a?2" "2 —--- — a" 'z — 1 (indeed,P(a) = —n = 1;
furthermore, multiplyingP(z) by = — a givesa(z™ — 1), which is zero on all ofF*; henceP(z) is zero for everyr # a).
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Supposer = |F| — 1 andzy, ..., z,, are the non-zero elements of the field. et (y1,v2,...,yn) be
a vector. We are given its syndrom@ (y) = (—pn—1, —Pn-2; - s —Pn—(5-1))s Wherep,_1,...,p,_(5-1)
are the top coefficients of the interpolating polynonmfal Knowing onlysyn(y), we need to find at most
(6 — 1)/2 locationsz; such that correcting all the correspondipgwill result in a codeword. Suppose that
codeword is given by a degrée— ¢) polynomialc. Note thatc agrees withP on all but the error locations.
Let p(z) be the polynomial of degree at mast— 1)/2 whose roots are exactly the error locations. (Note
thato () from the decoding algorithm above is the samie) but with coefficients in reverse order, because
the roots ofo are the inverses of the roots pf) Thenp(z) - P(z) = p(2) - ¢(2) for z = z1,z9,..., zy.
Sincezy, .., z,, are all the nonzero field elemeniq,’ , (» — x;) = 2" — 1. Thus,

p(z)-c(z) = p(z)- P(z) mod H(z —z;) = p(z)-P(z)mod (" —1).
i=1

If we write the left-hand side as,,_12" ! + an_22" "2 + - - - 4+ o, then the above equation implies
thata,,—1 = -+ = a,_(5-1)/2 = 0 (because the degreeifz) - c(z) is at mostn — (6 + 1)/2). Because
Qn—1,- -+, n_(5—1)/2 depend on the coefficients pfas well as orp,,—1, ..., p,_(5-1), but not on lower
coefficients of P, we obtain a system ab — 1)/2 equations for(é — 1)/2 unknown coefficients op. A
careful examination shows that it is essentially the same system as we hgd fan the algorithm above.
The lowest-degree solution to this system is indeed the coprday the same argument which was used
to prove the correctness efin Lemma E.1. The roots qf are the error-locations. Far> 2, the actual
corrections that are needed at the error locations (in other words, ttedigtor corresponding to the given
syndrome) can then be recovered by solving the linear system of equatiptied by the value of the
syndrome.
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