Quantum Compiler for Classical Dynamical Systems

Dimitris Giannakis
Courant Institute of Mathematical Sciences
New York University

IMA Data Science Seminar
January 19, 2021

Collaborators: Abbas Ourmazd, Jörg Schumacher, Joanna Slawinska
Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

The first question is, What kind of computer are we going to use to simulate physics? Computer theory has been developed to a point where it realizes that it doesn't make any difference; when you get to a universal computer, it doesn't matter how it's manufactured, how it's actually made. Therefore my question is, Can physics be simulated by a universal computer? I would like to have the elements of this computer locally interconnected, and therefore sort of think about cellular automata as an example (but I don't want to force it). But I do want something involved with the
Simulation of classical systems by quantum systems

- Discrete-time maps (Benenti et al. 2001).
- Differential equations with polynomial nonlinearities (Leyton & Osborne 2009).
- Data assimilation (G. 2019; Slawinska et al. 2019).
- Turbulent fluid flows (Bharadwaj et al. 2020; Lubasch et al. 2020).
We construct a framework for representing states and observables of a classical dynamical system by means of a finite-dimensional quantum mechanical system, amenable to quantum computation.

The output of this “quantum compiler” is a stochastic simulator of the evolution of classical observables, realized through projective quantum measurements.
1. Associated with every quantum system is a separable Hilbert space \mathcal{H} over the complex numbers. The possible states of the system correspond to the set of positive, trace-class operators $\rho : \mathcal{H} \to \mathcal{H}$ with $\text{tr} \, \rho = 1$, denoted $Q(\mathcal{H})$. The observables of the system are self-adjoint linear operators on \mathcal{H}.
Quantum mechanical axioms

2. Between measurements, the state evolves under the action of a strongly continuous group of unitary operators $U^t : \mathcal{H} \rightarrow \mathcal{H}$, $t \in \mathbb{R}$. The state ρ_t reached at time t starting from a state ρ_0 is given by $\rho_t = U^t \rho_0 U^t$.
3. Let $A : D(A) \to \mathcal{H}$ be an observable, defined on a dense subspace $D(A) \subseteq \mathcal{H}$. By the spectral theorem for self-adjoint operators, there exists a unique projection-valued measure $E_A : \mathcal{B}(\mathbb{R}) \to \mathcal{B}(\mathcal{H})$ such that $A = \int_{\mathbb{R}} a\, dE_A(a)$. The set of possible values that a measurement of A can take in a physical experiment is given by the spectrum of A, $\sigma(A) \subseteq \mathbb{R}$.
Quantum mechanical axioms

4. If the system is in state ρ, then the expectation value of a measurement of an observable A is given by $E_\rho A := \text{tr}(\rho A)$. The probability that a measurement of A lies in a Borel set $\Omega \subseteq \mathbb{R}$ is equal to $E_\rho E_A(\Omega)$.
5. If the system state immediately before a measurement is ρ^-, and a measurement of A yields a value $a \in \sigma(A)$, with $E_A(\{a\}) \neq 0$ (i.e., a is an eigenvalue of A), then the state ρ^+ immediately after the measurement is given by

$$\rho^+ = \frac{E_A(\{a\})\rho^- E_A(\{a\})}{\text{tr}(E_A(\{a\})\rho^- E_A(\{a\}))}.$$
A route to quantum compilation

Classical

\[X \xrightarrow{\Phi_t} X \]
A route to quantum compilation

Classical

Classical statistical

$P(X) \xrightarrow{\Phi^t_*} P(X)$

$X \xrightarrow{\Phi^t} X$

$\delta \quad \delta$
A route to quantum compilation

Classical

Classical statistical

Quantum mechanical

\[
\begin{align*}
X & \xrightarrow{\Phi_t} X \\
\mathcal{P}(X) & \xrightarrow{\Phi^*_t} \mathcal{P}(X) \\
Q(\mathcal{H}) & \xrightarrow{\Psi^t} Q(\mathcal{H})
\end{align*}
\]
A route to quantum compilation

Classical

Classical statistical

Quantum mechanical

Quantum computational

\[X \xrightarrow{\Phi^t} X \]

\[\mathcal{P}(X) \xrightarrow{\Phi^*_t} \mathcal{P}(X) \]

\[P \xrightarrow{\psi^t} P \]

\[\hat{\mathcal{W}} \xrightarrow{\tilde{\psi}^t} \hat{\mathcal{W}} \]

\[Q(\mathcal{H}) \xrightarrow{\psi^t} Q(\mathcal{H}) \]

\[Q(\mathcal{B}_N) \xrightarrow{\tilde{\psi}^t} Q(\mathcal{B}_N) \]
Dynamical system

• Ergodic rotation on the d-torus,

$$\Phi^t : \mathbb{T}^d \to \mathbb{T}^d, \quad \Phi^t(x) = (x_1 + \alpha_1 t, \ldots, x_d + \alpha_d t) \mod 2\pi.$$

• Canonical representatives (under topological conjugacy) of continuous-time, continuous, measure-preserving, ergodic dynamical systems with finitely generated pure point spectra.
Choice of Hilbert space

Consider the Fourier functions on $X = \mathbb{T}^d$,

$$\phi_j(x) = e^{ij \cdot x}, \quad j = (j_1, \ldots, j_d) \in \mathbb{Z}^d, \quad x = (x_1, \ldots, x_d) \in X.$$

For $p \in (0, 1)$, $\tau > 0$, set $k : X \times X \rightarrow \mathbb{R}$, with

$$k(x, x') = \sum_{j \in \mathbb{Z}^d} \lambda_j \overline{\phi_j(x)} \phi_j(x'), \quad \lambda_j = e^{-\tau(|j_1|^p + \cdots + |j_d|^p)}.$$

Theorem [Das, G. 20]. k is the reproducing kernel of an RKHS \mathcal{H}, which is a dense subspace of $C(X)$. Moreover, \mathcal{H} is an abelian, unital, Banach *-algebra under the pointwise multiplication and complex conjugation of functions. That is,

$$\|fg\|_\mathcal{H} \leq C\|f\|_\mathcal{H}\|g\|_\mathcal{H}, \quad \|f^*\|_\mathcal{H} = \|f\|_\mathcal{H}.$$

- The functions $\psi_j = \sqrt{\lambda_j} \phi_j$ form an orthonormal basis of \mathcal{H}.
Reproducing kernel Hilbert algebras (RKHAs)

<table>
<thead>
<tr>
<th></th>
<th>$L^2(X)$</th>
<th>$C(X)$</th>
<th>$C^\infty(X)$</th>
<th>RKHS</th>
<th>RKHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hilbert space structure</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pointwise evaluation</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>*-algebra structure</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>C^∞ regularity</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Unitary Koopman operators

\[U^t : \mathcal{H} \rightarrow \mathcal{H}, \quad U^t f = f \circ \Phi^t, \quad U^{t*} = U^{-t} \]

- Generator:
 \[V : D(V) \rightarrow \mathcal{H}, \quad Vf = \lim_{t \to 0} \frac{U^t f - f}{t}, \quad V^{*} = -V, \quad U^t = e^{tV}. \]

- Eigenbasis:
 \[V \psi_j = i \omega_j \psi_j, \quad \omega_j = j_1 \alpha_1 + \cdots + j_d \alpha_d, \quad j \in \mathbb{Z}^d. \]

- Group structure:
 \[\omega_j + \omega_k = \omega_{j+k}, \quad \psi_j \psi_k = c_{jk} \psi_{j+k}. \]
From classical to classical-statistical level

- δ maps $x \in X$ to the Dirac measure supported at x, \[
delta(x) = \delta_x.
\]
- $\mu \in \mathcal{P}(X)$ evolves under the pushforward map on measures, \[
\Phi^t_* (\mu) = \mu \circ \Phi^{-t}.
\]
From classical-statistical to quantum mechanical level

\[
\begin{align*}
X & \xrightarrow{\Phi^t} X \\
\delta & \downarrow \Phi^t \downarrow \delta \\
\mathcal{P}(X) & \xrightarrow{\Phi^*} \mathcal{P}(X) \\
P & \downarrow P \downarrow \\
Q(\mathcal{H}) & \xrightarrow{\Psi^t} Q(\mathcal{H})
\end{align*}
\]

- Feature map:
 \[F : X \rightarrow \mathcal{H}, \quad F(x) = k_x \equiv k(x, \cdot). \]

- Quantum feature map:
 \[Q : X \rightarrow Q(\mathcal{H}), \quad Q(x) = \rho_x \equiv \langle \xi_x, \cdot \rangle_{\mathcal{H}} \xi_x, \quad \xi_x = \frac{F(x)}{\|F(x)\|_{\mathcal{H}}}. \]

- Quantum embedding of probability measures:
 \[P : \mathcal{P}(X) \rightarrow Q(\mathcal{H}), \quad P(\mu) = \int_X \rho_x \, d\mu(x). \]

- Unitary evolution:
 \[\Psi^t : Q(\mathcal{H}) \rightarrow Q(\mathcal{H}), \quad \Psi^t(\rho) = U^{t*} \rho U^t. \]
Representation of observables

\[\mathcal{H} \xrightarrow{U^t} \mathcal{H} \]
\[\pi \downarrow \quad \downarrow \pi \]
\[B(\mathcal{H}) \xrightarrow{U^t} B(\mathcal{H}) \]

- Regular representation,
 \[\pi : \mathcal{H} \to B(\mathcal{H}), \quad (\pi f)g = fg. \]

- Mapping into self-adjoint operators,
 \[T : \mathcal{H} \to B(\mathcal{H}), \quad Tf = \frac{\pi f + (\pi f)^*}{2}. \]

- Unitary evolution,
 \[U^t : B(\mathcal{H}) \to B(\mathcal{H}), \quad U^t A = U^t A U^{t*}. \]
Multiplication operators

\[M_{ij} = \langle \psi_i, \pi(\psi_k)\psi_j \rangle_{\mathcal{H}} = c_{k,i-j} \]

\[\psi_i \psi_j = C_{ij} \psi_{i+j} \]

The multiplication operator \(\pi \psi_k \) is represented by a \((-k)\)-diagonal matrix \(M \).
The following holds for every $f \in \mathcal{H}$, $x \in X$, and $t \in \mathbb{R}$:

$$U^t f(x) = \mathbb{E}_{\Psi^t(Q(x))}(\pi f).$$

Moreover, if f is a self-adjoint (real-valued) element of \mathcal{H},

$$U^t f(x) = \mathbb{E}_{\Psi^t(Q(x))}(Tf).$$

Remark. The reproducing property of \mathcal{H} is important in these results.
From quantum mechanical to quantum computational level

\[X \xrightarrow{\Phi^t} X \]
\[\delta \downarrow \quad \Phi^t \quad \delta \]
\[\mathcal{P}(X) \xrightarrow{\Phi^t} \mathcal{P}(X) \]
\[P \downarrow \quad \Psi^t \quad P \]
\[Q(\mathcal{H}) \xrightarrow{\Psi^t} Q(\mathcal{H}) \]
\[\hat{\mathcal{W}} \downarrow \quad \hat{\Psi}^t \quad \hat{\mathcal{W}} \]
\[Q(\mathbb{B}_N) \xrightarrow{\hat{\Psi}^t} Q(\mathbb{B}_N) \]

- \(2^N\)-dimensional Hilbert space associated with \(N\) qubits:
 \[\mathbb{B}_N = \mathbb{B} \otimes \mathbb{B} \otimes \cdots \otimes \mathbb{B}, \quad \mathbb{B} \simeq \mathbb{C}^2. \]

- Pauli \(Z\)-operator:
 \[Z : \mathbb{B} \rightarrow \mathbb{B}, \quad Z|0\rangle = |0\rangle, \quad Z|1\rangle = -|1\rangle. \]

- Tensor product basis of \(\mathbb{B}_N\):
 \[|b_1 \cdots b_N\rangle = |b_1\rangle \otimes |b_2\rangle \otimes \cdots \otimes |b_N\rangle, \quad (b_1, \ldots, b_N) \in \{0,1\}^N. \]
Finite-rank representation of states and observables

For $X = \mathbb{T}^d$, $\frac{N}{d} \in \mathbb{N}$, let $J_N^{(1)} = \{-\frac{N}{d}, \ldots, -1, 1, \ldots, \frac{N}{d}\}$, $J_N = (J_N^{(1)})^d$,

$$
\mathcal{H}_N = \text{span}\{\psi_j : j \in J_N\}, \quad \Pi_N = \text{proj}_{\mathcal{H}_N}, \quad \kappa_N = \sum_{j \in J_N} \lambda_j,
$$

$$
\tilde{\Pi}_N : B(\mathcal{H}) \to B(\mathcal{H}), \quad \tilde{\Pi}_N A = \Pi_N A \Pi_N,
$$

$$
\mathcal{L}_N : \mathcal{H} \to \mathcal{H}, \quad \mathcal{L}_N \psi_j = \left(1 - \frac{\lambda_j}{\kappa_N}\right)^{-1} \psi_j.
$$
Finite-rank representation of states and observables

For $X = \mathbb{T}^d$, $\frac{N}{d} \in \mathbb{N}$, let $J_N^{(1)} = \{-\frac{N}{d}, \ldots, -1, 1, \ldots, \frac{N}{d}\}$, $J_N = (J_N^{(1)})^d$,

$$\mathcal{H}_N = \text{span}\{\psi_j : j \in J_N\}, \quad \Pi_N = \text{proj}_{\mathcal{H}_N}, \quad \kappa_N = \sum_{j \in J_N} \lambda_j,$$

$$\tilde{\Pi}_N : B(\mathcal{H}) \to B(\mathcal{H}), \quad \tilde{\Pi}_N A = \Pi_N A \Pi_N,$$

$$\mathcal{L}_N : \mathcal{H} \to \mathcal{H}, \quad \mathcal{L}_N \psi_j = \left(1 - \frac{\lambda_j}{\kappa_N}\right)^{-1} \psi_j.$$

Defining

$$Q_N = \frac{\kappa}{\kappa_N} \tilde{\Pi}_N \circ Q, \quad \pi_N = \tilde{\Pi}_N \circ \pi \circ \mathcal{L}_N, \quad T_N = \tilde{\Pi}_N \circ T \circ \mathcal{L}_N,$$

the following hold in the infinite qubit limit, $N \to \infty$.

1. For every $f \in \mathcal{H}$, $x \in X$, and $t \in \mathbb{R}$,

$$\mathbb{E}_{\psi^t(Q_N(x))} \pi_N f \longrightarrow \mathbb{E}_{\psi^t(Q(x))} \pi f \equiv U^t f(x).$$

2. Further, if f is self-adjoint,

$$\mathbb{E}_{\psi^t(Q_N(x))} T_N f \longrightarrow \mathbb{E}_{\psi^t(Q(x))} T f \equiv U^t f(x).$$
Finite-rank quantum mechanical observable

\[(T_N f)u_j = s_j u_j, \quad f(x) = \sin x = \frac{\psi_1(x) + \psi_{-1}(x)}{2i\sqrt{\lambda_1}}\]
Finite-rank quantum mechanical observable

\[(T_N f) u_j = s_j u_j, \quad f(x) = \sin x = \frac{\psi_1(x) + \psi_{-1}(x)}{2i \sqrt{\lambda_1}}\]
Finite-rank quantum mechanical observable

\[(T_N f)u_j = s_j u_j, \quad f(x) = \sin x = \frac{\psi_1(x) + \psi_{-1}(x)}{2i \sqrt{\lambda_1}}\]
Projection onto quantum computational space

Order the index set $J_N^{(1)}$ according to $o : J_N^{(1)} \rightarrow \{0, \ldots, 2^{N/d} - 1\}$, i.e.,

$$
\begin{array}{cccccccc}
-2^{N/d-1} & \ldots & -1 & 1 & \ldots & 2^{N/d-1} \\
\downarrow & & \downarrow & \downarrow & & \downarrow \\
0 & \ldots & 2^{N/d-1} - 1 & 2^{N/d-1} & \ldots & 2^{N/d} - 1
\end{array}
$$

Letting $\delta(n) \in \{0, 1\}^{N/d}$ be the dyadic representation of $n \in \{0, \ldots, 2^{N/d} - 1\}$, define the unitary $W_N : \mathcal{H}_N \rightarrow \mathbb{B}_N$

$$
W_N \psi_j = |b\rangle, \quad b = [\delta(o(j_1)) \cdots \delta(o(j_d))] \in \{0, 1\}^N.
$$

This induces a unitary $W_N : B(\mathcal{H}_N) \rightarrow B(\mathbb{B}_N)$, $W_N A = W_N A W_N$, and a projection $\tilde{W}_N = W_N \circ \tilde{\Pi}_N$ such that

$$
\begin{array}{ccc}
Q(\mathcal{H}) & \xrightarrow{\psi^t} & Q(\mathcal{H}) \\
\tilde{W} & \downarrow & \tilde{W} \\
Q(\mathbb{B}_N) & \xrightarrow{\hat{\psi}^t} & Q(\mathbb{B}_N)
\end{array}
, \quad \tilde{W}_N = \frac{\kappa}{\kappa_N} \tilde{W}_N, \quad \hat{\psi}^t = \tilde{W}_N \psi^t.
Walsh operator representation (Welch et al. 2014)

Letting $\beta(n)$ be the bit-reversed binary representation of $n \in \{1, \ldots, 2^N\}$, define the Walsh operator

$$Z_n : \mathbb{B}_N \rightarrow \mathbb{B}_N, \quad Z_n = Z_{b'_1} \otimes \cdots \otimes Z_{b'_N}, \quad (b'_1, \ldots, b'_N) = \beta(n).$$

Then, every diagonal operator $A \in B(\mathbb{B}_N)$ such that

$$A|b\rangle = a_b|b\rangle, \quad b \in \{0, 1\}^N,$$

admits the factorization

$$A = \sum_{n=1}^{2^N} \hat{h}_n Z_n,$$

where the coefficients \hat{h}_n are given by the discrete Walsh-Fourier transform of $h : \{0, \ldots, 2^N - 1\} \rightarrow \mathbb{C}$ with $h(m/2^N) = a_\delta(m)$,

$$\hat{h}_n = \frac{1}{2^N} \sum_{m=0}^{2^N-1} w_n^{(N)}(m) h(m), \quad w_n^{(N)}(m) = (-1)^{\beta(n) \cdot \delta(m)}.$$
Walsh operator representation of the Koopman generator

Under $\hat{\tilde{W}}_N$, the generator V maps into the Hamiltonian $H = \frac{1}{i} \hat{\tilde{W}}_N V$,

$$H|b\rangle = \omega_j |b\rangle, \quad \omega_j = \sum_{i=1}^{d} j_i \alpha_i, \quad b = [\delta(o(j_1)) \cdots \delta(o(j_d))].$$

For a quasiperiodic dynamical system on \mathbb{T}^d, the Walsh representation $H = \sum_{n=1}^{2^N} \hat{h}_n Z_n$ has only N nonzero terms, and for these terms the binary string $\beta(n)$ has only a single 1. In particular,

$$H = \hat{h}_1 Z \otimes I \otimes I \otimes I \otimes \cdots \otimes I$$
$$+ \hat{h}_2 I \otimes Z \otimes I \otimes I \otimes \cdots \otimes I$$
$$+ \hat{h}_4 I \otimes I \otimes Z \otimes I \otimes \cdots \otimes I$$
$$+ \ldots$$
$$+ \hat{h}_{2^{N-1}} I \otimes \cdots \otimes I \otimes Z.$$

As a result, the evolution operator e^{iHt} admits the factorization

$$e^{iHt} = e^{i\hat{h}_1 tZ} \otimes e^{i\hat{h}_2 tZ} \otimes e^{i\hat{h}_4 tZ} \otimes \ldots \otimes e^{i\hat{h}_{2^{N-1}} tZ}.$$
The Walsh operator factorization allows implementation of the evolution

$$\hat{\rho}_x \mapsto \hat{\Psi}^t(\hat{\rho}_x) = e^{-iHt} \hat{\rho}_x e^{iHt}, \quad \hat{\rho}_x = \hat{Q}_N(x)$$

via an N-channel quantum circuit with no interchannel communication. The above shows an implementation using the Qiskit SDK.
Summary thus far...

We have constructed a representation of a quasiperiodic dynamical system on a quantum computer with N qubits.

- Classical state $x \in X$ is represented by density operator $\hat{\rho}_x = \hat{Q}_N(x) \in \mathcal{Q}(\mathbb{B}_N)$.
- Real-valued classical observable $f \in \mathcal{H}$ is represented by self-adjoint operator $\hat{T}_N f = (\hat{\mathcal{N}}_N \circ T_N)f$.
- Classical dynamical evolution $\Phi^t : X \to X$ is represented by unitary evolution $\hat{\Psi}^t : \mathcal{Q}(\mathbb{B}_N) \to \mathcal{Q}(\mathbb{B}_N)$, $\hat{\Psi}^t(\hat{\rho}) = e^{-iHt}\hat{\rho}e^{iHt}$.
- The system is implementable on an N-circuit quantum channel with no interchannel communication. In particular, $\dim \mathcal{H}_N = 2^N$ grows exponentially with N, while the number of required quantum gates grows linearly.
- Classical–quantum consistency is reached in the limit $N \to \infty$.

What remains is to establish a quantum measurement process allowing to query the system and obtain predictions.
Projective measurement

- The N-qubit “quantum register” has an associated projection-valued measure,

$$\mathcal{E} : \Sigma(\{0, 1\}^N) \rightarrow B(\mathcal{H}_N), \quad \mathcal{E}(\Omega) = \sum_{b \in \Omega} \text{proj}_{|b\rangle},$$

where $\Sigma(\{0, 1\}^N)$ is the σ-algebra of all subsets of $\{0, 1\}^N$.

- Measurement of \mathcal{E} on a state $\hat{\rho} \in Q(\mathcal{B}_N)$ returns a random binary string $b \in \{0, 1\}^N$ with probability

$$\mathbb{P}_{\hat{\rho}}(b) = \text{tr}(\hat{\rho} \mathcal{E}(\{b\})).$$
Projective measurement

1. For classical observable \(f \in \mathcal{H} \), compute the eigendecomposition of \(\hat{S} := \hat{T}_N f \),
\[
\hat{S}|u_n\rangle = s_n|u_n\rangle, \quad n \in \{0, \ldots, 2^N - 1\},
\]
and form the associated unitary \(\Xi \in B(\mathbb{B}_N) \),
\[
\Xi|b\rangle = |u_n\rangle, \quad b = \delta(n).
\]

2. For initial condition \(x \in X \) and prediction time \(t \), make \(K \) independent measurements \(\hat{b}_1, \ldots, \hat{b}_K \) of \(E \) on the rotated state \(\Xi \hat{\psi}^t(\rho_x)\Xi^* \).

3. Compute the estimator
\[
\bar{s}_K = \frac{1}{K} \sum_{k=1}^K s_{n_k}, \quad b_k = \delta(n_k).
\]
Projective measurement

1. For classical observable $f \in \mathcal{H}$, compute the eigendecomposition of
 $\hat{S} := \hat{T}_N f$,
 $$\hat{S}|u_n\rangle = s_n|u_n\rangle, \quad n \in \{0, \ldots, 2^N - 1\},$$
 and form the associated unitary $\Xi \in B(\mathbb{B}_N)$,
 $$\Xi|b\rangle = |u_n\rangle, \quad b = \delta(n).$$

2. For initial condition $x \in X$ and prediction time t, make K independent
 measurements $\hat{b}_1, \ldots, \hat{b}_K$ of \mathcal{E} on the rotated state
 $\Xi \hat{\psi}^t(\rho_x) \Xi^*$.

3. Compute the estimator
 $$\bar{s}_K = \frac{1}{K} \sum_{k=1}^{K} s_{n_k}, \quad b_k = \delta(n_k).$$

 - As $K \to \infty$ at fixed N, \bar{s}_K converges to $\mathbb{E}_{\hat{\psi}^t(\hat{\rho}_x)} \hat{T}_N f$ strongly.
Quantum mechanical prediction

Prediction of \(f(x) = \sin x \) for a circle rotation of frequency 1.
Quantum mechanical prediction

Prediction of \(f(x) = \sin x \) for a circle rotation of frequency 1.
Quantum mechanical prediction

Prediction of $f(x) = \sin x$ for a circle rotation of frequency 1.
Quantum mechanical prediction

Prediction of $f(x) = \sin x$ for a circle rotation of frequency 1.
Prediction of $f(x) = \sin x$ for a circle rotation of frequency 1.
Summary and outlook

• We have developed a framework for approximating a classical dynamical system by a finite-dimensional quantum system amenable to implementation on a quantum computer.
• The framework employs the Koopman operator formalism for the representation of dynamics and RKHS techniques for the representation of observables.
• The quantum mechanical simulator can be implemented as an N-qubit quantum circuit with a polynomial number of gates in N.

Ongoing and future work:

• Develop data-driven formulation of the scheme using kernel features (e.g., G. 2019, Slawinska et al. 2019).
• Generalize to mixing dynamical systems with continuous spectra; e.g., using RKHS-based spectral discretization techniques for the generator (Das et al. 2018).
• Perform experiments on prototype quantum computing platforms.
References