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Abstract

We investigate the feasibility of a variety of crypto-
graphic tasks with imperfect randomness. The kind of im-
perfect randomness we consider areentropy sources, such
as those considered by Santha and Vazirani, Chor and Gol-
dreich, and Zuckerman. We show the following:� Certain cryptographic tasks like bit commitment,

encryption, secret sharing, zero-knowledge, non-
interactive zero-knowledge, and secure two-party
computation for any non-trivial function are
impossible to realize if parties have access to
entropy sources with slightly less-than-perfect en-
tropy, i.e., sources with imperfect randomness. These
results are unconditional and do not rely on any un-
proven assumption.� On the other hand, based on stronger variants of stan-
dard assumptions, secure signature schemes are pos-
sible with imperfect entropy sources. As another pos-
itive result, we show (without any unproven assump-
tion) that interactive proofs can be made sound with
respect to imperfect entropy sources.

1. Introduction

Randomness is an important concept in computer sci-
ence. Not surprisingly, a large body of work in theoreti-
cal computer science has investigated the requirements on� A full version of this paper is available at the Cryptology ePrint
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“randomness” in its various roles. In this work, we ask the
following fundamental question with regard to cryptogra-
phy: if “randomness” is to be used in cryptographic proto-
cols, what properties must it have? Indeed, traditional cryp-
tographic protocols are assumed to have access toperfect
random sources, i.e., sources that output unbiased and in-
dependent random bits. However, it is not clear if such per-
fect randomness is crucial for provable security. We initiate
a study on the types of imperfectness in a random source
that are tolerable for cryptographic applications.

Is Entropy Sufficient for Randomness?We examine a very
natural intuition, which states that all we need for crypto-
graphic protocols is a source of randomness with a guaran-
tee of highentropy. In other words, this intuition implies
that protocols can be made secure withany random source
which has a high rate of entropy. We show that this intuition
is falsefor many basic and important cryptographic objec-
tives, even when only considering security against compu-
tationally efficient adversaries. These results stand in sharp
contrast with the fact that entropy is enough for simulating
probabilistic polynomial-time algorithms [46, 40, 12, 48].
Intuitively, the reason for this difference comes from the fact
that randomized algorithms utilize randomness only for the
purposes ofefficiency, and can in principle be always de-
randomized (potentially incurring up to exponential penalty
in the running time). On the other hand, cryptographic ap-
plications fundamentally require randomness to guarantee
security, and usually cannot even bedefinedwithout ran-
domness (e.g., if the attacker has no uncertainly about the
secrets).

Theory and Practice of Using Randomness.Besides its sig-
nificant theoretical interest, one motivation for this study
concerns the way randomness is generated and used in prac-
tice. In practice, it is unrealistic to assume access to perfect
random sources. Further it is unrealistic to assume even a
specific distribution for the random source. Instead one may
have only certain guarantees on the random source (like
high entropy rate).

However, it is known how to obtain nearly uniform ran-



dom bits if multiple independentsources with high rates
of entropy are available [40, 45, 44, 12, 15, 14, 3]. Nev-
ertheless, the assumption of independence between random
sources is questionable, especially if the sources are avail-
able to a single party locally.

Furthermore, it is not current practice to use multiple in-
dependent random sources to build a single perfect random
source. Instead, the widely held intuition is that high en-
tropy is sufficient. Indeed, in the applied cryptography com-
munity various techniques have been developed for access-
ing “good” physical sources of randomness, with the focus
overwhelmingly on ensuring highentropy.1 This is not sur-
prising considering that the intuitive notion of randomness
is almost synonymous with the quantifiable notion of en-
tropy. Thus it is important to understand the theoretical ba-
sis, if any, of this intuition, in the context of cryptography.

Imperfect Randomness.Originating from the pioneering
work of von Neumann [47], a large amount of research
has been devoted towards understanding the applicability
of imperfect random sources to the many algorithms and
protocols designed to work with perfect randomness. The
most straightforward approach to dealing with an imper-
fect random source is todeterministically(and efficiently)
extract nearly-perfect randomness from it. Indeed, such re-
sults were obtained, in varying extents, for several classes
of imperfect random sources. They include various simple
“streaming” sources [47, 19, 9, 31], different flavors of “bit-
fixing” sources [13, 8, 1, 11, 17, 28], efficiently samplable
sources [43], and multiple independent imperfect random
sources [40, 45, 44, 12, 15, 14, 3]. While these results are
interesting and non-trivial, the above “deterministically ex-
tractable” sources assume a lot of structure or independence
in the way they generate randomness.

Entropy Sources.A much less restrictive, and arguably
more realistic, assumption on the random source would be
to assume only that the source containssomeentropy. We
call such sourcesentropy sources. Entropy sources were
first introduced by Santha and Vazirani [40], and later gen-
eralized by Chor and Goldreich [12], and Zuckerman [48].

In entropy sources withmin-entropyk, the only guaran-
tee is that any particular stringx of lengthn appears with
probability at most2�k in a sample from that source. Such
a source is called an(n; k)-entropy source. For most pro-
tocols, where there are multiple parties involved, different
parties require multiple samples from a given source. Build-
ing on the model of Chor and Goldreich [12], we assume
that the source outputs a sequence of blocks(X1; X2; : : :),
where each blockXi is an(n; k)-source even conditioned

1 For examples, see the following page maintained by D. Wagner:
http://www.cs.berkeley.edu/�daw/rnd/.

on any realization of the all other blocks.2 We call this
source an(n; k)-entropy block source.

Note that in the context of entropy sources, the central
parameter of interest is the block lengthn, which speci-
fies “how often” new entropy is guaranteed to be produced
by the source. The strongest (most nearly perfect) guaran-
tee would be thateverybit produced by the source contains
new entropy (i.e. the block lengthn is 1). These sources are
calledSantha-Vazirani (SV) sources[40]. We stress that all
our impossibility results hold even for SV sources.

The works of [40, 12, 38] show that deterministic ran-
domness extraction of even a single bit isnot possible from
any non-trivial entropy source, including SV sources.

The Thesis of Our Work.In this paper we investigate
whether in the context of cryptography, even against com-
putationally efficient adversaries, the notion of randomness
is captured by entropy alone. We present the following ob-
servations.

(1) A key concept in modern cryptography isindistin-
guishability. In the standard setting with perfect ran-
domness, we know that indistinguishability with com-
putationally unlimited adversaries is only achievable
in certain limited settings. However, if we restrict
ourselves to computationally efficient adversaries, and
make some computational assumptions (like the exis-
tence of one-way functions), a new world opens up, al-
lowing for bit commitment, multiple-message encryp-
tion, public-key encryption, secret sharing, computa-
tional zero-knowledge for all ofNP, two-party secure
computation, and many other non-trivial protocols.

We consider entropy sources that are only slightly
imperfect, such as, in particular, an SV source where
each bit’s probability of being 0 or 1 is between1=2�1=poly(�) and1=2 + 1=poly(�), where� is a secu-
rity parameter, andpoly(�) denotes an arbitrarily large
polynomial. Such a source could have statistical dis-
tance which is within any inverse polynomial factor
from the uniform distribution. Even for such appar-
ently nearly perfect random sources, we establish our
main Lemma: that computationally indistinguishable
distributions must be almost identical.

Based on this result, we show that essentially all
cryptographic tasks involving some kind of privacy (or
“secrecy”)cannot be realizedwith respect to entropy
sources (including SV sources),regardless of any com-
putational assumptionsthat one is willing to make.
In particular, we rule out bit commitment, encryption,

2 The original definitions of [12, 40] are less stringent in that each
block is an(n; k)-source conditioned only on the realization ofpre-
viousblocks. We use a stronger formulation also considered recently
by [38].



secret sharing, zero-knowledge, non-interactive zero-
knowledge, and secure two-party computation for any
non-trivial function. In many cases, these (uncondi-
tional) impossibility results remain even if some par-
ties receiveindependentor perfectsources of random-
ness, because mutually distrusting parties cannot make
use of this independence.

We conclude, surprisingly, thatentropy is not
enoughfor a useful theory of cryptography.

(2) On the other hand, some applications in cryptography
do not rely on the notion of indistinguishability, but
only onunforgeability. This is the case for authentica-
tion tasks. We show that digital signature schemes that
are existentially unforgeable against adaptive chosen-
message attack, the “gold standard” of authentication,
are achievable even with imperfect entropy sources.
The assumption we make is the existence of one-way
permutations that are secure even when their input
comes from a similar entropy source.

(3) Finally, we consider non-cryptographic applications
of randomness in protocols, particularly for achiev-
ing soundnessin interactive proof systems. Here we
illustrate how to convert any interactive proof system
that works for perfect randomness into one that works
with very weak block entropy sources. Our transfor-
mation is unconditional, round preserving, and results
in a public-coin protocol. In particular, it shows that
classes likeIP andAM can be simulated with en-
tropy sources, much likeBPP.

Our Results in More Detail.Lemma 3.1, our main techni-
cal lemma, forms the basis for all our impossibility results
in this paper. In that lemma, we show that if two functionsF andG produce computationally indistinguishable outputs
when feed any slightly imperfect entropy source as input,
then in factF (x) = G(x) for almost all inputsx. This re-
mains true even if one of the functions gets perfect random-
ness in addition to the entropy source.

Based on this lemma, we obtain the following impossi-
bility results, which hold for nearly perfect entropy sources
such as SV sources with1=poly(�) bias, where� is a secu-
rity parameter, and (trivially therefore), block sources withn�1=poly(�) bits of entropy pern-bit block. We stress that
no unproven assumptionsare made in establishing these im-
possibility results.� (Commitment and Encryption.) First, we rule out bit

commitment, even if the receiving party has indepen-
dent perfect randomness. Another immediate corollary
of the main lemma is the impossibility of encryption
protocols, symmetric or public key. Here we must as-
sume that both parties share (different blocks of) an
entropy source, since if given independent sources, the

parties could use variants of two-source extractors [15]
to do a secure encryption.� (Secret Sharing.) We rule out secret sharing schemes
by showing that even the most basic requirement of
such a scheme is unattainable. That is, using only im-
perfect randomness, it is impossible to distribute a se-
cret to` > 1 parties in such a way that each party indi-
vidually will learn nothing about the secret, but all of
them combined will be able to retrieve the secret.� (Zero-Knowledge.) A somewhat more sophisticated
use of the main lemma allows us to conclude that zero-
knowledge proofs (and arguments) only exist for lan-
guages inBPP. Our result only requires the prover to
have imperfect randomness; the verifier can make use
of independent perfect randomness.� (Non-Interactive Zero-Knowledge (NIZK).) For the
case of NIZK proof system with respect to a common
reference string (CRS), we show that as long as the
CRS arises from an entropy source,even if both prover
and verifier have access to independent perfect ran-
domness, NIZK proofs (and arguments) exist only forBPP languages.� (Secure Two-Party Computation.) Finally, we show
that secure two-party computation is impossible for
anynon-trivial function (non-trivial functions were de-
fined and considered by [4]). This is true even if the
two parties hold independent entropy sources. This
rules out, in particular, functions such as Oblivious
Transfer and the AND operation on two bits.

We also have the followingpositive results:� (Digital Signatures.) We show that digital signature
schemesare achievablewith respect to imperfect en-
tropy sources. The assumption we make is the exis-
tence of one-way permutations that are hard to in-
vert when their inputs come from entropy sources.
This non-standard assumption is somewhat necessary
since the existence of the above mentioned signature
schemes would imply the existence of one-way func-
tions that are hard to invert when their inputs come
from entropy sources.

While all standard one-way permutations remain
secure against entropy sources withn� O(logn) bits
of entropy, for lower entropy sources a standard one-
way permutation could possibly be trivially invertible.
We conjecture, nevertheless, that one-way permuta-
tions secure against much lower entropy sources ex-
ist. Based on this conjecture, and using entropy block
sources, we show how to construct a digital signature
scheme that is existentially unforgeable against adap-
tive chosen-message attack. Our construction is an
adaption of the construction of Naor and Yung [36].



� (Interactive Proofs.) Finally, we also examine inter-
active proofs with respect to entropy sources. We give
a transformation which converts any`(�)-round inter-
active proof, wherè(�) � poly(�) and� is the input
length, which is sound and complete when the verifier
has perfect randomness, into an`(�)-round interac-
tive proof which is sound and complete even when the
verifier has any entropy block source with1=poly(�)
entropy per block. Our transformation is a relatively
straightforward application ofstrong randomness ex-
tractors[37, 32].

Previous Work.The most relevant work to our setting is that
of McInnes and Pinkas [35]. They proved that in the set-
ting of computationally unlimited adversaries, one cannot
have secure symmetric encryption if the shared key comes
from an entropy block source (including SV sources). Our
result regarding symmetric encryption could be viewed as a
non-trivial extension of their result to efficient adversaries.
On the other hand, the result of Dodis and Spencer [18]
showed that if the entropy source can have more structure,
then some imperfect random sources are sufficient for (one-
time) symmetric bit encryption but not for deterministic bit
extraction. Additionally, Koshiba [29, 30] considered secu-
rity definitions for public-key encryption when the encryp-
tion algorithm is using an imperfect source (but key genera-
tion remains perfect), and showed that in this setting seman-
tic security and indistinguishability are no longer equivalent
in general. Our results show that if the key generation is im-
perfect as well, no security notion for public-key encryption
is achievableat all.

The question of message authentication in the computa-
tionally unbounded setting was explored in [34, 18], who
roughly showed that one-time message authentication is
possible provided that the entropy rate of the source is
greater than1=2. In contrast, our signature result constructs
a much more complex “multi-time” primitive, for arbitrary
entropy rate, but under a strong computational assump-
tion (which is essentially required). Additionally, ques-
tions of authentication with respect to imperfect random-
ness were also considered in the interactive setting by [39],
and in a biometric setting by [16]. However, both these
works [39, 16] assume that the parties have local access to
ideal randomness (but share an imperfectly generated se-
cret key).

Finally, our technique for simulating interactive pro-
tocols with weak sources is related to the question of
randomness-efficient error/round-reduction in interactive
protocols considered by [5, 6, 49].

Future Work.Our results present many fascinating chal-
lenges to the theoretical cryptography community. If en-
tropy is not sufficient for cryptography, then what is? Be-
sides independence or structure, are there other character-
ization of randomness that would allow for computational

indistinguishability? Otherwise, is there a “tight” relation-
ship between independence (or structure), and computa-
tional indistinguishability? If entropy is really all we can
assume, can we obtain weaker levels of security for tasks
like encryption, commitment, or secure computation?

2. Preliminaries

For a distributionX over the setf0; 1gn, we define the
min-entropyof X to beH1(X) = minx2f0;1gn f� log2(Pr[X = x℄)g :
We denote the uniform distribution overf0; 1gn asUn, or
simplyU when the domain is clear. To denote the distribu-
tion of a random variableX , we write

�X	
. The notation�F (X;Y )	 is shorthand for

�F (x; y)	x X;y Y .
A block source is composed of blocks of equal number of

bits. For a block sourceX = (X1; : : : ;Xt), Xi denotes thei-th block andXi denotes all blocks but thei-th block. The
definition of an(n; k)-block sourcethat we use was consid-
ered in [38], and is a more stringent definition as compared
to the one considered by [12]. In our definition, we require
that eachn-bit block to have min-entropy at leastk, even
conditioned on any realization of theall the other blocks
(instead of just the previous blocks, as considered in [12]).

Definition 2.1 ((n; k)-block source). A distributionX =(X1; : : : ;Xt) overf0; 1gnt is an(n; k)-block source if for
all i = 1; : : : ; t, and for eachz 2 f0; 1gnt�n, we have thatH1(XijXi = z) � k.

A Santha-Vazirani source, denoted asSV(�), is spe-
cial case of an(n; k)-block source withn = 1 andk =� log2(1 � �), where� 2 [0; 1=2℄. (once again, the origi-
nal definition of [40] only conditioned on prior blocks.)

We use� to denote the security parameter of our pro-
tocols,poly(�) to representanypolynomial, andneg(�) to
denote a negligible function (i.e.,neg(�) = o(1=poly(�))).

For a pair of distributionsX and Y , we write
�X	'"�Y 	 if for every polynomial-sized (in�) circuit C, for

sufficiently large�, we have thatjPrz X [C(z) = 1℄ �Prz Y [C(z) = 1℄j � "(�). If "(�) is a negligible func-
tion, then we say that distributionsX andY are compu-
tationally indistinguishable, i.e.,

�X	�=
�Y 	. For our im-
possibility results we will use very simple one-bit testsC
which simply output thei-th bit of their given input. In other
words, if X '" Y , then in particularjPrz X [zi = 0℄ �Prz Y [zi = 0℄j � ", wherezi is thei-th bit of z.

3. Main Lemma

In this section, we prove the main lemma used to estab-
lish impossibility results for cryptographic protocols with



imperfect randomness. Informally, this main lemma states
that if two functionsF andG always produce computation-
ally indistinguishable distributions when fed any (slightly)
imperfect entropy source, then the functions must be almost
(pointwise) identical. The result still holds if the one of the
functions, sayF , is probabilistic.

We stress that the main lemma and all our impossibil-
ity results (in Section 4) apply to SV sources where each
bit is biased away from uniform by only1=poly(�), wherepoly(�) can be an arbitrarily large polynomial.

Lemma 3.1 (Main Lemma). Let� be the security param-
eter,p be any polynomial, andn be any positive integer (in-
cluding1). Let� be the class of all(n; n � 1=p(�))-block
sources witht blocks, andN = nt. The values ofn, t, N 0
andm are all upperbounded by a polynomial in�.

Suppose functionsF : f0; 1gN � f0; 1gN 0 ! f0; 1gm
andG : f0; 1gN ! f0; 1gm are such that for every distri-
butionX 2 �, and for some (arbitrary) distributionY overf0; 1gN 0

, we have that
�F (X;Y )	 �=
 �G(X)	.3 ThenPr(x;y) (UN ;Y ) [F (x; y) 6= G(x)℄ = neg(�). Specifically,neg(�) is at mostO(p(�)2m"), where" is the best distin-

guishing advantage between the above distributions.

By settingN 0 = 0, we get the following corollary.

Corollary 3.2. Let �,p,�,n,t,N andm be as above. Sup-
pose functionsF : f0; 1gN ! f0; 1gm andG : f0; 1gN !f0; 1gm are such that

�F (X)	 �=
 �G(X)	 for everyX 2 �. ThenPrx UN [F (x) 6= G(x)℄ = neg(�).
By considering(1; 1�1=poly(�))-block sources (settingn = 1), all our impossibility results in Section 4 extend to

Santha-Vazirani [40] sources too.

Corollary 3.3. Let �,p,N ,N 0,m, F and G be as in
Lemma 3.1. Suppose for everySV (1=2� 1=p(�)) dis-
tribution X over f0; 1gN and some (arbitrary) distribu-
tion Y overf0; 1gN 0

, we have
�F (X;Y )	 �=
 �G(X)	.3

Then,Pr(x;y) (UN ;Y ) [F (x; y) 6= G(x)℄ = neg(�).
3.1. Proof of Lemma 3.1 (Main Lemma)

In proving Lemma 3.1, we use an important notion calledÆ-biased halfspace sources, which was implicitly defined in
the work of Reingold, Vadhan and Wigderson [38].

Definition 3.4. (Æ-biased halfspace sources)For S �f0; 1gN of size jSj = 2N�1, and0 � Æ � 1=2, the dis-
tribution DÆS over f0; 1gN is defined as follows: for allx 2 S, PrDÆS [x℄ = (1=2 + Æ)2�(N�1), and for allx 62 S,PrDÆS [x℄ = (1=2� Æ)2�(N�1).
3 For simplicity, the reader may assume thatY is independent of the

first input toF , i.e., the joint distribution(X;Y ) is a product distri-
bution. But in fact,Y can bedependenton the first input in the fol-
lowing manner: for eachx 2 f0; 1gN , Y specifies the distribution onf0; 1gN0

conditioned on the first input beingx.

The collection of allÆ-biased halfspace sources is de-

noted asDÆ def= �DÆS : S � f0; 1gN ; jSj = 2N�1	. First,
we prove an analogue of Lemma 3.1 forÆ-biased halfspace
sources (instead of block sources).

Lemma 3.5. Let F : f0; 1gN � f0; 1gN 0 ! f0; 1gm andG : f0; 1gN ! f0; 1gm. Let Y be some (arbitrary) dis-
tribution overf0; 1gN 0

. Suppose for allÆ-biased halfspace
sourcesX 2 DÆ we have that

�F (X;Y )	 '" �G(X)	.
ThenPr(x;y) (UN ;Y ) [F (x; y) 6= G(x)℄ � m"Æ�2.

Proof sketch.Fix a positioni 2 [1;m℄, and letf(x; y) def=Fi(x; y), thei-th bit ofF (x; y). Similarly letg(x)def= Gi(x).
We would like to bound the probability thatf(x; y) 6=g(x) whenx  UN andy  Y . Define the probabilitiesp00; p01; p10 andp11 aspbb0 = Pr(x;y) (UN ;Y ) [f(x; y) = b ^ g(x) = b0℄:
We can assume without loss of generality thatPrx UN [g(x) = 0℄ � 1=2. That is p00 + p10 � 1=2.

The quantity we want to bound isp10 + p01.
It can be shown that there exists a setS, with jSj = 2N�1

and fx : g(x) = 0g � S � fx : g(x) = 0g [ fx :Pr(x0;y) (UN ;Y ) [f(x0; y) = 0jx0 = x℄ � "=(2Æ)g. Apply-
ing the hypothesis of the lemma to the distributionX =DÆS , and we have thatPr [g(DÆS) = 0℄ = (1 + 2Æ)(p00 + p10);Pr [f(DÆS ; Y ) = 0℄ � (1 + 2Æ)(p00 + �) + (1� 2Æ)p01:

By the hypothesis of the lemma, the above two prob-
abilities differ by at most". From this and the fact thatp01 � p10 + " (obtained by observing that when the hy-
pothesis of the lemma holds for allX 2 DÆ , it will hold forX = UN too), it can be shown thatp10 + p01 � "Æ�2.

Thus for anyi 2 [m℄, Pr [Fi(UN ; Y ) 6= Gi(UN )℄ =p10 + p01 � "Æ�2. Our lemma follows by using a union
bound over alli 2 [m℄.

The next lemma shows thatÆ-biased halfspace sources
are in fact very strong entropy sources.

Lemma 3.6 ([38]). For any positive integern, the dis-
tributionDÆS is an(n; n� log2((1 + 2Æ)=(1� 2Æ)))-block
source witht = N=n blocks.

To complete the proof of Lemma 3.1 (Main Lemma),
we set Æ = 1=(8p(�) + 2). Then, one can check thatlog2 ((1 + 2Æ)=(1� 2Æ)) � 1=p(�). Hence for all setS, the
distributionDÆS is an(n; n � 1=p(�))-block source witht
blocks. By Lemma 3.5, we getPr [F (UN ; Y ) 6= G(UN )℄ �m"Æ�2 = neg(�), since" = neg(�), andm and1=Æ are
bounded by a polynomial in�.



4. Impossibility of Certain Cryptographic
Protocols with Imperfect Randomness

For this section, let� denote the desired security pa-
rameter of the protocols, and letn be any positive in-
teger denoting the block length of the block source.
We show that even with slightly imperfect random-
ness, i.e., (n; n � 1=poly(�))-block sources, fundamen-
tal cryptographic protocols like commitment, encryption,
zero-knowledge proofs, non-interactive zero-knowledge
proofs, and two-party secure computation arenot realiz-
able, no matter what computational cryptographic assump-
tions we are willing to make.

We stress that all our impossibility results hold forSV(1=2� 1=poly(�)) sources, simply by settingn = 1.

4.1. Commitment and Encryption

Theorem 4.1 (Impossibility of commitment). Suppose
the sender’s (committing party) only random source is an(n; n � 1=poly(�))-block source. Then commitment with
(security parameter�) is impossible.

Note that the impossibility of commitment as stated in
Theorem 4.1 holds even if the receiving party is given ac-
cess to uniform randomness.

Proof sketch. Let Y be any (n; n � 1=poly(�))-block
source. Suppose the sender commits to a bitb by send-
ing Commit(0; r) wherer  Y . The hiding property of the
commitment requires that a commitment to0 and a com-
mitment to1 be computationally indistinguishable, namely�

Commit(0; r)	r Y �=
 �Commit(1; r)	r Y . By Corol-
lary 3.2 of the Main Lemma, both functions Commit(0; �)
and Commit(1; �) must be almost identical. In other words,
for almost allr, Commit(0; r) = Commit(1; r). This vio-
lates the (computational) binding property of the commit-
ment since the sender can trivially decommit to both bits0 and1. The proof extends to interactive commitment pro-
tocols by considering transcripts instead of commitments,
and to the case when the receiver has an independent source
of uniform randomness, by considering all non-uniform re-
ceivers which work with all possible fixed random-tapes
(then for each such receiver the transcript functions must
be almost identical).

Theorem 4.2 (Impossibility of encryption). Suppose both
parties are given asinglesourceY as the only source of
randomness (prior to and during message transmission).
Then, theredo not existsemantically secure encryption pro-
tocols (with security parameter�) that are secure for every(n; n� 1=poly(�))-block sourceY .

The proof of Theorem 4.2 is similar to the proof of The-
orem 4.1, and hence omitted.

4.2. Secret Sharing

Secret sharing schemes are used in cryptographic appli-
cations to distribute a secret to` parties in such a way that
only if k of them collude would they manage to obtain the
secret. Even ifk � 1 of them collude, they should not gain
any computational advantage in guessing the secret. If a se-
cret sharing scheme satisfies that requirement, we say that is
has a(k; `)-threshold. A formal definition of such a scheme
is given in [21].

With perfect uniform randomness, Shamir [41] presented
a (k; `)-threshold scheme for anyk 2 [2; `℄. However if we
only have imperfect randomness, we prove that it isimpos-
sible to distribute a secret tò parties in such a way that
each party individually will learn nothing about the secret,
but all of them combined will be able to retrieve the secret.

Theorem 4.3. For any 2 � k � `, there does not ex-
ist a (k; `)-threshold secret sharing scheme (with security
parameter�) that uses only randomness from a(n; n �1=poly(�))-block source.

Proof sketch.Because the secret sharing algorithm has ac-
cess to only imperfect randomness, by Corollary 3.2, it must
be the case that all the shares of secrets will be identical to
all the shares of some other secrets0 (with high probabil-
ity). But sinces 6= s0, it will be impossible to reconstruct
the secret even if all̀ parties collude.

4.3. Zero-Knowledge

Zero-knowledge proofs [25] are interactive proof sys-
tems that yield no additional knowledge other than
the fact that the statement proven is true. In the uni-
form randomness setting, it has been shown by a series
of works [23, 27, 7] that zero-knowledge proofs ex-
actly characterizePSPACE, the class of problems solv-
able by polynomial-space bounded machines. On the other
hand, with only slightly imperfect randomness, we prove
that (auxiliary-input) zero-knowledge proofs areimpossi-
ble for languages not inBPP.

To formalize this notion of zero-knowledge with imper-
fect randomness, letY be an(n; k)-block source. The only
source of the prover’s randomness is asingle sampleof im-
perfect randomnessy  Y . We allow both the verifier and
the simulator to have access to uniform randomness, not-
ing that the impossibility result still holds in this case.

In this model,giving the prover’s random stringx to
the verifier may potentially leak knowledge. This is because
the verifier does not know what the distributionY is. The
only guarantee onY is that it is an(n; k)-block source.
Hence, the simulator is required to beuniversalwith re-
spect toY . In other words, the simulator needs to output a
singleprover-verifier transcript for all possible(n; k)-block
sourcesY given as the prover’s randomness.



Contrast this to the uniform randomness setting, where
giving a uniform random string to the verifier leaks no
knowledge. After all, the verifier can obtain the random
string by itself (since uniform independent randomness is
assumed to be freely available in that setting).

Our main result on the impossibility of zero-knowledge
is stated as follows.

Theorem 4.4. If a languageL has an auxiliary-input
zero-knowledge proof (with security parameter�)
and the prover’s only random source is an imperfect(n; n� 1=poly(�))-block source, thenL 2 BPP.

The above impossibility result extends to rule out zero-
knowledge arguments.4 The proof of Theorem 4.4 relies on
the following lemma.

Lemma 4.5. LetF : f0; 1gN ! f0; 1gm and let� be the
set of all(n; n � 1=poly(�))-block sources of lengthN . If�F (Y1)	 �=
 �F (Y2)	 for everyY1; Y2 2 �, then there ex-
ists an� 2 f0; 1gm s.t.Pry UN [F (y) = �℄ > 1�neg(�).
Proof sketch. Set H(�; b) def= F (b), and observe that�H(Y2; Y1)	 � �F (Y1)	 �=
 �F (Y2)	. Applying
Lemma 3.1 (Main Lemma), we can show that for some
fixed �, H(�; �) = F (�) almost everywhere. But observe

that� def= F (�) = H(�; �) takes on a constant value.

Proof sketch of Theorem 4.4.Let � be the set of all(n; n� 1=poly(�))-block sources. Our first step is to show
that the proverP must be almost deterministic. Assume that
the verifier sends the first message. Consider the cheating
verifierV � which outputs as its first message the auxiliary
inputz and halts afterwards. We claim that the prover’s first
messageP1(x; Y; z), is almost deterministic. LetSV � be
the simulator forV �. Then the zero-knowledge condition
(on the first pair of messages) implies that�SV �(x; z;U)	 �=
 �hP (x; Y ); V �(x; z;U)i	� �(z; P1(x; Y; z))	;
for all distributionsY 2 �. Therefore, for anyY1; Y2 2 �,
we have that

�(z; P1(x; Y1; z))	 �=
 �(z; P1(x; Y2; z))	.
By Lemma 4.5, there exists a message� such thatPry U [P1(x; y; z) = �℄ > 1 � neg(�). This means that
the prover’s first message is almost deterministic. Repeat-
ing this argument inductively, we find that all the prover’s
messages must be almost deterministic.

Having shown that the prover is almost deterministic, we
can use the techniques of Goldreich and Oren [24] to show
that any auxiliary-input zero-knowledge proof system with
almost deterministic provers can only decide languages inBPP.

4 The soundness in an argument is only guaranteed against computation-
ally efficient cheating provers. An impossibility result for arguments
is stronger than that of proofs, since any proof system is, bydefini-
tion, also an argument.

4.4. Non-Interactive Zero-Knowledge

Non-interactive zero-knowledge proof systems (NIZK)
were introduced by Blum, Feldman and Micali [10]. The
NIZK model allows the prover and the verifier to share
a common random string(CRS). In the perfect random-
ness setting, the CRS is a uniform random string chosen
by a trusted party. The prover sends asinglemessage, and
then the verifier will decide to accept or reject based on the
prover’s message, the CRS, and its own randomness. Feige,
Lapidot and Shamir [20] showed that all languages inNP
possess NIZK proofs if one-way permutations exist.

In the imperfect randomness setting, the CRS is chosen
by a trusted party from an(n; n�1=poly(�))-block source.
We prove that NIZK is impossible in this setting.

Theorem 4.6. Let hP; V i be an NIZK protocol for a lan-
guageL. Suppose the CRS is generated from a sourceY
using a functionG, that is CRS= G(x), wherex  Y .5 If
the NIZK protocol (with security parameter�) is secure for
every(n; n� 1=poly(�))-block sourceY , thenL 2 BPP.

Our impossibility results holds even when the prover and
verifier are each allowed to have access to uniform ran-
domness. In addition, it is also possible to rule out NIZK
arguments4 for languages outsideBPP, if G is efficiently
invertible in the following sense: there is an efficient proce-
dureG�1 such thatG(G�1(z)) = z for all z 2 Range(G),
and

�G�1(G(x))	x U � U .

Proof sketch of Theorem 4.6.Let the simulator for the NIZK

proof system beS def= (F;�), whereF generates the CRS
and� generates the proof. We claim that the following algo-
rithmA is aBPP procedure for deciding the languageL.

Algorithm A: On inputx, selecty  U andr  U .
Set� = F (x; y; r) and� = �(x; y; r). If � = G(y) andV (x; �; �) = 1, thenaccept. Elsereject.

Forx 62 L, it can be shown that the cheating prover strat-
egy defined byP �(x; �) = �(x;G�1(�);U) will succeed
in makingV accept with at least the same probability thatA acceptsx. Hence the soundness condition guarantees thatA rejectsx with high probability.

For x 2 L, the zero-knowledge condition stipulates
that

�F (x; Y;U)	 �=
 �G(Y )	, and hence by Lemma 3.1
(Main Lemma),F (x; y; r) = G(y) for almost ally andr.
This means that giveny  U , the simulator is almost al-
ways forced to produce the exact copy of the CRS, which
is G(y).6 And since the “proof” generated by� is compu-
tationally indistinguishable from the honest prover’s proof,
algorithmA will acceptx 2 L with high probability.

5 The functionG can beany(even uncomputable) function.
6 Contrast this to the uniform randomness setting where the simulator

usually manipulates the distribution of the CRS to gain an advantage
over a cheating prover.



4.5. Two-Party Secure Computation

Let f : S1�S2 ! S3 be a two-argument finite function,
that is allS1; S2, andS3 are finite sets. Let Alice and Bob
be the parties involved in computingf . The private input to
Alice and Bob arexA andxB respectively. They wish to se-
curely compute the value off(xA; xB), in a way that will
not allow the other party to gain knowledge of their private
inputs. We consider an asymmetric notion of secure compu-
tation whereby only Bob needs to outputf(xA; xB).7

Informally, we say that an interactive protocol between
Alice and Bob securely computesf(xA; xB) if after the in-
teraction, the following two conditions hold.

1. Bob learns the right value off(xA; xB) but no matter
how he tries to cheat, he will learn nothing aboutxA
which is not already implied byxB andf(xA; xB).

2. Alice learns nothing aboutxB no matter how she tries
to cheat.

We refer the reader to [21] for the formal definition of two-
party secure computation.

A function f is said to betrivial if there exists a
two-party secure computation protocol such that both hon-
est parties are deterministic, and remains secure even if
the malicious party is computationally unbounded. Beimel,
Malkin and Micali [4] gave adeterministic one-roundpro-
tocol computing any trivial functionf . The protocol just
involves Alice sending a single message to Bob. In addi-
tion, they gave an exact combinatorial characterization of
trivial functions.

Theorem 4.7 ([4]). A functionf : S1 � S2 ! S3 is trivial
iff theredo notexista0; a1 2 S1 andb0; b1 2 S2, such thatf(a0; b0) = f(a1; b0) andf(a0; b1) 6= f(a1; b1).

In the uniform randomness model, Goldreich, Micali and
Wigderson [22] proved that all functions are securely com-
putable if trapdoor permutations exist. With only imperfect
randomness, we show that the only trivial functions are se-
curely computable.

Theorem 4.8. Assume the two parties are givenindepen-
dent(n; n � 1=poly(�))-block sources. If there exists two-
party secure computation protocols (with security param-
eter�) computing a two-argument finite functionf in the
malicious model, thenf is trivial.

While the above theorem rules out secure computation
in the malicious setting, we cannot do much better even in
thehonest-but-curiousmodel, in which the security guaran-
tee is only for honest execution of the protocol.

7 In the malicious model, it is unreasonable to expect both parties to al-
ways be able to output the correct evaluation of the function, because
the first party that obtains the output of the function can abort.

Theorem 4.9 (impossibility in honest-but-curious set-
ting). LetY andZ be random sources of Alice and Bob re-
spectively, andf be a two-argument finite function. If there
exists two-party secure computation (with security param-
eter�) of f in the honest-but-curious model that works for
all (n; n� 1=poly(�))-block sourceY ÆZ, thenf is trivial.

Our result is tight, in the sense that if we assume in-
dependence ofY and Z, we can use extractors to ob-
tain independent private uniform randomness for both par-
ties [12, 15, 14]. And with private uniform randomness, all
functions are securely computable [22]. Therefore, if the
two parties are givenindependent(n; k)-block sources, fork > n=2 + !(logn), then all functions are securely com-
putable in the honest-but-curious model (if trapdoor permu-
tations exists).

5. Secure Signature Schemes with Imperfect
Random Sources

Turning to our positive results, we construct signature
schemes that remain secure even if our random source is
only guaranteed to be a(n; k)-block source fork < n. The
only cryptographic assumption we make is the existence of
a one-way permutation (OWP) that remains secure with im-
perfect random sources. Our signature scheme will beexis-
tentially unforgeable under chosen message attack. The ver-
ification of our signature scheme is deterministic, but the
signer will be probabilistic and stateful.

Informally we say a protocol or a function is(n; k)-secure if it remains secure even using an im-
perfect random source that is only guaranteed to be a(n; k)-block source. In particular, a one-way permuta-
tion f : f0; 1gO(n) ! f0; 1gO(n) is (n; k)-secure if there
does not exists an efficient algorithm capable of invert-
ing f even when the input tof is sampled from any(n; k)-block source. The following is our main theorem re-
garding signature schemes.

Theorem 5.1. If (n; k)-secure one-way permutations exist,
then(n; k)-secure signature schemes exist.

The construction of our signature scheme is very sim-
ilar to that of Naor and Yung [36]. Our main observation
is that we are able to do a reduction (in the imperfect ran-
dom sources model) from an adversaryA breaking the sig-
nature scheme to another related adversaryA0 breaking the
OWP.

Necessity of the non-standard assumption.While we use
a stronger variant of OWP to construct signature schemes
with imperfect randomness, we note that(n; k)-secure sig-
nature schemes readily imply the existence of(n; k)-secure
one-way functions. This is because the key generation al-
gorithm can be viewed as a one-way function, with the in-
put being the randomness used to generate the public/secret



keys pair and the output being the public key. This fact
suggests that the non-standard assumption of(n; k)-secure
OWP is needed as a basis for the construction of(n; k)-
secure signature schemes.

We note that(n; n � O(log n))-secure OWP are equiv-
alent to standard OWP. Furthermore,(n; n � n")-secure
OWP, for some" > 0, follow from the recently popu-
lar assumption ofstrongly intractableOWP. Strongly in-
tractable OWP are permutations that are hard-to-invert even
by 2n
(1) -sized circuits.

6. Interactive Protocols With Weak Sources

A long line of research on explicit extractor construc-
tion has shown that the class of probabilistic polynomial-
time algorithms (BPP) can be simulated using(n; k)-
block sources, as long asn is bounded by a polynomial in
the input length andk � n
(1) (e.g.,see [32]). In this sec-
tion, we show that the same conclusion holds for a much
richer class of interactive protocols.

Interactive Protocols with Uniform Randomness.In the
standard interactive proof protocol [2, 25], a computation-
ally unbounded proverP needs to convince a probabilis-
tic polynomial-time verifierV (with access to uniform ran-
domness) membership in the languageL. That is, forx 2 L,
we havePr[hP; V i(x) = 1℄ � 2=3 (completeness). And
for x 62 L, and for any cheating proverP �, we havePr[hP �; V i(x) = 1℄ � 1=3 (soundness). Let the classIP[t℄ denote languages possessing at-round (private-coin)
interactive proof protocol. If all the verifier’s messages con-
sists of just random coin tosses, we call such an inter-
active protocolpublic-coin, and denote the corresponding
class byAM[t℄, the class oft-round public-coin interac-
tive proof protocol. We know thatIP[t℄ = AM[t℄ ([26]),
that IP[
onstant℄ = AM[2℄ ([2]), and thatAM[poly℄ =IP[poly℄ = PSPACE ([33, 42]).

Interactive Protocols with Imperfect Randomness.Analo-
gous to the case of probabilistic algorithms with imper-
fect randomness, we consider interactive protocols where
the verifierV have access to only imperfect randomness
with the only guarantee of being an(n; k)-block source.
We denote the corresponding classes byIPweak[t℄ andAMweak[t℄. While these definitions technically should de-
pend onn andk, but we will show momentarily that as long
asn � poly(jxj) andk � 1=poly(jxj), wherex is the com-
mon input to the interactive protocol, this will not make any
difference. Specifically, we show the following.

Theorem 6.1. For any t, AMweak[t℄ = AM[t℄ =IP[t℄ = IPweak[t℄. Thus,IP[
onstant℄ = AMweak[2℄
andAMweak[poly℄ = IPweak[poly℄ = PSPACE.

Proof sketch. Notice, it suffices to showAM[t℄ �AMweak[t℄, as thenIPweak[t℄ � IP[t℄ = AM[t℄ �

AMweak[t℄ � IPweak[t℄. We only sketch our transforma-
tion below, leaving the proof to the full version.

Take anyL 2 AM[t℄ which has at-roundAM-protocol
with completeness11=12 and soundness1=12, where the
verifier V send
 uniform random bits per round. We will
use the notion ofstrong randomness extractors[37] to make
a new protocol between new proverP 0 and new verifierV 0. Specifically, for any error" and min-entropym >
 + O(log(1=")), there exists [32] an efficient strong ex-
tractorExt : f0; 1gN � f0; 1gd ! f0; 1g
 with seed lengthd = O(logN + log(1=")), such that given any(N;m)-
sourceX , the output ofExt(X;Ud) is "-close toU
, even if
conditioned on the seed value. We set" = 1=12t;m = 
+O(log(1=")); N = ndm=ke andd = O(logN+log(1=")),
and view our(n; k)-block source as an(N;m)-block source
(by grouping togetherdm=ke original blocks). Notice, the
valuesN; 2d;m; t are all polynomial in the input lengthjxj.

Now, given our(N;m)-block sourceX = (X1 : : :Xt),
we let Rsi = Ext(Xi; s) be the value extracted fromXi
on seeds. In roundi, our newAMweak-verifier V 0 will
send his blockXi, while the proverP 0 will respond with2d = poly(jxj) responsesAsi which the original proverP
would send on theV ’s challengesRs1 : : : Rsi . At the end,V 0 computes the fractionZ (w.r.t. s) of accepting computa-
tions (according toV ) and accepts ifZ > 1=2.
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