Modeling Volatility Risk in Equity Options: a Cross-sectional approach

Marco Avellaneda
NYU & Finance Concepts

Doris Dobi*
NYU

* This work is part of Doris’ Dobi PhD dissertation. It is available at www.math.nyu.edu/faculty/avellane
Modeling Volatility Risk

• Equity options depend on the underlying price as well as on the implied volatility of the corresponding option.

• Volatility returns are correlated to stock returns and to other volatilities.

• In the Post Lehmann era, VIX-related products and their options proliferated been trading.

• Strategies involving, VIX futures, VIX ETNs and SPX-SPY require proper portfolio-management and portfolio management.

• Dispersion trading (index options vs. component options/ options vs. options) also requires understanding of correlations between implied volatilities and stocks.

• This presentation gives some recent results on how to think about cross-sectional equity volatility.
Outline

• Classification of equities into “systemic” and “idiosyncratic” categories based on the fluctuations of their volatility surfaces

• Dimension-reduction and parsimonious descriptions of volatility surfaces

• Cross-sectional analysis of 3800 optionable stocks and their options in a single model

 Main tools used: Elementary data analysis, Principal Component Analysis and Random Matrix Theory (Marcenko-Pastur, Tracy-Widom).
I. Classification of equities based on the fluctuations of their IVS
The Data

• Data source: IVY OptionMetrics (available at WRDS), which gives EOD prices from OPRA

• Data format: Snapshot of Implied Volatility Surface (IVS) parameterized in terms of delta and time-to-maturity (constant delta, constant maturity)

• Size of the problem: 7000 optionable securities with 130 delta-maturity points for each security: approximately 910,000 variables

• This study: 3800 optionable securities with 52 (call) delta-maturity points per underlying asset + underlying asset

\[\delta = (20, 25, 30, \ldots, 75, 80, 100), \quad \tau = (30, 91, 182, 365) \]

• Historical period: August 31, 2004 to August 31, 2013
The statistical Analysis

• For each underlying stock, ETF or index, we form the matrix

\[
X = \begin{bmatrix}
X_{1,1} & \cdots & X_{1,53} \\
\vdots & \ddots & \vdots \\
X_{T,1} & \cdots & X_{T,53}
\end{bmatrix}
\]

\(T=1257 \)

\(X_{t,i} = \) standardized returns of stock \((i=1)\) or IVS point labeled \(i\)

• Perform an SVD of the volatility surface for each underlying asset in the dataset.

• Analyze eigenvectors and eigenvalues
Analysis of SPX volatility surface

Spectrum

First eigenvector

Vol up

Stock down

95%

2 × 2%

Second eigenvector

Third eigenvector
Main Principal Components for IVS of SPX options

Time-delta movements are coupled

First four principal components of the implied volatility surface for SPX.
20 most liquid ETFs

The degree to which the 1st EV explains fluctuations varies from asset to asset

- Major indices
- VIX ETN
- Japan hedged

Diagram showing percent of variation explained by the first eigenvector for different assets, with Brazil and Treasury ETF highlighted.
Histogram of first EV of IVS for all constituent stocks of S&P 500
Histogram of 1st and 2nd EVS for all equities in the study
Top and bottom stocks ranked by EV

Table 1.2: Top 15 underlying constituents and bottom 15 underlying constituents by first eigenvalue.

<table>
<thead>
<tr>
<th>Bottom 15 Constituents</th>
<th>EV1</th>
<th>Top 15 Constituents</th>
<th>EV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMI</td>
<td>0.27272</td>
<td>GS</td>
<td>0.87176</td>
</tr>
<tr>
<td>POM</td>
<td>0.31406</td>
<td>JPM</td>
<td>0.87092</td>
</tr>
<tr>
<td>WEC</td>
<td>0.34958</td>
<td>BAC</td>
<td>0.85115</td>
</tr>
<tr>
<td>PNW</td>
<td>0.35611</td>
<td>SLB</td>
<td>0.84669</td>
</tr>
<tr>
<td>HCBK</td>
<td>0.35995</td>
<td>CAT</td>
<td>0.84219</td>
</tr>
<tr>
<td>NLSN</td>
<td>0.36338</td>
<td>AAPL</td>
<td>0.84126</td>
</tr>
<tr>
<td>TE</td>
<td>0.36342</td>
<td>XOM</td>
<td>0.84109</td>
</tr>
<tr>
<td>NU</td>
<td>0.3667</td>
<td>NOV</td>
<td>0.83737</td>
</tr>
</tbody>
</table>

Table 1.3: Remaining top 15 underlying constituents and bottom 15 underlying constituents by first eigenvalue.

<table>
<thead>
<tr>
<th>Bottom 15 Constituents</th>
<th>EV1</th>
<th>Top 15 Constituents</th>
<th>EV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS</td>
<td>0.37675</td>
<td>CME</td>
<td>0.83639</td>
</tr>
<tr>
<td>XEL</td>
<td>0.3828</td>
<td>MA</td>
<td>0.8358</td>
</tr>
<tr>
<td>WIN</td>
<td>0.38664</td>
<td>MS</td>
<td>0.83471</td>
</tr>
<tr>
<td>RSG</td>
<td>0.39779</td>
<td>APA</td>
<td>0.83081</td>
</tr>
<tr>
<td>FTR</td>
<td>0.40043</td>
<td>GOOG</td>
<td>0.83011</td>
</tr>
<tr>
<td>MKC</td>
<td>0.40475</td>
<td>HIG</td>
<td>0.8301</td>
</tr>
<tr>
<td>XYL</td>
<td>0.40596</td>
<td>HES</td>
<td>0.82965</td>
</tr>
</tbody>
</table>
Classification: we can view equities as “systemic” or “idiosyncratic”

- Systemic equities, by definition, have large EV1 (in % terms)
- Idiosyncratic equities have low EV1. In general they have higher EV2, EV3, ...
- Idiosyncratic equities are largely affected by corporate events and company specific news. The skew in the IVS (non-parallel IVS shifts) are more important than in systemic stocks.
- Idiosyncratic stocks have typically lower capitalizations and can be subject to take-overs, can have larger earning surprises/ weak earnings guidance, subject to surprises (biotechnology, social media, games), etc.
- Systemic stocks are very much driven by the market risk appetite (risk on, risk-off).
Significance of higher-order EVs
Analysis of the IVS spectra using RMT

• An important question – going beyond the first EV – is to find out how many eigenvectors are significant.

• Random matrix theory: if X is a random matrix of IID random variables with mean zero and variance 1, of dimensions $T \times N$, the density of states of the correlation matrix

$$C = \frac{1}{T}XX'$$

approaches a N and T tend to infinity with ratio $N/T=\gamma$ the Marcenko-Pastur distribution

$$\frac{\#\{\lambda: \lambda \leq x\}}{N} \rightarrow MP(\gamma; x) = \int_{0}^{x} f(\gamma; y)dy$$

$$N \rightarrow \infty, \frac{N}{T} \rightarrow \gamma$$
Marcenko-Pastur threshold

\[
f(\gamma; x) = \left(1 - \frac{1}{\gamma}\right)^+\delta(x) + \frac{1}{2\pi\gamma} \frac{\sqrt{(x - \lambda_-)(\lambda_+ - x)}}{x} \quad \lambda_- \leq x \leq \lambda_+
\]

\[
\lambda_- = (1 - \sqrt{\gamma})^2 \quad \lambda_+ = (1 + \sqrt{\gamma})^+
\]

The theoretical top EV for the IVS is \(\lambda_+ = \left(1 + \frac{\sqrt{53}}{\sqrt{1257}}\right)^2 = 1.45\)

- Eigenvalues of the correlation matrix which correspond to non-random features should lie above the MP threshold (within error)
- The idea was developed in Laloux, et al (2000) and Bouchaud and Potters (2000) for studying equity correlations
Number of EVs above the MP threshold can be large for idiosyncratic stocks.
Systemic stocks correspond to simple dynamics for their IVS.
EV1 is negatively correlated to Ev(n) and to the # of significant EV

Cross-sectional correlation matrix of EV1,...,EV4 and #EV>MP

<table>
<thead>
<tr>
<th></th>
<th>EV1</th>
<th>EV2</th>
<th>EV3</th>
<th>EV4</th>
<th># EVs > MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV1</td>
<td>1.00</td>
<td>-0.77</td>
<td>-0.85</td>
<td>-0.94</td>
<td>-0.89</td>
</tr>
<tr>
<td>EV2</td>
<td>-0.77</td>
<td>1.00</td>
<td>0.72</td>
<td>0.74</td>
<td>0.62</td>
</tr>
<tr>
<td>EV3</td>
<td>-0.85</td>
<td>0.72</td>
<td>1.00</td>
<td>0.81</td>
<td>0.72</td>
</tr>
<tr>
<td>EV4</td>
<td>-0.94</td>
<td>0.74</td>
<td>0.81</td>
<td>1.00</td>
<td>0.88</td>
</tr>
<tr>
<td>#EVs > MP</td>
<td>1.00</td>
<td>0.62</td>
<td>0.72</td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

This confirms that the dynamics of IVS for systemic stocks (EV1>0.8) are simpler than for idiosyncratic stocks (EV1<0.4).

Traders and risk managers should be aware of this.
II. Dimension reduction and parsimonious descriptions of IVS
Dimension reduction

- We have seen that IVS move rather simply for systemic names.
- Dynamics can be more complicated for idiosyncratic assets.
- What is a reasonable number of risk-factors needed to parameterize all IVS?
- We shall use an approach based on picking distinguished points on the IVS (a subset of the 52 or the 130 points given in Option Metrics).
- Pivot: a point on the delta/tenor surface used as a risk factor.
- Pivot scheme: a grid of pivots, which will be used to interpolate the remaining implied volatility returns.
- GOAL: find a pivot scheme that approximates well the significant spectrum and EV1 in particular (same grid for all assets!)
The pivot schemes that we tested

<table>
<thead>
<tr>
<th></th>
<th>2-Pivots</th>
<th>4-Pivots</th>
<th>5-Pivots</th>
<th>6-Pivots</th>
<th>7-Pivot</th>
<th>9-Pivots</th>
<th>12-Pivots</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(\delta) 30</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>50(\delta) 30</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>75(\delta) 30</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>25(\delta) 91</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>50(\delta) 91</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>75(\delta) 91</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>25(\delta) 182</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>50(\delta) 182</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>75(\delta) 182</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>25(\delta) 365</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>50(\delta) 365</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>75(\delta) 365</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>
9-pivot scheme

Vol here is interpolated linearly using the 4 surrounding pivots.
Increasing the number of pivots results in a better approximation of EV1.

Cross section of S&P 500 constituents.
12-pivot scheme does slightly better, but not much

9 pivots

12 pivots

- 9 pivots seems like an appropriate number to parameterize all the IVS in the data.

- This was confirmed by dynamic PCA with small window (Dobi’s thesis, 2014)
III. Joint correlation analysis for all optionable stocks and their volatility surfaces
The large data matrix

• We determined that for equities and their listed options, the 9-pivot model for each IVS might be sufficient to describe the option market.

• We study 3141 equities over 500 days. The dimensionality in column space (number of correlated variables) is $N = 3141 \times 10 = 31410$. The number of rows is 500.

• We have to model a correlation matrix of $31K \times 31K$. This is better than $310,000$ by $310,000$.

• IDEA: Following Laloux et al, and Bouchaud and Potters; extend their work on equities using Marcenko-Pastur to equities + options.
Marcenko-Pastur Threshold and Main Questions

• The MP Threshold is

\[\lambda_+ \approx \left(1 + \sqrt{\frac{31410}{500}} \right)^2 = 79.67 \]

• This suggests that we keep eigenvalues above 79.67 and declare that the rest is noise....

• Question 1: how many EVs exceed (significantly) the 79.67?

• Question 2: Is MP valid for stocks/options given the heavy nature of distributional tails?

• Bouchaud et al have shown that MP does not hold for random matrices in which the coefficients have heavy tails.
Checking that the MP criterion applies

• Take the return matrix X and randomize the order of each column to produce a new matrix Y. The new matrix has same distributions for the entries but columns are uncorrelated

• Do a sample of 10,000 such matrices

• Compute the average DOS

• Compute the distribution of largest eigenvalue across the sample

• We did this for 4 ensembles

 1. Constituents of S&P 500 (no options)
 2. All optionable equities for which there was data
 3. S&P 500 with options
 4. All optionable equities with options
Density of States: Empirical vs MP

Empirical DoS of random correlation matrix with same underlying distribution as options on SPX vs. MP

- **Empirical DoS**
- **MP Density**

![Graph showing comparison between Empirical DoS and MP Density](image)
CDF for maximum eigenvalue: random matrix vs. Tracy-Widom
Main new result:
There are 108 significant Evs in the options market

<table>
<thead>
<tr>
<th>Top 110 Eigenvalues</th>
<th>s-value</th>
<th>$F_1(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_1 = 3742$</td>
<td>24843</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_5 = 209.27$</td>
<td>879.14</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{10} = 143.5$</td>
<td>433.04</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{20} = 118.19$</td>
<td>261.32</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{40} = 102.62$</td>
<td>155.74</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{50} = 97.40$</td>
<td>120.35</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{70} = 90.48$</td>
<td>73.35</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{90} = 84.56$</td>
<td>33.21</td>
<td>1</td>
</tr>
<tr>
<td>$\lambda_{107} = 80.21$</td>
<td>3.70</td>
<td>.9996</td>
</tr>
<tr>
<td>$\lambda_{108} = 80.04$</td>
<td>2.60</td>
<td>.996</td>
</tr>
<tr>
<td>$\lambda_{109} = 79.65$</td>
<td>-.10</td>
<td>.80</td>
</tr>
<tr>
<td>$\lambda_{110} = 79.41$</td>
<td>-1.71</td>
<td>.35</td>
</tr>
</tbody>
</table>

MP threshold
Final correlation results

1. Constituents of S&P 500 (no options):
 15 significant eigenvalues, explaining 55% of variance

2. ~3100 stocks from OptionMetrics (no options):
 20 significant eigenvalues, explaining 24% of the variance

3. Constituents of S&P 500 AND options with 9 pivots:
 84 significant eigenvalues, explaining 55% of variance

4. Large dataset + options with 9 pivots:
 108 significant eigenvalues, explaining 50% variance
Conclusions

• We presented an approach to model the statistical fluctuations of the entire US listed derivatives market

• We notice that implied volatility surfaces can have different degrees of shape variability depending on the size of EV1 for different assets.

• We interpret EV1 as a measure of how “systemic” a stock is.

• We propose modeling each IVS with 9 pivots or risk factors and claim that linear interpolation using these factors should produce very similar fluctuations as the entire surfaces, across all equities.

• We use this approach to analyze the correlation matrix of a large cross-section of equities and their implied volatility surfaces.

• We find that the number of significant EVs for the U.S. equity derivatives market is approximately 108.

• For more information please contact Doris Dobi at NYU (doris.dobi@gmail.com) or myself.