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Application: Network monitoring

Set of n hosts in a large network

n(n − 1)/2 (undirected) paths between them

Want latency and packet loss rates for each path

Use info to choose servers, route around faults
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Network monitoring related work

Network distance estimation systems (RON, GNP)

Network tomography systems

Latency inference work (Shavitt et.al.)
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Loss rates as distance

Assume link losses are independent

P (packet traverses path) =
∏

P (packet traverses links)

− log P (packet traverses path) =
∑

− log P (packet traverses links)

− log P (transmission success) is a distance measure
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Path representation

Network has s links. Represent paths by vectors v ∈ R
s:

vi =

{

1 if link i is used on the path
0 otherwise

Let xi = − log P (transmission success on link i). Then

− log P (packet loss on path) = vT xi
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Path representation

Care about r = n(n − 1)/2 paths. Let the rows of G ∈ R
r×s

represent paths, and b ∈ R
r represent path losses

Gij =

{

1 if link j is used on the path i

0 otherwise

bi = − log P (transmission success on path i)

Then path losses are related to link losses by

Gx = b
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Rank of G

The Internet has moderately hierarchical structure

Paths overlap in many links

k := rank(G) ≤ links used = nonzero columns of G

links used < O(n2) – seems to grow like O(n) or O(n log n)

k is usually less than number of links used
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Rank of G: Lucent scan (bound)
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Rank of G: AS-level Albert-Barabasi
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Rank of G: AS Barabasi + RT Waxman
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Virtualization and local elimination
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Path loss inference

Rank deficiency in G implies solutions to Gx = b are
non-unique

Choose k independent rows of G (Ḡ) and of b (b̄)

Monitor k paths to estimate b̄

Compute any solution to Ḡx = b̄

Compute b = Gx for rest of loss rates
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Indentifiable paths

Rows of Ḡ form a basis for the row space of G

Path vectors in the row space of Ḡ are identifiable:
All vectors for end-to-end paths are identifiable
Sums of identifiable paths are identifiable
Some links are identifiable; many are not

Identifiable path loss rates can be inferred from b̄
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Bounding unidentifiable path losses

Let v represent an unidentifiable path which transmits
packets with probability p. Get bounds on p using fact that
b ≥ 0 and x ≥ 0:

1. If w = ḠT c ≥ v then wT x = cT b ≥ vT x = − log(p)

2. If w = ḠT c ≤ v then wT x = cT b ≤ vT x = − log(p)

So bound log(p) by solving two linear programming
problems:

1. Minimize cT
u b subject to GT cu ≥ v

2. Maximize cT
l b subject to GT cl ≤ v
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Properties of G

Very sparse

R factor in QR mostly full (tried some reordering)

Observed κ = O(100) (discarding singular directions)

Iterative methods should work well; have not yet coded.
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Algorithm tasks

Choose basis Ḡ for row space of G

Solve linear systems involving Ḡ

Quickly update basis choice / factorizations on:
Addition of new nodes / paths
Deletion of nodes / paths
Localized changes to network topology

Key ingredient is quickly solving linear systems with Ḡ.
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Current algorithm

QR factorization of GT

Only keep part of R for ḠT

Basically block CGS with iterativerefinement

Store R densely, but in (block) packed single precision

Use Q := GT R−1 if needed
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Row selection and factorization

Input: Current Ḡ, path vectors V , current R

Output: Updated Ḡ, R

R12 = R’ \ (Gbar’ * V);
R22 = V’ * V - R12’ * R12;
[q,r,e] = qr(R22);
k = sum(abs(diag(r)) > tol);
R = [R, R22(:, e(1:k));

0, R12(e(1:k), e(1:k));
Gbar = [Gbar; V(e(1:k),:)’];
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Computing x

Choose minimum norm solution to Ḡx = b̄

x = (ḠT R−1)R−T b̄ plus iterative refinement

Path v identifiable if ‖R−T Ḡv‖ = ‖v‖
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Removing paths

Paths not in Ḡ are trivial. Paths in Ḡ are trickier. To remove
row i of Ḡ:

Compute a vector in the null space of Ḡ minus row i:
Ḡorigy = ei

Compute r := Gy

If r 6= 0 then add row j such that rj 6= 0 to Ḡ

If r = 0 then k decreased by one, no replacement

Can update R in O(k2) time in standard way
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Some system issues

Measurement load balancing

Construction and updates to G are nontrivial
Incorrect mapping due to aliasing is okay.
Can still do useful work with incomplete info.

How do applications actually use the info?
Set up notifications when a path becomes lossy
Query server for loss rates when choosing paths
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Simulation results
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Loss rates based on 10K samples / path

Bernoulli model (independent trials) or Gilbert model
(correlated trials – bursty)

Plot (relative) error in p vs. measurement

Haven’t analyzed expected error yet
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Conclusions and future work

Experiments with PlanetLab testbed in progress

Make code available to other researchers

Further explore combinatorial structure of the problem

Test out iterative methods

Actually implement linear program based bounds

Distribute work among servers
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