On the (Im)possibility of Cryptography with Imperfect Rand omness$

Yevgeniy Dodis Shien Jin Ong
New York University Harvard University
Manoj Prabhakaran Amit Sahaf

Princeton University and UCLA Princeton University and UCLA

Abstract “randomness” in its various roles. In this work, we ask the
following fundamental question with regard to cryptogra-
We investigate the feasibility of a variety of crypto- phy: if “randomness” is to be used in cryptographic proto-
graphic tasks with imperfect randomness. The kind of im- cols, what properties must it have? Indeed, traditiongbcry
perfect randomness we consider ametropy sourcessuch  tographic protocols are assumed to have accegeriect
as those considered by Santha and Vazirani, Chor and Gol-random sources.e., sources that output unbiased and in-
dreich, and Zuckerman. We show the following: dependent random bits. However, it is not clear if such per-
e Certain cryptographic tasks like bit commitment, fectrandomnessis crucial for provable security. We itetia
encryption, secret sharing, zero-knowledge, non- & study on the types of imperfectness in a random source
interactive zero-knowledge, and secure two-party that are tolerable for cryptographic applications.
computation for any non-trivial function are
impossible to realize if parties have access to
entropy sources with slightly less-than-perfect en-
tropy, i.e., sources with imperfect randomness. These
results are unconditional and do not rely on any un-
proven assumption.

Is Entropy Sufficient for Randomnes¥® examine a very
natural intuition, which states that all we need for crypto-
graphic protocols is a source of randomness with a guaran-
tee of highentropy In other words, this intuition implies
that protocols can be made secure véttyrandom source
which has a high rate of entropy. We show that this intuition
e Onthe other hand, based on stronger variants of stan- jg fa|sefor many basic and important cryptographic objec-
dard assumptions, secure signature schemes are postjves, even when only considering security against compu-
sible with imperfect entropy sources. As another pos- tationally efficient adversaries. These results stand amgsh
itive result, we show (without any unproven assump- contrast with the fact that entropy is enough for simulating
tion) that interactive proofs can be made sound with propabilistic polynomial-time algorithms [46, 40, 12, 48]
respect to imperfect entropy sources. Intuitively, the reason for this difference comes from thetf
that randomized algorithms utilize randomness only for the
purposes okfficiency and can in principle be always de-
1. Introduction randomizeq (pqtentially incurring up to exponential pgnal
in the running time). On the other hand, cryptographic ap-
Randomness is an important concept in computer sci-Plications fundamentally require randomness to guarantee
ence. Not surprisingly, a large body of work in theoreti- Security and usually cannot even liefinedwithout ran-
cal computer science has investigated the requirements olomness (e.g., if the attacker has no uncertainly about the

secrets).
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dom bits if multipleindependensources with high rates on any realization of the all other blocksWe call this

of entropy are available [40, 45, 44, 12, 15, 14, 3]. Nev- source ar{n, k)-entropy block source

ertheless, the assumption of independence between random Note that in the context of entropy sources, the central

sources is questionable, especially if the sources aré avai parameter of interest is the block length which speci-

able to a single party locally. fies “how often” new entropy is guaranteed to be produced
Furthermore, it is not current practice to use multiple in- by the source. The strongest (most nearly perfect) guaran-

dependent random sources to build a single perfect randontee would be thagverybit produced by the source contains

source. Instead, the widely held intuition is that high en- new entropyice.the block lengtm is 1). These sources are

tropy is sufficient. Indeed, in the applied cryptography eom calledSantha-Vazirani (SV) sourcg40]. We stress that all

munity various techniques have been developed for accessour impossibility results hold even for SV sources.

ing “good” physical sources of randomness, with the focus  The works of [40, 12, 38] show that deterministic ran-

overwhelmingly on ensuring higéntropy® This is not sur- ~ domness extraction of even a single bihat possible from

prising considering that the intuitive notion of randommes any non-trivial entropy source, including SV sources.

is almost synonymous with the quantifiable notion of en-

tropy. Thus it is important to understand the theoretical ba

sis, if any, of this intuition, in the context of cryptograph

The Thesis of Our Workin this paper we investigate
whether in the context of cryptography, even against com-
putationally efficient adversaries, the notion of randossne
is captured by entropy alone. We present the following ob-

Imperfect Randomnes@riginating from the pioneering

work of von Neumann [47], a large amount of research Servations.

has been devoted towards understanding the applicability

of imperfect random sources to the many algorithms and
protocols designed to work with perfect randomness. The
most straightforward approach to dealing with an imper-
fect random source is tdeterministically(and efficiently)
extract nearly-perfect randomness from it. Indeed, such re
sults were obtained, in varying extents, for several classe
of imperfect random sources. They include various simple
“streaming” sources [47, 19, 9, 31], different flavors oft*bi
fixing” sources [13, 8, 1, 11, 17, 28], efficiently samplable
sources [43], and multiple independent imperfect random
sources [40, 45, 44, 12, 15, 14, 3]. While these results are
interesting and non-trivial, the above “deterministigak-
tractable” sources assume a lot of structure or indepemdenc
in the way they generate randomness.

Entropy SourcesA much less restrictive, and arguably
more realistic, assumption on the random source would be
to assume only that the source contasoesneentropy. We

call such sourceentropy sourcesEntropy sources were
first introduced by Santha and Vazirani [40], and later gen-
eralized by Chor and Goldreich [12], and Zuckerman [48].

In entropy sources witmin-entropyk, the only guaran-
tee is that any particular string of lengthn appears with
probability at mos2—* in a sample from that source. Such
a source is called afn, k)-entropy source. For most pro-
tocols, where there are multiple parties involved, diffgre
parties require multiple samples from a given source. Build
ing on the model of Chor and Goldreich [12], we assume
that the source outputs a sequence of bldcks, Xo, .. .),
where each block; is an(n, k)-source even conditioned

(1) A key concept in modern cryptography iisdistin-
guishability In the standard setting with perfect ran-
domness, we know that indistinguishability with com-
putationally unlimited adversaries is only achievable
in certain limited settings. However, if we restrict
ourselves to computationally efficient adversaries, and
make some computational assumptions (like the exis-
tence of one-way functions), a new world opens up, al-
lowing for bit commitment, multiple-message encryp-
tion, public-key encryption, secret sharing, computa-
tional zero-knowledge for all NP, two-party secure
computation, and many other non-trivial protocols.

We consider entropy sources that are only slightly
imperfect, such as, in particular, an SV source where
each bit’s probability of being 0 or 1 is betwegf2 —
1/poly(k) and1/2 + 1/poly(x), wherex is a secu-
rity parameter, angdoly(x) denotes an arbitrarily large
polynomial. Such a source could have statistical dis-
tance which is within any inverse polynomial factor
from the uniform distribution. Even for such appar-
ently nearly perfect random sources, we establish our
main Lemma: that computationally indistinguishable
distributions must be almost identical.

Based on this result, we show that essentially all
cryptographic tasks involving some kind of privacy (or
“secrecy”)cannot be realizedvith respect to entropy
sources (including SV sourcesgdgardless of any com-
putational assumptionthat one is willing to make.

In particular, we rule out bit commitment, encryption,

1 For examples, see the following page maintained by D. Wagne

http://ww. cs. berkel ey. edu/ ~daw/ r nd/ .

The original definitions of [12, 40] are less stringent iratteach
block is an(n, k)-source conditioned only on the realizationpoé-
viousblocks. We use a stronger formulation also considered tigcen
by [38].



secret sharing, zero-knowledge, non-interactive zero-
knowledge, and secure two-party computation for any
non-trivial function. In many cases, these (uncondi-
tional) impossibility results remain even if some par-
ties receivéndependenor perfectsources of random-
ness, because mutually distrusting parties cannot make
use of this independence.

We conclude, surprisingly, thaéntropy is not
enoughfor a useful theory of cryptography.

(2) On the other hand, some applications in cryptography
do not rely on the notion of indistinguishability, but
only onunforgeability This is the case for authentica-
tion tasks. We show that digital signature schemes that
are existentially unforgeable against adaptive chosen-
message attack, the “gold standard” of authentication,
are achievable even with imperfect entropy sources.
The assumption we make is the existence of one-way
permutations that are secure even when their input
comes from a similar entropy source.

(3) Finally, we consider non-cryptographic applications
of randomness in protocols, particularly for achiev-
ing soundnesn interactive proof systems. Here we
illustrate how to convert any interactive proof system
that works for perfect randomness into one that works
with very weak block entropy sources. Our transfor-
mation is unconditional, round preserving, and results
in a public-coin protocol. In particular, it shows that
classes likeIP and AM can be simulated with en-
tropy sources, much likBPP.

parties could use variants of two-source extractors [15]
to do a secure encryption.

e (Secret Sharing) We rule out secret sharing schemes

by showing that even the most basic requirement of
such a scheme is unattainable. That is, using only im-
perfect randomness, it is impossible to distribute a se-
crettof > 1 parties in such a way that each party indi-
vidually will learn nothing about the secret, but all of
them combined will be able to retrieve the secret.

(Zero-Knowledge) A somewhat more sophisticated
use of the main lemma allows us to conclude that zero-
knowledge proofs (and arguments) only exist for lan-
guages irBPP. Our result only requires the prover to
have imperfect randomness; the verifier can make use
of independent perfect randomness.

e (Non-Interactive Zero-Knowledge (NIZK).) For the

case of NIZK proof system with respect to a common
reference string (CRS), we show that as long as the
CRS arises from an entropy souregen if both prover
and verifier have access to independent perfect ran-
domnessNIZK proofs (and arguments) exist only for
BPP languages.

e (Secure Two-Party Computation) Finally, we show

that secure two-party computation is impossible for
anynon-trivial function (non-trivial functions were de-
fined and considered by [4]). This is true even if the
two parties hold independent entropy sources. This
rules out, in particular, functions such as Oblivious
Transfer and the AND operation on two bits.

Our Results in More DetailLemma 3.1, our main techni-  \ne also have the followingositive results:

cal lemma, forms the basis for all our impossibility results
in this paper. In that lemma, we show that if two functions
F andG produce computationally indistinguishable outputs
when feed any slightly imperfect entropy source as input,
then in factF'(z) = G(z) for almost all inputsc. This re-
mains true even if one of the functions gets perfect random-
ness in addition to the entropy source.

Based on this lemma, we obtain the following impossi-
bility results, which hold for nearly perfect entropy soesc
such as SV sources wiily poly(x) bias, wheres is a secu-
rity parameter, and (trivially therefore), block sourceithw
n—1/poly(k) bits of entropy per.-bit block. We stress that
no unproven assumptioase made in establishing these im-
possibility results.

e (Commitment and Encryption.) First, we rule out bit
commitment, even if the receiving party has indepen-
dent perfect randomness. Another immediate corollary
of the main lemma is the impossibility of encryption
protocols, symmetric or public key. Here we must as-
sume that both parties share (different blocks of) an
entropy source, since if given independent sources, the

(Digital Signatures) We show that digital signature
schemesre achievablavith respect to imperfect en-
tropy sources. The assumption we make is the exis-
tence of one-way permutations that are hard to in-
vert when their inputs come from entropy sources.
This non-standard assumption is somewhat necessary
since the existence of the above mentioned signature
schemes would imply the existence of one-way func-
tions that are hard to invert when their inputs come
from entropy sources.

While all standard one-way permutations remain
secure against entropy sources with- O(log n) bits
of entropy, for lower entropy sources a standard one-
way permutation could possibly be trivially invertible.
We conjecture, nevertheless, that one-way permuta-
tions secure against much lower entropy sources ex-
ist. Based on this conjecture, and using entropy block
sources, we show how to construct a digital signature
scheme that is existentially unforgeable against adap-
tive chosen-message attack. Our construction is an
adaption of the construction of Naor and Yung [36].



¢ (Interactive Proofs.) Finally, we also examine inter- indistinguishability? Otherwise, is there a “tight” retat-
active proofs with respect to entropy sources. We give ship between independence (or structure), and computa-
a transformation which converts a#fk)-round inter- tional indistinguishability? If entropy is really all we ©a
active proof, wheré(x) < poly(x) andx is the input assume, can we obtain weaker levels of security for tasks
length, which is sound and complete when the verifier like encryption, commitment, or secure computation?
has perfect randomness, into &fx)-round interac-
tive proof which is sound and complete even whenthe 2 pPreliminaries
verifier has any entropy block source witlipoly(x)

entropy per block. Our transformation is a relatively  For a distributionX over the set{0, 1}, we define the
straightforward application aftrong randomness ex-  min-entropyof X to be

tractors[37, 32].
Previous Work.The most relevant work to our setting is that Hoo(X) = zerﬁ){rf}n {=log,(Pr[X = z])} .

of Mclnnes and Pinkas [35]. They proved that in the set-
ting of computationally unlimited adversaries, one cannot We denote the uniform distribution ov¢o, 1} asif,,, or
have secure symmetric encryption if the shared key comessimply/ when the domain is clear. To denote the distribu-
from an entropy block source (including SV sources). Our tion of a random variablél', we write { X }. The notation
result regarding symmetric encryption could be viewed as a{F(X, Y)} is shorthand fOI{F(;v, y)}m_x —
non-trivial extension of their result to efficient adversar A block source is composed of blocks of equal number of
On the other hand, the result of Dodis and Spencer [18]bits. For a block sourc& = (X7,...,X;), X; denotes the
showed that if the entropy source can have more structure;-th block andX; denotes all blocks but thieth block. The
then some imperfect random sources are sufficient for (one-definition of an(n, k)-block sourcehat we use was consid-
time) symmetric bit encryption but not for deterministi¢ bi  ered in [38], and is a more stringent definition as compared
extraction. Additionally, Koshiba [29, 30] consideredisec  to the one considered by [12]. In our definition, we require
rity definitions for public-key encryption when the encryp- that eachn-bit block to have min-entropy at leakt even
tion algorithm is using an imperfect source (but key genera- conditioned on any realization of thal the other blocks
tion remains perfect), and showed that in this setting seman (instead of just the previous blocks, as considered in [12])
_t|c security and |nd|st|ngu|shab|llt_y are no longer eq_llEm _ Definition 2.1 ((n, k)-block source). A distribution X =
in general. Our results show that if the key generation is im- nt “block source if for
perfect as well, no security notion for public-key encrgpti (Xl,’ - A1) over {0, 1} is an(n, k) nf,";
! . alli =1,...,t and for eackr € {0,1} , we have that
is achievablat all. Ho (Xi|X, = 2) > k
The question of message authentication in the computa- ">Vt — 7/ =™
tionally unbounded setting was explored in [34, 18], who A Santha-Vazirani sourcedenoted asSV(«), is spe-
roughly showed that one-time message authentication iscial case of an(n, k)-block source withn = 1 andk =
possible provided that the entropy rate of the source is —log,(1 — a), wherea € [0,1/2]. (once again, the origi-
greater thari /2. In contrast, our signature result constructs nal definition of [40] only conditioned on prior blocks.)
a much more complex “multi-time” primitive, for arbitrary We usex to denote the security parameter of our pro-
entropy rate, but under a strong computational assump-tocols,poly(x) to represen&ny polynomial, ancheg(x) to
tion (which is essentially required). Additionally, ques- denote a negligible function (i.e1eg(x) = o(1/poly(k))).
tions of authentication with respect to imperfect random-  For a pair of distributionsX and Y, we write {X}
ness were also considered in the interactive setting by [39] ~. {Y'} if for every polynomial-sized (inc) circuit C, for
and in a biometric setting by [16]. However, both these sufficiently larges, we have thaiPr.. x [C(z) = 1] —
works [39, 16] assume that the parties have local access t®@r,, y [C(z) = 1]| < e(x). If (k) is a negligible func-
ideal randomness (but share an imperfectly generated setion, then we say that distributions andY are compu-
cret key). tationally indistinguishablei.e., { X }~.{Y"}. For our im-
Finally, our technique for simulating interactive pro- possibility results we will use very simple one-bit teéts
tocols with weak sources is related to the question of which simply output thé-th bit of their given input. In other
randomness-efficient error/round-reduction in intex&cti  words, if X ~. Y, then in particulafPr,. x [2; = 0] —
protocols considered by [5, 6, 49]. Pr..y [zi = 0]| < €, wherez; is thei-th bit of z.

Future Work. Our results present many fascinating chal-

lenges to the theoretical cryptography community. If en- 3, Main Lemma

tropy is not sufficient for cryptography, then what is? Be-

sides independence or structure, are there other character In this section, we prove the main lemma used to estab-
ization of randomness that would allow for computational lish impossibility results for cryptographic protocolsthvi



imperfect randomness. Informally, this main lemma states
that if two functionsF' andG always produce computation-
ally indistinguishable distributions when fed any (slight

The collection of all§-biased halfspace sources is de-
noted asD® &' {D%:S5 c{0,1}",|S] =2N"1}. First,
we prove an analogue of Lemma 3.1 febiased halfspace

imperfect entropy source, then the functions must be almostggrces (instead of block sources).

(pointwise) identical. The result still holds if the one b&t
functions, say, is probabilistic.

We stress that the main lemma and all our impossibil-
ity results (in Section 4) apply to SV sources where each
bit is biased away from uniform by only/poly(x), where
poly(x) can be an arbitrarily large polynomial.

Lemma 3.1 (Main Lemma). Let x be the security param-
eter,p be any polynomial, and be any positive integer (in-
cludingl). LetT be the class of alin,n — 1/p(x))-block
sources witht blocks, andV = nt. The values of, t, N’
andm are all upperbounded by a polynomialin
Suppose functions': {0, 1} x {0,1}" — {0,1}™
andG: {0,1}¥ — {0,1}™ are such that for every distri-
bution X € I', and for some (arbitrary) distributiol” over
{0,1}", we have that{ F(X,Y)} = {G(X)}.2 Then
Priy ) un,y) [F(z,y) # G(x)] = neg(x). Specifically,
neg(k) is at mostO(p(x)?me), wheree is the best distin-
guishing advantage between the above distributions.

By settingN' = 0, we get the following corollary.

Corollary 3.2. Letk,p,I',n,t,N andm be as above. Sup-
pose functiong”: {0,1} — {0,1}™ andG: {0,1}¥ —
{0,1}™ are such that{ F(X)} = {G(X)} for every
X €. ThenPr,y, [F(z) # G(z)] = neg(x).

By considering1, 1—1/poly(x))-block sources (setting

n = 1), all our impossibility results in Section 4 extend to
Santha-Vazirani [40] sources too.

Corollary 3.3. Let k,p,N,N'ym, F and G be as in
Lemma 3.1. Suppose for evey (1/2 —1/p(x)) dis-

tribution X over {0,1}"V and some (arbitrary) distribu-
tion Y over{0,1}"", we have{ F(X,Y)} =, {G(X)}3

Then,Pri, ) (un.v) [F(7,y) # G(7)] = neg(k).

3.1. Proof of Lemma 3.1 (Main Lemma)

In proving Lemma 3.1, we use an important notion called
0-biased halfspace sourceshich was implicitly defined in
the work of Reingold, Vadhan and Wigderson [38].
Definition 3.4. (0-biased halfspace sourcesfor S C
{0,1}Y of size|S| = 2¥~1, and0 < § < 1/2, the dis-
tribution D¢ over {0,1}" is defined as follows: for all
@ € 8, Prps [¢] = (1/2+6)27 N1, and for allz ¢ S,
Prps [2] = (1/2 = §)2= (N1,

3 For simplicity, the reader may assume thats independent of the
first input to 7, i.e., the joint distribution(X, Y") is a product distri-
bution. But in fact,Y” can bedependenbn the first input in the fol-

lowing manner: for eacls € {0,1}%, Y specifies the distribution on
{0, I}N' conditioned on the first input being

Lemma 3.5. Let F': {0,1}" x {0,1}¥" — {0,1}™ and
G: {0,1}¥ — {0,1}™. LetY be some (arbitrary) dis-
tribution over{0, I}N'. Suppose for ald-biased halfspace
sourcesX € D° we have thaf F(X,Y)} ~. {G(X)}.
ThenPr(Ly)Humy) [F(.Z‘,y) 75 G(JJ)] < med 2.

Proof sketch.Fix a positioni € [1,m], and letf(x,y) def

Fi(z,y), thei-th bit of F(z, y). Similarly letg(z) < G; ().
We would like to bound the probability thgt(x,y) #
g(z) whenz < Uy andy < Y. Define the probabilities

P00, Po1,P1o andp; as

Pr  [f(z,y) =bAg(x) =]

POt = ) tuny)

We can assume without loss of generality that
Procuy [9(x) =0] < 1/2. That ispgo + p1o < 1/2.
The quantity we want to boundjgo + po1-

It can be shown that there exists aSewith |S| = 2V 1
and{z : g(z) =0} C S C {z : gx) = 0} U{z :
Prie yyewyy) [f(@',y) = 0]z = 2] < €/(25)}. Apply-
ing the hypothesis of the lemma to the distributi&n =
D, and we have that

Pr[g(D%) = 0] = (1 + 26)(poo + p10),
Pr[f(D%,Y) = 0] < (14 26)(poo + 7) + (1 — 26)po1.

By the hypothesis of the lemma, the above two prob-
abilities differ by at most. From this and the fact that
por < p1o + ¢ (obtained by observing that when the hy-
pothesis of the lemma holds for &l € D?, it will hold for
X = Uy 100), it can be shown thaty + po; < €672,

Thus for anyi € [m], Pr[F;(Un,Y) # Gi(UN)] =
pro + por < €672, Our lemma follows by using a union
bound over alk € [m)]. O

The next lemma shows thatbiased halfspace sources
are in fact very strong entropy sources.

Lemma 3.6 ([38]). For any positive integern, the dis-
tribution DY is an (n,n — log,((1 + 28)/(1 — 24)))-block
source witht = N/n blocks.

To complete the proof of Lemma 3.1 (Main Lemma),
we setd = 1/(8p(k) + 2). Then, one can check that
log, (1 +20)/(1 —24)) < 1/p(x). Hence for all sef, the
distribution D¢ is an(n,n — 1/p(x))-block source witht
blocks. By Lemma 3.5, we g&r [F'(Un,Y) # G(Un)] <
med—? = neg(k), sincee = neg(x), andm and1/J are
bounded by a polynomial ir.



4. Impossibility of Certain Cryptographic 4.2. Secret Sharing

Protocols with Imperfect Randomness _ _ , ,
Secret sharing schemes are used in cryptographic appli-

For this section, let; denote the desired security pa- cations to distribute a secret fparties in such a way that
rameter of the protocols, and let be any positive in-  Only if & of them collude would they manage to obtain the
teger denoting the block length of the block source. S€cret. Even 'fc — 1 of them cqllude, thgy should not gain
We show that even with slightly imperfect random- any computational advantage in guessing the secret. If a se-
ness,i.e., (n,n — 1/poly(x))-block sources, fundamen- cret sharing scheme satisfies that requirement, we saythat i
tal cryptographic protocols like commitment, encryption, has &k, £)-threshold. A formal definition of such a scheme
zero-knowledge proofs, non-interactive zero-knowledge iS givenin [21]. _
proofs, and two-party secure computation act realiz- With perfect uniform randomness, Shamir [41] pr_esented
able, no matter what computational cryptographic assump- & (; £)-threshold scheme for ariy € [2, ¢]. However if we
tions we are willing to make. only have imperfect randomness, we prove thatiinpos-

We stress that all our impossibility results hold for Sibleto distribute a secret t6 parties in such a way that

SV(1/2 — 1/poly(k)) sources, simply by setting = 1. each party individually will learn nothing about the secret
but all of them combined will be able to retrieve the secret.

4.1. Commitment and Encryption Theorem 4.3. For any2 < k < /, there does not ex-

ist a (k, £)-threshold secret sharing scheme (with security
Theorem 4.1 (Impossibility of commitment). Suppose  parameterx) that uses only randomness from(a, n —
the sender’s (committing party) only random source is an 1/poly(«))-block source.

(n,n — 1/poly(r))-block source. Then commitment with pof sketch.Because the secret sharing algorithm has ac-
(security parameter) is impossible. cess to only imperfect randomness, by Corollary 3.2, it must

Note that the impossibility of commitment as stated in De the case that all the shares of segnetll be identical to

Theorem 4.1 holds even if the receiving party is given ac- all the shares of some other secse(with high probabil-
cess to uniform randomness. ity). But sinces # s', it will be impossible to reconstruct

the secret even if all parties collude. O
Proof sketch. Let Y be any(n,n — 1/poly(k))-block

source. Suppose the sender commits to abliy send- 4.3 Zero-Knowledge
ing Commit0; ) wherer < Y. The hiding property of the

commitment requires that a commitmenttand a com- Zero-knowledge proofs [25] are interactive proof sys-
mitment tol be computationally indistinguishable, namely tems that yield no additional knowledge other than
{Commit0;r)}  \ = {Commi{1;r)} _..ByCorol-  the fact that the statement proven is true. In the uni-
lary 3.2 of the Main Lemma, both functions Com(fit-) form randomness setting, it has been shown by a series
and Commitl; -) must be almost identical. In other words, of works [23, 27, 7] that zero-knowledge proofs ex-
for almost allr, Commi{0;r) = Commit(1;r). This vio- actly characteriz SPACE, the class of problems solv-

lates the (computational) binding property of the commit- able by polynomial-space bounded machines. On the other
ment since the sender can trivially decommit to both bits hand, with only slightly imperfect randomness, we prove
0 and1. The proof extends to interactive commitment pro- that (auxiliary-input) zero-knowledge proofs arapossi-
tocols by considering transcripts instead of commitments, ble for languages not iBPP.
and to the case when the receiver has an independent source To formalize this notion of zero-knowledge with imper-
of uniform randomness, by considering all non-uniformre- fect randomness, lét be an(n, k)-block source. The only
ceivers which work with all possible fixed random-tapes source of the prover’s randomness sirgle sampl®fim-
(then for each such receiver the transcript functions mustperfect randomness+«+ Y. We allow both the verifier and
be almost identical). O the simulator to have access to uniform randomness, not-
ing that the impossibility result still holds in this case.
In this model,giving the prover's random string: to
the verifier may potentially leak knowledgehis is because
the verifier does not know what the distributidnis. The
only guarantee ort” is that it is an(n, k)-block source.
Hence, the simulator is required to beiversalwith re-
spect toY'. In other words, the simulator needs to output a
The proof of Theorem 4.2 is similar to the proof of The- singleprover-verifier transcript for all possible, k)-block
orem 4.1, and hence omitted. sources” given as the prover's randomness.

Theorem 4.2 (Impossibility of encryption). Suppose both
parties are given aingle sourceY” as the only source of
randomness (prior to and during message transmission).
Then, theralo not exissemantically secure encryption pro-
tocols (with security parametes) that are secure for every
(n,n — 1/poly(x))-block sourcev”".



Contrast this to the uniform randomness setting, where4.4. Non-Interactive Zero-Knowledge

giving a uniform random string to the verifier leaks no
knowledge. After all, the verifier can obtain the random

Non-interactive zero-knowledge proof systems (NIZK)

string by itself (since uniform independent randomness is were introduced by Blum, Feldman and Micali [10]. The

assumed to be freely available in that setting).
Our main result on the impossibility of zero-knowledge
is stated as follows.

Theorem 4.4. If a language L has an auxiliary-input
zero-knowledge proof (with security parametet)
and the prover's only random source is an imperfect
(n,n — 1/poly(x))-block source, thel, € BPP.

The above impossibility result extends to rule out zero-
knowledge argumentsThe proof of Theorem 4.4 relies on
the following lemma.

Lemma 4.5. Let F': {0,1}" — {0,1}™ and letl be the
set of all(n,n — 1/poly(k))-block sources of lengtv. If
{F(11)} =% {F(Y2)} for everyY;,Y; € T, then there ex-
ists ana € {0,1}™ s.t.Pryyy [F(y) = @] > 1 —neg(k).

Proof sketch. Set H(:,b) def F(b), and observe that

{H(Y2,Y1)} {F(1)} = {F(¥2)}. Applying
Lemma 3.1 (Main Lemma), we can show that for some

fixed 8, H(-,$) = F(-) almost everywhere. But observe

thata %' F(p) = H(-, ) takes on a constant value. O

Proof sketch of Theorem 4.4Let I be the set of all
(n,n — 1/poly(x))-block sources. Our first step is to show
that the proveP must be almost deterministic. Assume that

NIZK model allows the prover and the verifier to share
a common random stringCRS). In the perfect random-
ness setting, the CRS is a uniform random string chosen
by a trusted party. The prover sendsiaglemessage, and
then the verifier will decide to accept or reject based on the
prover's message, the CRS, and its own randomness. Feige,
Lapidot and Shamir [20] showed that all languageNIR
possess NIZK proofs if one-way permutations exist.

In the imperfect randomness setting, the CRS is chosen
by a trusted party from afn, n — 1/poly(x))-block source.
We prove that NIZK is impossible in this setting.

Theorem 4.6. Let (P, V') be an NIZK protocol for a lan-
guageL. Suppose the CRS is generated from a sotifce
using a functiorG, thatis CRS= G(x), wherez < Y .5 If
the NIZK protocol (with security parametej is secure for
every(n,n — 1/poly(x))-block sourc&”, thenL € BPP.

Our impossibility results holds even when the prover and
verifier are each allowed to have access to uniform ran-
domness. In addition, it is also possible to rule out NIZK
argument$for languages outsidBPP, if G is efficiently
invertible in the following sense: there is an efficient groc
dureG~! such thatG(G~1(z)) = z for all z € Range(G),
and{G~!(G(x))} =U.

U T

the verifier sends the first message. Consider the cheatingproof sketch of Theorem 4.6et the simulator for the NIZK

verifier V* which outputs as its first message the auxiliary
inputz and halts afterwards. We claim that the prover’s first
messageP; (z,Y, z), is almost deterministic. Lefy . be
the simulator forV*. Then the zero-knowledge condition
(on the first pair of messages) implies that

{SV* (:U,z,bl)} =c {(P(ZL’,Y),V*(QZ,Z,U»}
{(Z,Pl(CU,Y,Z))},

for all distributionsY” € I'. Therefore, for any1,Y, € T,
we have tha{(z, P (z,Y1,2))} = {(z,Pi(2,Y2,2))}.
By Lemma 4.5, there exists a messagesuch that
Prycu[Pi(z,y,2) = m] > 1 — neg(x). This means that

proof system bes def (F,1I), whereF' generates the CRS
andII generates the proof. We claim that the following algo-
rithm A is aBPP procedure for deciding the languafje

Algorithm A: On inputz, selecty < U andr « U.
Setp = F(z,y,r) andw = I(z,y,r). If p = G(y) and
V(x,p,w) = 1, thenaccept Elsereject

Forxz ¢ L, it can be shown that the cheating prover strat-
egy defined byP*(z, p) = Il(z,G~*(p),U) will succeed
in making V" accept with at least the same probability that
A accepts. Hence the soundness condition guarantees that
A rejectsz with high probability.

For z € L, the zero-knowledge condition stipulates

the prover’s first message is almost deterministic. Repeat'that{F(x % u)} ~ {G(Y)} and hence by Lemma 3.1
) ) —cC H .

ing this argument inductively, we find that all the prover’s
messages must be almost deterministic.
Having shown that the prover is almost deterministic, we

can use the techniques of Goldreich and Oren [24] to showiS G(

that any auxiliary-input zero-knowledge proof system with

almost deterministic provers can only decide languages in
O

BPP.

4 The soundness in an argument is only guaranteed againptitaiion-
ally efficient cheating provers. An impossibility resultr farguments
is stronger than that of proofs, since any proof system isjefini-
tion, also an argument.

(Main Lemma),F'(z,y,r) = G(y) for almost ally andr-.
This means that givep « U/, the simulator is almost al-
ways forced to produce the exact copy of the CRS, which
y).6 And since the “proof” generated 1y is compu-
tationally indistinguishable from the honest prover'sgdto
algorithmA will acceptz € L with high probability. O

5 The functionGG can beany (even uncomputable) function.

6 Contrast this to the uniform randomness setting whereithalator
usually manipulates the distribution of the CRS to gain araathge
over a cheating prover.



4.5. Two-Party Secure Computation Theorem 4.9 (impossibility in honest-but-curious set-
ting). LetY andZ be random sources of Alice and Bob re-
Let f: S1 x S> — S3 be atwo-argument finite function, spectively, ang’ be a two-argument finite function. If there
that is all S, S2, andS3 are finite sets. Let Alice and Bob  exists two-party secure computation (with security param-
be the parties involved in computirfg The private inputto  eter) of f in the honest-but-curious model that works for
Alice and Bob arer 4 andz 5 respectively. They wish to se-  all (n,n — 1/poly(x))-block sourc&” o Z, thenf is trivial.
curely compute the value gf(z 4, zg), in a way that will
not allow the other party to gain knowledge of their private
inputs. We consider an asymmetric notion of secure compu-
tation whereby only Bob needs to outpf(tr 4, 5).
Informally, we say that an interactive protocol between
Alice and Bob securely computg$z 4, ) if after the in-
teraction, the following two conditions hold.

Our result is tight, in the sense that if we assume in-
dependence ol” and Z, we can use extractors to ob-
tain independent private uniform randomness for both par-
ties [12, 15, 14]. And with private uniform randomness, all
functions are securely computable [22]. Therefore, if the
two parties are giveindependen(n, k)-block sources, for
k > n/2 + w(logn), then all functions are securely com-
1. Bob learns the right value ¢f(z 4, z5) but no matter ~ Putable in the honest-but-curious model (if trapdoor permu

how he tries to cheat, he will learn nothing abayt ~ tations exists).

which is not already implied by g andf (x4, z5).

2. Alice learns nothing aboutz no matter how she tries 5. Secure Signature Schemes with Imperfect

to cheat. Random Sources
We refer the reader to [21] for the formal definition of two- Turning to our positive results, we construct signature
party secure computation. schemes that remain secure even if our random source is

A function f is said to betrivial if there exists a  only guaranteed to be(&, k)-block source fok < n. The
two-party secure computation protocol such that both hon-only cryptographic assumption we make is the existence of
est parties are deterministic, and remains secure even ifa one-way permutation (OWP) that remains secure with im-
the malicious party is computationally unbounded. Beimel, perfect random sources. Our signature scheme wighte-
Malkin and Micali [4] gave adeterministic one-roungro- tentially unforgeable under chosen message atték ver-
tocol computing any trivial functiorf. The protocol just ification of our signature scheme is deterministic, but the
involves Alice sending a single message to Bob. In addi- signer will be probabilistic and stateful.
tion, they gave an exact combinatorial characterization of Informally we say a protocol or a function is
trivial functions. (n, k)-secure if it remains secure even using an im-

Theorem 4.7 ([4]). A functionf: S; x Ss — S, is trivial perfect random source that is only guaranteed to be a

iff theredo notexistag, a1 € S1 andbg, b1 € S, such that (.n,k)—'block %‘Ziﬂ{ce' n pa{};ﬁ;".ar' a one-way permuta-
tion f: {0,1} - {0,1} is (n, k)-secure if there
f(ao,bo) = f(a1,b0) andf(ao, by) # f(as,b1). does not exists an efficient algorithm capable of invert-
In the uniform randomness model, Goldreich, Micaliand ing f even when the input tof is sampled from any
Wigderson [22] proved that all functions are securely com- (n, k)-block source. The following is our main theorem re-
putable if trapdoor permutations exist. With only impetfec garding signature schemes.
randomness, we show that the only trivial functions are se-Theorem 5.1. If (n, k)

-secure one-way permutations exist,
curely computable.

then(n, k)-secure signature schemes exist.

Theorem 4.8. Assume the two parties are giverdepen- The construction of our signature scheme is very sim-
dent(n, n — 1/poly(x))-block sources. If there exists two- jjar to that of Naor and Yung [36]. Our main observation
party secure computation protocols (with security param- js that we are able to do a reduction (in the imperfect ran-
eter k) computing a two-argument finite functighin the  dom sources model) from an adversarpreaking the sig-
malicious model, thefi is trivial. nature scheme to another related adverstryreaking the

While the above theorem rules out secure ComputationOWP-
in the malicious setting, we cannot do much better even in Necessity of the non-standard assumptigvhile we use
thehonest-but-curiousodel, in which the security guaran- a stronger variant of OWP to construct signature schemes

tee is only for honest execution of the protocol. with imperfect randomness, we note tfiat k)-secure sig-
nature schemes readily imply the existencéafk)-secure
7  Inthe malicious model, it is unreasonable to expect bottigzato al- one-way functions. This is because the key generation al-

ways be able to output the correct evaluation of the functi@eause gorithm can be viewed as a one-way function, with the in-
the first party that obtains the output of the function carrabo put being the randomness used to generate the public/secret



keys pair and the output being the public key. This fact AMcqk[t] C IP ,eqk[t]. We only sketch our transforma-

suggests that the non-standard assumptidm of)-secure
OWP is needed as a basis for the constructiorirof)-
secure signature schemes.

We note tha(n,n — O(logn))-secure OWP are equiv-
alent to standard OWP. Furthermofe, n — n®)-secure
OWRP, for somes > 0, follow from the recently popu-
lar assumption obtrongly intractableOWP. Strongly in-

tractable OWP are permutations that are hard-to-invert eve

by 27" _sized circuits.

6. Interactive Protocols With Weak Sources

A long line of research on explicit extractor construc-
tion has shown that the class of probabilistic polynomial-
time algorithms BPP) can be simulated usingn, k)-
block sources, as long asis bounded by a polynomial in
the input length an& > n*(M) (e.g.,see [32)]). In this sec-

tion, we show that the same conclusion holds for a muchWwe let R}

richer class of interactive protocols.

Interactive Protocols with Uniform Randomneds. the
standard interactive proof protocol [2, 25], a computation
ally unbounded proveP needs to convince a probabilis-
tic polynomial-time verified/ (with access to uniform ran-
domness) membership in the langudgdhat s, forz € L,
we havePr[(P,V)(x) 1] > 2/3 (completeness)And
for x ¢ L, and for any cheating proveP*, we have
Pr[(P*,V)(z) 1] < 1/3 (soundness)Let the class
IP[t] denote languages possessingraund (private-coin)
interactive proof protocol. If all the verifier's messages<

sists of just random coin tosses, we call such an inter-

active protocobpublic-coin and denote the corresponding
class byAM]¢], the class ofi-round public-coin interac-
tive proof protocol. We know thakP[t] = AM]¢] ([26]),
that IP[constant] = AM][2] ([2]), and thatAM|poly| =
IP[poly] = PSPACE ([33, 42]).

Interactive Protocols with Imperfect RandomneAsialo-
gous to the case of probabilistic algorithms with imper-

fect randomness, we consider interactive protocols where
the verifierV have access to only imperfect randomness

with the only guarantee of being gm, k)-block source.
We denote the corresponding classes I,..x[t] and
AM,,eqr[t]. While these definitions technically should de-
pend om andk, but we will show momentarily that as long
asn < poly(|z|) andk > 1/poly(|z|), wherez is the com-
mon input to the interactive protocol, this will not make any
difference. Specifically, we show the following.

Theorem 6.1. For any ¢, AMy.qx|t] AMIt]

IP[t] = IPear[t]. Thus,IP[constant] = AMycar[2
and AM ,cqk[poly] = IP yeqr[poly] = PSPACE.

Proof sketch. Notice, it suffices to showAM]t]
AM,ycar[t], as thenIP,..k[t] C IP[f] AM]t]

NN

tion below, leaving the proof to the full version.

Take anyL € AM]t] which has &-roundAM-protocol
with completenesg1/12 and soundness/12, where the
verifier V' sendc uniform random bits per round. We will
use the notion aftrong randomness extractdf®7] to make
a new protocol between new prov& and new verifier
V'. Specifically, for any erroe and min-entropym >
¢ + O(log(1/¢)), there exists [32] an efficient strong ex-
tractorExt : {0,1}" x {0,1}¢ — {0, 1}¢ with seed length
d = O(log N + log(1/¢)), such that given anyN, m)-
sourceX, the output oExt(X, Uy) is e-close talA., even if
conditioned on the seed value. We set 1/12t,m = ¢ +
O(log(1/¢)), N = n[m/k] andd = O(log N +log(1/¢)),
and view oui(n, k)-block source as afiVv, m)-block source
(by grouping togethefm/k] original blocks). Notice, the
valuesN, 2¢,m, t are all polynomial in the input lengffx|.

Now, given our(N, m)-block sourceX = (X; ...X,),
Ext(X;, s) be the value extracted fron¥;
on seeds. In roundi, our newAM,,..;-verifier V' will
send his blockX;, while the proverP’ will respond with
2¢ = poly(|z|) responsesi$ which the original prover
would send on thd’’s challengesR; ... R}. At the end,
V' computes the fractiod (w.r.t. s) of accepting computa-
tions (according td”) and accepts iZ > 1/2. O
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