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SUMMARY

Electromechanical resonators and filters, such as quartz, ceramic, and surface-acoustic wave devices,
are important signal-processing elements in communication systems. Over the past decade, there
has been substantial progress in developing new types of miniaturized electromechanical resonators
using microfabrication processes. For these micro-resonators to be viable they must have high and
predictable quality factors (Q). Depending on scale and geometry, the energy losses that lower Q may
come from material damping, thermoelastic damping, air damping, or radiation of elastic waves from
an anchor. Of these factors, anchor losses are the least understood because such losses are due to
a complex radiation phenomena in a semi-infinite elastic half space. Here, we describe how anchor
losses can be accurately computed using an absorbing boundary based on a perfectly matched layer
(PML) which absorbs incoming waves over a wide frequency range for any non-zero angle of incidence.
We show how to interpret the PML as a complex-valued change of coordinates, and illustrate how
this interpretation leads to a simpler finite element implementation than was given in its original
presentations. We also examine the convergence and accuracy of the method, and give guidelines for
how to choose the parameters effectively. As an example application, we compute the anchor loss
in a micro disk resonator and compare it to experimental data. Our analysis illustrates a surprising
mode-mixing phenomenon which can substantially affect the quality of resonance.

key words: Perfectly matched layer, Anchor loss, Resonator loss, High Q, Semi-infinite half space

1. Introduction

Modern communication systems rely on high-frequency electromechanical resonators to
act as frequency references and filters. Though designers currently use quartz, ceramic,
and surface-acoustic wave devices, surface-micromachined microelectromechanical system
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ELASTIC PMLS FOR RESONATOR ANCHOR LOSS SIMULATION 1

resonators (MEMS resonators) in development offer an attractive alternative. Because they can
be integrated into standard complementary metal-oxide semiconductor (CMOS) technology,
MEMS resonators have the potential to use less area and power, and cost less money than
existing commercial devices [24]. But to be viable, energy losses in these MEMS resonators
must be minimized. The usual measure of this energy loss is the quality factor Q of a resonant
peak, defined as

Q = 2π

(

Stored energy

Energy lost per period

)

. (1)

For an ideal linear single degree of freedom oscillator Q = |ω|/2 Im[ω], where ω is the oscillator’s
complex-valued eigenvalue [27, p. 158]. Resonators in cell phone filters, for example, require Q
values greater than 1000 for good performance, and higher values are preferable [24, 2].

Depending on scale, geometry, and materials, the energy losses that lower Q may come from
material damping, air damping, thermoelastic damping, or radiation of elastic waves from an
anchor [12]. While losses in low-frequency resonators are dominated by air damping, for which
increasingly accurate compact models are available [35, 7], high-frequency disk resonators have
similar measured performance in vacuum or air [34]. Thermoelastic damping is a frequently-
cited source of losses at high frequencies [17, 21, 1, 23, 29]. In most cases, the damping
is estimated by fitting parameters in a model originally developed by Zener [36, 37, 38];
unfortunately, this parameter-fitting makes it difficult to tell what should be attributed to
thermoelastic effects and what should be attributed to other sources of damping with similar
functional form. Though anchor damping is a recognized source of losses [12], there are
relatively few MEMS papers (see e.g. [28, 25, 26]) dealing with losses at the anchor.

Although it is not well studied, in several designs for high MHz or GHz frequency resonators,
the dominant loss mechanism appears to be radiation of elastic energy through anchors. In
these designs, the resonating device is much smaller than the silicon substrate on which it
sits, and waves radiating from the anchor are so attenuated by the time they reflect from the
sides of the microchip that the reflected waves are negligible. That is, the bulk of the chip
can be modeled without loss as a semi-infinite half-space. To simulate the response of a semi-
infinite domain, one usually employs boundary dampers, infinite elements, boundary integrals,
or exact Dirichlet-to-Neumann (DtN) boundary conditions so that a domain of simulation can
be finite and allow for the application of finite element or finite difference methods; see e.g.
[40, Chapter 8],[18, 19, 5]. Each of these methods truncates the simulation domain with an
artificial boundary at which outgoing waves are absorbed. For an elastic half space, Green’s
function is not known in closed form, and so highly accurate global conditions, such as DtN
conditions, cannot be used. Instead we model the semi-infinite domain using a perfectly matched

layer (PML), which absorbs waves from any angle of incidence, but which does not require
knowledge of Green’s function [8].

Basu and Chopra [8] demonstrated the superior performance of their PML method for
problems related to earthquake engineering. Here, we examine the utility of a PML for anchor
loss computations in MEMS resonators. We begin with a brief review of PMLs for time-
harmonic motion. This is followed by a discussion of the relevant finite element expressions.
Our presentation, while similar to that of [8], leads to a simpler implementation. We analyze
the effects of discretization on the PML behavior, and give describe how to choose the PML
parameters to obtain good accuracy. Because of the large computational scale of resonator
problems we also investigate the use of reduced-order models that preserve the complex
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2 D. BINDEL AND S. GOVINDJEE

symmetric structure of the PML equations.
To illustrate the PML technology, we analyze the behavior of a family of MEMS disk

resonators. Several disk resonators have already been built [34, 33, 11], and in the laboratory
they have shown quality factors as high as 55000 at frequencies of up to 1.14 GHz. Through
numerical experiments, we explain in detail the mechanism of anchor loss in these devices;
the predictions of our model are supported by recent experimental work [11], which we also
partially report here.

2. Perfectly matched layers

Except for scale, a microresonator atop a silicon chip is much like a structure on the earth’s
surface during an earthquake. While we are concerned with waves radiating away from a
structure and the earthquake engineer is concerned with waves radiating toward a structure,
in both cases the substrate is much larger than the structure, and it can be modeled as
an elastic half-space (possibly heterogeneous). This infinite-domain approximation occurs in
many physical models: acoustic waves radiating from a musical instrument, electromagnetic
waves reflecting from aircraft, elastic waves scattering from a crack in a solid, and water
waves in an open harbor are only a few additional examples [31], [40, Chapter 8]. The essential
characteristic of the infinite-domain solution is that only outgoing waves are allowed. To model
infinite-domain problems on a computer, we need finite-size discretizations which enforce this
radiation condition.

One way to enforce the radiation condition is to discretize an exact boundary equation
satisfied by outgoing waves. For example, outside of a sphere containing any radiators and
scatterers, waves can be written as a multipole expansion; in this expansion, the radiation
condition just says that certain coefficients corresponding to incoming waves should be zero. A
related global condition is the DtN map, which specifies how Dirichlet conditions and Neumann
conditions must be related at a surface [31]. These boundary conditions are rigorously derived
and highly accurate, but they usually require that the artificial boundary have a particular
shape. They are also nonlocal in space: every boundary unknown is directly related to every
other boundary unknown, and consequently the matrix of boundary terms is dense, and
expensive to form and to solve. Furthermore, exact boundary conditions may be unavailable
for problems in which no analytically tractable Green’s function is known, as in our case.

A second approach is to build approximate boundary conditions based on the asymptotic
behavior of outgoing waves. These approximate conditions are local and inexpensive, but
only absorb waves over a small range of angles of incidence [31, 8]. Consequently, a large
computational domain may be needed for accurate results. Further, they often have difficulty
with surface waves and interface waves. Yet another approach is to add a nonphysical “sponge
layer” to dissipate waves before they reach the artificial boundary. Waves passing through
the sponge layer are damped on the way to the artificial boundary, and are further damped
when they are reflected back, so that most of the signal entering the layer is absorbed. To be
effective, though, the layer must be designed so that there is no impedance mismatch to reflect
waves back from the interface between the layer and the rest of the domain.

A perfectly matched layer (PML) is a refinement of a sponge layer. Bérenger invented the
perfectly matched layer for problems in electromagnetic wave propagation [9], and it was
later re-interpreted as a complex-valued change of coordinates which could be applied to any
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linear wave equation [13, 32, 30]. Not only do these layers rapidly attenuate waves, they
also “perfectly match” the rest of the domain; that is, there are no spurious reflections at
the interface due to perfect impedance matching. In [8], a perfectly matched layer for time-
harmonic elastodynamics is described which – unlike previous elastodynamic PMLs such as
those in [14] – can be implemented with finite elements in a standard displacement framework,
with no non-standard global unknowns. We describe an alternate interpretation of the PML
described in [8], and show how our interpretation further simplifies implementation in a finite
element code.

2.1. A motivating example

A PML model of an infinite domain problem is composed of two parts: a sub-domain where the
actual equation of interest is dealt with explicitly and, a sub-domain that produces the desired
effect of a far-field radiation boundary condition. To set terminology and provide insight into
the workings of PMLs, we review a simple 1-D example.

2.1.1. 1-D elastic wave Consider a longitudinal wave propagating in a homogeneous, semi-
infinite rod with axial coordinate x ∈ [0,∞). If waves travel with speed c, the one-dimensional
wave equation that describes this system is

∂2u

∂x2
− 1

c2

∂2u

∂t2
= 0 (2)

where u(x, t) is the displacement. Time-harmonic solutions u(x, t) = û(x)eiωt are governed by
a Helmholtz equation

d2û

dx2
+ k2û = 0, (3)

where k = ω/c is the wave number and i =
√
−1. Solutions to this problem have the form

û = coute
−ikx + cineikx (4)

where cout is the magnitude of the outgoing wave traveling from the origin toward infinity, and
cin is the magnitude of the incoming wave traveling from infinity toward the origin. In general,
we assume there is no source at infinity, so physically meaningful solutions to such problems
have cin = 0.

2.1.2. 1-D elastic wave in a perfectly matched medium We now consider the Helmholtz
equation (3) under a change of coordinates. Let λ : R → C be a continuous function which is
nowhere zero, and define a new coordinate

x̃ =

∫ x

0

λ(s) ds. (5)

By definition, x̃ and x are differentially related

dx̃

dx
= λ(x)

d

dx̃
=

1

λ(x)

d

dx
. (6)

Now suppose that the stretched coordinate x̃ is used as the independent variable in equation
(3). Then in terms of x, the equation is

1

λ

d

dx

(

1

λ

dû

dx

)

+ k2û = 0. (7)
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Figure 1. Piecewise linear attenuation function for a plane wave

where the derivative may be taken in a weak sense, since λ need not be C1. Equation (7)
describes wave propagation in a perfectly matched medium (PMM).

Suppose
λ(s) = 1 − iσ(s)/k; (8)

then the solutions to the PMM equation (7) are

û = cout exp

(

−
∫ x

0

σ(s) ds

)

exp (−ikx) + cin exp

(
∫ x

0

σ(s) ds

)

exp (ikx) . (9)

So long as σ = 0, both the incoming and outgoing solutions to the PMM equation (7) agree
with the solutions to the original Helmholtz equation (3). Where σ > 0, the wave decays in the
direction of travel. Since the outgoing wave and the incoming wave travel in opposite directions,
the outgoing wave amplitude decays with increasing x, while the incoming wave amplitude
decays with decreasing x. For example, assume σ is defined to be zero on [0, L] and σ = β(s−L)
on [L,∞). Then for x > L, the outgoing wave amplitude is cout exp

(

−β(x − L)2/2
)

, and the

incoming wave amplitude is cin exp
(

β(x − L)2/2
)

.
Because waves decay so rapidly as they travel through the PMM region, we obtain a good

approximation to the infinite-domain problem even if we force û(Lp) = 0 for some finite Lp > L.
This generates the concept of a perfectly matched layer (PML); i.e. a PML is a finite PMM
attached to a region with regular wave behavior. For example, suppose we prescribe û(0) = 1
and û(Lp) = 0. For convenience, define γ = β(Lp −L)2; then the boundary conditions become

[

û(0)
û(Lp)

]

=

[

1 1
e−(γ/2+ikLp) eγ/2+ikLp

] [

cout

cin

]

=

[

1
0

]

(10)

and therefore

cout =
1

1 − e−γ−2ikLp

= 1 + O(e−γ) cin =
−e−γ−2ikLp

1 − e−γ−2ikLp

= −O(e−γ). (11)

Even for modest γ, the bounded-domain solution is a good approximation to the infinite
domain solution. For γ ≈ 4.6, only 1% of the outgoing wave is reflected. Increasing γ decreases
the reflection in the continuous case; however, in the discrete equations obtained from finite
difference or finite element approximations, we must be careful about how we increase γ. If β
is too large, the waves entering the PML will decay rapidly, effectively creating a boundary
layer; if the discretization is too coarse to resolve this decay, the numerical solution will be
polluted by spurious reflections. We discuss this phenomenon and its implications further in
Section 2.5.
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2.2. Elastic perfectly matched layers

The multi-dimensional equations of motion for a time-harmonic elastodynamic medium with
no body forces are

ω2ρu + ∇ · σ = 0 (12)

σ = C : ε (13)

ε(u) =

(

∂u

∂x

)s

(14)

where u is the displacement field, ε is the infinitesimal strain tensor, σ is the stress tensor, C

is the material stiffness tensor, and ρ is the density. A simple isotropic elastic medium admits
propagating disturbances moving at two characteristic velocities – compression waves (P
waves) and shear waves (S waves). An anisotropic medium admits further characteristic wave
speeds, and inhomogeneities and interfaces add yet more wave types. However, as in the one-
dimensional case, a complex-valued coordinate transformation can be used to attenuate each
of these waves in the direction of travel without spurious reflections from artificial interfaces.

2.2.1. Multi-dimension PMM equations Though it is possible to introduce the coordinate
transformation into the local form of the equations [8], it is simpler to first recast the equations
in weak form and then transform. The weak form of the time-harmonic elastodynamic equation
is

∫

Ω

ε(w) : σ(u) dΩ − ω2

∫

Ω

ρw · u dΩ =

∫

Γ

w · t dΓ (15)

where the domain is Ω, part of the boundary Γ ⊂ ∂Ω is subject to tractions t, and w is a weight
function. As before, suppose x̃ is a transformed coordinate such that the Jacobian ∂x̃

∂x = Λ is
continuously defined and everywhere nonsingular. Replacing x with x̃ everywhere in (15), we
have

∫

Ω̃

ε̃(w) : σ̃(u) dΩ̃ − ω2

∫

Ω̃

ρw · u dΩ̃ =

∫

Γ̃

w · σ̃(u) · ñdΓ̃ (16)

We now map back to the x coordinate system:
∫

Ω

ε̃(w) : σ̃(u) det(Λ)dΩ − ω2

∫

Ω

ρw · u det(Λ)dΩ =

∫

Γ

w · σ̃(u) · (Λ−T n) det(Λ) dΓ. (17)

In the x coordinate system, the transformed strain and stress tensors are

ε̃(u) =

(

∂u

∂x̃

)s

=

(

∂u

∂x
Λ−1

)s

(18)

σ̃(u) = C : ε̃(u). (19)

The local form of (17), which can be derived either from (17) or directly from transforming
(12), is

trace

(

∂σ̃(u)

∂x
Λ−1

)

+ ω2ρu = 0 (20)

or, in indicial form,
∂σ̃ij

∂xk

(

Λ−1
)

kj
+ ω2ρui = 0. (21)
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6 D. BINDEL AND S. GOVINDJEE

2.3. Anisotropic medium interpretation

We now present a different way to look at the PML equations, in which the original form of
the elasticity equations is maintained, but with different material coefficients. This leads to a
succinct and intrinsically symmetric implementation for multi-dimensional elastic PMLs.

In indicial form, we write the strain associated with a displacement field u as

εij(u) =
1

2
(δipδjq + δiqδjp)

∂up

∂xq
. (22)

The PML-transformed strain has the same form, except with one of the Kronecker δ functions
replaced by Λ−1:

ε̃ij(u) =
1

2
(δipδjr + δirδjp)

∂up

∂xq

(

Λ−1
)

qr
(23)

= Ĩijpq
∂up

∂xq
, (24)

where Ĩijpq := 1
2

(

δip

(

Λ−1
)

qj
+

(

Λ−1
)

qi
δjp

)

. Now by substitution,

ε̃ij(w)Cijklε̃kl(u) =
∂wp

∂xq
ĨijpqCijkl̃Iklrs

∂ur

∂xs
(25)

=
∂wp

∂xq
C̃pqrs

∂ur

∂xs
(26)

where we define
C̃pqrs := ĨijpqCijkl̃Iklrs . (27)

Note that C̃pqrs inherits the major and minor symmetries of Cijkl. That is,

Cijkl = Cklij =⇒ C̃pqrs = C̃rspq (28)

Cijkl = Cjikl =⇒ C̃pqrs = C̃qprs. (29)

Because of the minor symmetries (C̃pqrs = C̃qprs and C̃pqrs = C̃pqsr), we can rewrite (26) as

ε̃pq(w)Cpqrsε̃rs(u) =
∂wp

∂xq
C̃pqrs

∂ur

∂xs
= εpq(w)C̃pqrsεrs(u). (30)

If we substitute (30) into the weak form of the PML equation (17), and assume that there
is no loading on the transformed part of the boundary, we have

∫

Ω

ε(w) : C̃ε(u) det(Λ)dΩ − ω2

∫

Ω

ρw · u det(Λ)dΩ =

∫

Γ

w · t dΓ. (31)

Now define

C
PML = C̃ det(Λ) (32)

ρPML = ρ det(Λ). (33)

so that (31) becomes
∫

Ω

ε(w) : C
PMLε(u) dΩ − ω2

∫

Ω

ρPMLw · u dΩ =

∫

Γ

w · t dΓ. (34)

The form of (34) is identical to the form of the standard elasticity equation (15), but with
inhomogeneous, anisotropic, complex-valued material properties.
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ξ2

ξ1

x1

x2 x̃2

x̃1

Ωe Ω̃e

Ω2

x̃(x)x(ξ)

Figure 2. Concatenated isoparametric mapping and PML coordinate mapping

2.4. Finite element implementation

To derive the weak form of the PML equations in the x coordinate system, Equation (17), we
performed a change of variables in the integrals of Equation (16). Because isoparametric finite
elements already use mapped integration, we can combine the change of variables associated
with the PML mapping with the change of variables associated with the isoparametric
coordinate transformation.

Consider the element in Figure 2. Suppose we choose shape functions NI , so that we have
interpolations within elements of the form u =

∑

I NIuI and w =
∑

I NIwI . Then the nodal
submatrices for the element stiffness and mass are given by

ke
IJ =

∫

Ω2

B̃T
I DB̃J J̃dΩ2 (35)

me
IJ =

(
∫

Ω2

ρNT
I NJ J̃dΩ2

)

1 (36)

where 1 is the second order identity tensor and the nodal matrices B̃I come from transforming
coordinates in the standard B-matrix formulation [39, Chapter 4], D is the standard matrix
of material parameters, and J̃ is the Jacobian of the composition of the PML mapping with
the isoparametric mapping:

J̃ = det

(

∂x

∂ξ

)

det (Λ) . (37)

In practice, we evaluate the integrals numerically by Gaussian quadrature in the parent domain.
Whether the quadrature is done analytically or numerically, the form of the integrands in (35)
and (36) guarantees that the mass and stiffness matrices will be complex symmetric.

Remarks:

1. This interpretation of the PML in terms of an additional coordinate transformation
works with plane stress, plane strain, axisymmetric, or three-dimensional problems. In
the axisymmetric case, however, the factor of r that appears in the integrands should
not be transformed into the PML coordinate systems, since that factor of r comes from
the Jacobian of the mapping to the (r, z) coordinates, and not from the mapping to the
(r̃, z̃) coordinates.

2. For many problems, a reasonable choice of coordinate transformations is to independently
stretch each coordinate xi, so that Λ is a diagonal matrix; i.e. Λ = diag(λi). If we further
choose stretching functions so that Λ can be described by low-order polynomials, then
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it makes sense to also use isoparametric interpolation to compute the values of the
stretching function. That is, given values for λi at each node, we compute Λ = diag(λi)
by interpolation at the Gauss points where it is evaluated.

3. By writing the PML equations in this form we can easily institute an economy of
programming where every element in a mesh is a “PML element.” Regular elements
are formed using the coordinate transformation Λ = 1 and true PML elements by
Λ = diag(λi). Thus the creation of PML elements only requires a minor modification of
the traditional element mapped integration routines.

2.5. Effects of discretization

In Section 2.1.1, we analyzed a one-dimensional continuous model problem with a PML. We
now consider the effect of discretization on this model problem. We will show that the reflection
in the discrete solution is the result of two effects: reflection due to the finite termination of
the PML, as discussed in the continuum case; and spurious reflection from the PML interface
due to a mismatch in the discretized wave behaviors in the bounded domain and in the PML.

Recall that if we discretize a standard wave equation on (−∞,∞) with a uniform mesh, using
any standard finite element or finite difference method, we obtain left-traveling (incoming) and
right-traveling (outgoing) discrete wave solutions at node j of the form ξj and ξ̄j . The value
ξ is an algebraic function of the dimensionless parameter kh, and ξ(kh) ≈ ekh when kh is
small. Because ξ is algebraic, it cannot match ekh exactly, and consequently there is always
numerical dispersion ; that is, for a fixed h the discrete wave speed depends on the wave
number k. Similarly, if the mesh size h is not uniform, there will be numerical reflections at
interfaces where the mesh density – and consequently the discrete wave speed – changes. These
spurious effects come from the error implicit in the discretization, and they vanish in the limit
as kh → 0.

Now consider the discretization of the model problem using the domain and the damping
profile illustrated in Figure 1 with a uniform mesh size in x. We will assume throughout
our analysis that the PML begins at an element boundary. While the mesh size is uniform
in the original coordinate system x, the elements are not uniformly sized with respect to the
transformed coordinate x̃; it is unsurprising, then, that there is a mismatch in the discrete wave
behavior at the PML interface, and that this mismatch grows more severe as βh increases.

To be more precise, we will consider the discrete reflection coefficient r (the ratio of the
magnitude of the incoming to the outgoing component of the solution in the bounded domain)
for various values of the PML parameters. For fixed values of βh and kh, the reflection
coefficient rapidly approaches a limiting value rinterface as the length of the PML increases.
That is, reflections due to the finite length of the PML become negligible in comparison to
reflections at the discrete interface between the bounded domain and the PML. In Figure 3,
we show the effects of interface reflections in the PML for linear and quadratic elements. We
see from these plots that fine discretizations (either from smaller values of kh or from higher-
order elements) and low values of β lead to decreased interface reflections. We also note that
quadratic elements perform substantially better than linear elements.

The overall reflection in the discrete system can be estimated effectively as r = rinterface +
rnominal, where rnominal is the far-end reflection in the continuum model. When both effects
are of the same order of magnitude, cancellation can occur so that the estimated reflection
coefficient is slightly too high; otherwise, this prediction closely matches the observed behavior.
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Figure 3. Amount of spurious reflection from a discrete PML interface for varying mesh densities and
PML parameters. Both linear (left) and quadratic (right) elements are shown.
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Figure 4. Actual (left) and estimated (right) numerical reflection for varying PML parameters at ten
quadratic elements per wave.

Figure 4 shows the estimated and actual reflection coefficients for a fixed value of kh as the
PML parameter β and the PML length are varied. The observed decomposition of the PML
reflections into interface and far-end effects suggests that the parameters should be chosen so
that the two sources of error are comparable.

This model problem suggests a strategy for choosing PML parameters in the more
complicated case of two-dimensional or three-dimensional elasticity. Because the discrete elastic
wave equation is dispersive, and because the mesh density observed by a discrete wave is a
function of the wave direction, there will be a range of possible numerical wave numbers kh.
There is less numerical interface reflection for long wavelengths than for short wavelengths,
but long waves also do not decay as rapidly as they pass through the PML. Therefore, we
recommend that βh be chosen so that the shortest expected wavelengths have sufficiently low
reflection from the discrete PML interface; and then that the PML length be chosen so that the
longest expected wavelengths can be expected to decay adequately according to the continuum
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model.

3. Quality factors and forced motion computations

In the MEMS problems of interest to us, we wish to compute quality factors and to compute
forced motion responses. The governing equations after spatial discretization of the weak form
are given by:

Kdyn(ω)u = F , (38)

where Kdyn(ω) := K(ω)−ω2M(ω). As we noted at the end of Section 2.2, the PML coordinate
transformations suggested in [8] are dependent on the frequency, so that the attenuation
through the PML layer will be independent of the forcing frequency. This makes the system
matrices dependent upon the drive frequency. Also note that the system matrices are complex
symmetric. The points taken together create a somewhat involved problem. However, a number
of basic observations can be used to greatly simplify the situation.

3.1. Quality factors via an eigencomputation

In a properly designed high quality MEMS resonator the drive pattern and frequency are
always chosen to excite some resonant mode. Because of this, it suffices for many cases to
simply compute the complex-valued eigenvalue of the system closest to the real-valued drive
frequency. From this complex-valued eigenvalue, Q is formally defined according to Equation
(1) as the ratio of the stored energy to the energy loss per radian, which in terms of a single
mode damped oscillator can be expressed as

Q =
|ω|

2 Im(ω)
(39)

where ω is the computed eigenvalue [27].
Because the system matrices depend upon ω, the eigenvalues ω will correspond to solutions

of the nonlinear eigenvalue problem det(Kdyn(ω)) = 0. However, when the frequency range
of interest is not too wide, the parameters of the coordinate transformation may be chosen
once to give acceptable attenuation over the desired range, so that the approximate dynamic
stiffness for ω near a fixed reference frequency ω0 is

K0
dyn(ω) := K(ω0) − ω2M(ω0). (40)

Finding roots such that det(K0
dyn(ω)) = 0 is a linear (generalized) eigenvalue problem, which

we can approach using standard tools.
To find the damped eigenvalues near some specified (real-valued) reference frequency ω0, we

use a shift-and-invert Arnoldi procedure, described in standard references on numerical linear
algebra [20, Chapter 9], [16, Chapter 7]. This procedure computes an orthonormal basis V for
the Krylov subspace

Kn(Kdyn(ω0), u0) = span{u0,K
0
dyn(ω0)

−1u0, . . . ,K
0
dyn(ω0)

−(n−1)u0}; (41)

the eigenvalues are then approximated by the eigenvalues of the much smaller problem
V HK0

dyn(ω)V , where (·)H indicates complex conjugate transpose. For computing a few
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isolated eigenvalues near ω0, the main cost of the shift-and-invert Arnoldi procedure is to
compute the factorization needed to apply K0

dyn(ω0)
−1. In our numerical experiments, we use

UMFPACK [15] to factor the shifted matrix, and we use eigs, MATLAB’s interface to the
implicitly-restarted Arnoldi code ARPACK [22], to compute the desired eigenvalues.

3.2. Efficient forced motion computations

Though damped mode eigencomputations are illuminating, they do not give a complete picture
of the frequency response behavior. In practice, we are interested in systems in which there is a
single periodically-forced input and a single output determined by some sensed displacement.
Suppose F is a time-harmonic load pattern vector, and the output is a linear function of
displacement PT u. Then we are really interested in computing the transfer function

H(ω) = PT Kdyn(ω)−1F (42)

which we approximate for a range of frequencies near ω0 by

H0(ω) = PT K0
dyn(ω)−1F. (43)

Even if K0
dyn(ω) is nearly singular at some frequency, the response amplitude |H0(ω)| may

not peak, since F may be nearly orthogonal to the forcing that drives the mode, or P may
be orthogonal to the modal displacement pattern. Therefore, one normally examines H0(ω)
directly using a Bode plot.

Since the dimension N of K0
dyn(ω) will be large, it is expensive to evaluate H0(ω)

directly. Instead, we construct a reduced-order model of dimension n � N , which we use
to approximate H0(ω). Krylov-subspace projections are often used to build reduced models
of large systems [6, 3]. If we build an orthogonal basis V for a small Krylov subspace using
shift-and-invert Arnoldi, then we can approximate H0(ω) near the shift ω0 by

Ĥ0(ω) := (V HP )H(V HK0
dyn(ω)V )−1(V HF ) ≈ H0(ω). (44)

Though Ĥ0(ω) is often a good approximation to H0(ω), the projected system matrix
V HK0

dyn(ω)V does not preserve the complex symmetric structure of the original discretization.
We can construct a symmetry-preserving reduced-order model by choosing an orthonormal
projection basis W such that

span(W ) = span([Re(V ), Im(V )]). (45)

Because the span of W contains the span of V , a reduced model based on W will be at least as
accurate as the standard Arnoldi-based reduced model. Also, because W is a real-valued basis,
projection onto the space spanned by W corresponds to a Bubnov-Galerkin discretization of
the PML equation with shape functions N reduced

I =
∑

J WIJNJ . While these facts alone might
induce us to use W rather than V as a projection basis [10], we expect projection onto W to
yield much better accuracy than standard Arnoldi projection, as we now describe.

If (K, M) is a Hermitian pencil and M is positive definite, then the pencil will have an
orthonormal eigensystem, so that if v is a column eigenvector, vH will be a corresponding row
eigenvector. In the study of such eigenproblems, the Rayleigh quotient

ρ(v) =
vHKv

vHMv
(46)
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plays a special role. When v is an eigenvector, ρ(v) is a corresponding eigenvalue; and further,
since ρ is stationary when and only when the argument is an eigenvector, the Rayleigh quotient
produces second-order accurate eigenvalue estimates from eigenvector estimates which are only
accurate to first order. For general pencils, a column eigenvector v and the corresponding
row eigenvector wH need have no such simple relationship, and so the Rayleigh quotient
only provides first-order accurate eigenvalue estimates. The appropriate generalization of the
Rayleigh quotient to the non-Hermitian case is (wHKv)/(wHMv), a ratio which again yields
second order accuracy (so long as the degenerate case wHMv 6= 0 is avoided). When K and M
are complex symmetric, we know the left and right eigenvectors are simply (non-conjugated)
transposes of each other, and so we re-write the second-order accurate quotient estimate as

θ(v) =
vT Kv

vT Mv
. (47)

This modified Rayleigh quotient was used in [4] as part of a Jacobi-Davidson strategy for
solving complex symmetric eigenvalue problems from PML discretizations of problems in
electromagnetics.

The usefulness of having both left and right eigenvectors explains why model reduction
methods based on nonsymmetric Lanczos iteration often approximate better than Arnoldi
methods: a nonsymmetric Lanczos iteration simultaneously builds a basis for a right Krylov
subspace, which typically contains good approximations for column eigenvectors; and a left
Krylov subspace, which typically contains good approximations for row eigenvectors. For
complex symmetric matrices, however, left and right subspaces are simply conjugates of each
other, and the definition of span(W ) given above is equivalent to

span(W ) = span([V, conj V ]). (48)

That is, if V is an Arnoldi basis for a right Krylov subspace, then both the right Krylov
subspace and the corresponding left Krylov subspace are subspaces of span(W ). As explained
in the previous paragraph, then, the position of any eigenvalues (poles) which are estimated
by vectors in V will be determined to second-order accuracy by projection onto W , where
projection onto V would typically attain only first-order accuracy. For similar reasons, if P
and F are proportional to each other, the estimated transfer function obtained from projecting
onto W will match H0 in 2n moments, rather than the n moments typical of a standard Arnoldi
projection [6].

4. Study of disk resonators

To exercise and test our proposed methods we examine in detail the response of several radial
disk resonators which have been fabricated recently [34, 33, 11]. A schematic of these devices is
shown in Figure 5. A thin disk is supported on a post above a substrate. The disk is surrounded
by drive electrodes, and the potential difference between the disk and the drive electrodes pulls
the disk radially outward at the rim. The disk is driven near the frequency of the first or second
axisymmetric, bulk radial, in-plane mode. In [34], the disk is made of polysilicon; [33] describes
both polysilicon and polydiamond disks; [11] is concerned with poly-SiGe disks. The choice of
these disk resonators allows us to idealize the systems as axisymmetric.
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V−

V+V+

PML region

DiskElectrode

Wafer

Figure 5. Schematic of a radial disk resonator. An overhead view (right) shows the arrangement
of the resonating disk and the electrodes which force it. An idealized cross-section (left) is used in
an axisymmetric simulation, where the wafer substrate is treated as semi-infinite using a perfectly-

matched layer.

A major source of energy loss in these devices is the propagation of elastic waves down the
supporting post and into the wafer below, where they are largely dissipated. Relative to the
size of the resonating device, the wafer is large. We assume that the wafer is effectively infinite
in extent, so that none of the waves that radiate into the substrate will be reflected. We use a
perfectly matched layer to model the wafer as a semi-infinite half space.

In the actual devices, there are nitride and oxide films between the device and the wafer.
For our simulations we have ignored these geometric features as they typically only have a
minor effect on resonator performance. Note that this is a simplification in our model, not
an inherent limitation of the PML technology; indeed, one of the attractions of PMLs is the
ability to handle layered media and other embedded scatterers.

In the examples to follow, we examine issues of

1. Mesh convergence – h and p.
2. Elucidation of the physical mechanism of anchor loss.
3. Design sensitivity in such resonators.
4. Performance of the model reduction method.

4.1. Convergence of Q

We first consider the polysilicon disk resonator described in [34], which has a disk 20 µm in
diameter and 2 µm thick, supported 0.5 µm above the substrate by a post 2 µm in diameter.
When the disk was driven in the second radial mode, the measured Q was 7330 in vacuum
and 6100 in air, and the center frequency was 733 MHz. In our best-resolved simulation, we
computed a Q value of 6250 at a center frequency of 715.6 MHz. Perhaps surprisingly, relatively
fine resolution was required to obtain convergence. When the mesh was under-resolved, the
Q factor was drastically underestimated, possibly because the small flux reaching the anchor
base could not be resolved by the mesh, and was therefore overestimated. We computed the
value of Q using both linear and higher-order elements at several mesh densities; see Fig.
6. For a given mesh density parameter m, we chose elements so that nodes were as near as
possible to 1/m µm apart. We computed Q and ωcenter by using shift-and-invert Arnoldi with
an initial shift of 715 MHz to find the closest complex-valued eigenvalue; most of the time in
these computations was spent in the LU factorization of the shifted matrix. The plot shows a
clear advantage to p-refinement for this class of problems.
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Figure 6. Convergence of Q and ωcenter for the second radial mode of the polysilicon disk in [34].
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Figure 7. Forced displacement (real part) for the disk resonator model at 715 MHz.
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Figure 8. Time-averaged energy flux vector field in the disk resonator driven at 715 MHz. The left
plot shows the full field; the right plot shows only the region in the vicinity of the post.

4.2. Observed energy loss mechanism

Figure 7 shows the behavior of the same disk when driven at 715 MHz, just slightly below the
resonant frequency. The amplitudes of both the radial and vertical displacements are shown
at the point when the forcing is maximal. Even though the design intent was to excite a pure
radial mode, it is clear that the mode contains a bending component. This is a reflection of
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the fact that pure radial modes are not possible in supported structures. The majority of the
displacement occurs in the disk itself, but there is some motion in the post as well. Though the
forcing is in the radial direction, the Poisson effect leads to motion in the vertical direction at
the center of the disk. This vertical “pump” motion results in displacement waves that travel
down the post and into the substrate. In an animation, it is possible to see low-amplitude
waves radiating away from the post to be absorbed into the perfectly matched layer.

To better understand the behavior shown in Figure 7, we compute the energy density flux:

F (t) = −Re(σeiωt)Re(veiωt) (49)

where σ is the stress tensor and v is the velocity vector. Since the energy flux changes over
time, we time-average over a single period to obtain the mean energy density flux:

F̄ = −1

2
Re(σv∗) (50)

where v∗ is the complex conjugate of the velocity. For a standing wave, the displacement and
stress are pure real, and v = iku is pure imaginary, so there is no mean energy flux. Therefore,
the mean energy flux field tells us something about the departure from the lossless standing-
wave behavior. Figure 8 shows the mean energy flux for a region of the resonator near the edge
of the post. The flux vectors in the body of the disk form cycles which carry energy around
inside the disk, but do not let it escape into the substrate. Near the post, however, the cycle
pattern is broken, and the energy flux plot shows a “spray” of energy that travels down the
post and into the substrate.

4.3. Mode mixing and design sensitivity in the disk resonator

To further test our simulation technology on anchor loss, we now consider a series of five
poly-Si0.4Ge0.6 disk resonators with 41.5 µm radii disks with different thicknesses [11]. Figure
9 shows one such 41.5 µm radius resonator. The disk itself is supported on a conical post with
upper radius 1.49 µm, lower radius 1.61 µm, and nominal height 1 µm. The drive is clearly not
fully axisymmetric but we model it as such for simplicity. For the material we use a density
of 4127 kg/m3 computed by linear interpolation and assume a Poisson ratio of 0.28; Young’s
modulus was estimated from an acoustic measurement as 139 GPa.

Figure 10 shows the computed in-phase radial and vertical displacements in one of the disks
when it is driven with a radial forcing on its outer edge; the computed Q of the dominant
mode is 140000. The radial motion is coupled to a small bending motion due to the stem as
mentioned earlier. Thus, as in the prior example, the dominant mode for this disk is not a
pure radial motion. The bending motion of the mode along with the Poisson effect induces a
vertical motion in the stem which pumps displacement waves into the substrate, where they
carry away the energy of the resonance.

Figure 11 shows measured Q values from the five 41.5 µm disks. The error bars on thickness
are indicative of the limits of the SEM geometry measurement method. Also shown in Figure 11
is simulation data using the measured geometry from the resonators. The two curves correspond
to Q values for the two eigenvalues nearest the shift (45 MHz). The high Q curve is associated
with the radial extension mode we wish to drive; the low Q mode is dominated by a bending
motion. The agreement between the measured and computed Q values is good, and the trend
with respect to changing disk thickness is captured well.
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Figure 9. SEM of 41.5 µm radius poly-SiGe disk resonator.
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Figure 10. Radial and vertical displacement fields illustrating the mode mixing. Disk radius is 41.5 µm
and film thickness is 1.6 µm. The drive frequency is 45 MHz and Q = 140000. Displacement contours

are in units of µm.
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Figure 11. Measured and computed quality factors in 41.5 µm radius disk with varying film thickness.
Upper curve indicates Q from eigenvalue closest to the shift. Lower curve indicates Q from next nearest

eigenvalue.

The presence of the nearby second mode has a large influence on the high Q mode’s quality
factor. This is seen in the large swings in the curves of Fig. 11 which are computed solely
from the system eigenvalues. A good method of visualizing the pole interaction is to examine a
root-locus diagram for the two interacting poles (eigenvalues) parameterized by film thickness.
Figure 12 was computed for the 41.5 µm radius disks. As the thickness changes the two poles
approach each other. The first mode’s frequency first moves away from the real axis increasing
damping, then back toward the real axis decreasing damping. The speed of the first pole
increases the closer it is to the second pole in the complex plane. The dip in the resonator’s Q
correlates well with the thickness at which the poles are closest.

4.4. Performance of model reduction method

As seen above, the bending-dominated mode significantly affects the resonant peaks associated
with the radial dominated modes but not in a way that is immediately obvious. For this reason,
Bode plots are helpful in understanding such systems. As an example of our model reduction
technology, we start with a shift drawn from a hand estimate for the disk frequency:

ωshift = 2.405c/R, (51)

where R is the disk radius and c is the compression-wave velocity in the disk material. With
this shift, we require only two steps of shift-and-invert Arnoldi to resolve the two-dimensional
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invariant subspace for both relevant eigenvalues. We perform the projections in two ways:
first, using a standard Arnoldi projection (with three complex vectors); and second, using a
symmetry-preserving projection based on splitting the real and imaginary parts of the Arnoldi
vectors (with five real vectors). Both reduced models produce Bode plots which closely match
the original 24265 degree of freedom system (Figure 13). In Figure 14, we compare the accuracy
of the two models; clearly, the structure-preserving algorithm is more accurate.

4.5. Conclusions

In this paper, we have described, developed, and enhanced tools suitable for the simulation
of quality factors in very high frequency MEMS resonators. The simulation of this regime
of physical behavior, to date, has been largely ignored due to the analytical and numerical
difficulty of estimating anchor losses which dominate such systems. The primary numerical
advances made are as follows:

1. We have described an alternate interpretation of a PML for time-harmonic elasticity
which was introduced in [8] and in doing so have shown how to construct a particularly
simple finite element implementation for all relevant classes of analysis.

2. Through the use of one-dimensional analysis, we have elucidated the effect of
discretization on the perfect matching property in order to derive heuristics for choosing
the PML parameters.
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Figure 13. Bode plot of the disk resonator with the full model (x), a structure-preserving reduced
model (solid line), and a standard Arnoldi reduced model (dashed line).

3. We have performed convergence studies which show the care which must be taken to
resolve eigenvalues with small imaginary parts compared to their magnitudes, and we
have highlighted the advantage of p-refinement in resolving such eigenvalues.

4. By exploiting the complex symmetry inherent in the PML equations, we have also
described how to improve the accuracy of standard methods for computing free vibrations
and for building reduced models for forced frequency-response analysis.

On the engineering side, our motivation for studying PMLs was to investigate anchor loss in
MEMS resonators. We have demonstrated the utility of our method by analyzing the behavior
of a family of disk resonators. Our developed tools allow us, in detail, to describe the physical
mechanism by which these resonators lose energy by radiation of elastic waves from the anchor.
Because MEMS fabrication processes are not exact, we have analyzed the effect of variations
in the thickness of the resonating disks. Our analysis showed that the quality factor of these
resonators is highly sensitive to the film thickness, and experimental results confirmed this
analysis. Our new tools allow us to explain the variations in the quality factor in terms of
interactions between the desired radial extension mode and a parasitic bending mode which
resonates at nearly the same frequency. The sensitivity to film thickness was first discovered
numerically, and later was verified experimentally.
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